Estrazione solido-liquido

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Estrazione solido-liquido"

Transcript

1 Metodo grafico di calcolo - Gradi di libertà Il nuero di gradi di libertà dell operazione di estrazione solido-liquido può essere ricavato facilente dall analisi delle variabili in gioco e delle relazioni esistenti tra esse. E E A) Singolo stadio Facendo riferiento ad un singolo stadio di estrazione, abbiao 4 correnti cui corrispondono 4 portate e 4 coposizioni (il sistea è ternario, costituito cioè da 3 sostanze: soluto A, solido inerte, solvente C, per cui la coposizione di ciascuna corrente è definita da paraetri) per un totale di variabili. Per deterinare tali incognite sono utilizzabili: ) 3 equazioni, corrispondenti ai 3 bilanci di ateria (uno per ciascun coponente); ) relazione tra le coposizioni del raffinato e dell estratto, ed E, che ipone la condizione che il raffinato uscente trattenga con sé una soluzione avente la stessa coposizione dell estratto uscente; 3) relazione tra le coposizioni del solvente e del soluto presenti nel raffinato, relazione (ottenibile per via analitica o per via sperientale) che ipone che il raffinato uscente trattenga una quantità ben deterinata di liquido. Il nuero di gradi di libertà dell operazione sarà pari pertanto a: n gradi di libertà n incognite n equazioni 5 7 Essi noralente vengono saturati fissando portate e coposizioni del raffinato e dell estratto E entranti e definendo la coposizione z E dell inerte contenuto nell estratto uscente (in genere posta uguale a ), per coplessive 7 variabili. Il problea a questo punto risulta copletaente definito ed aette una soluzione univoca. E N N N- E N ) Stadi ultipli Nelle operazioni di estrazione a più stadi, il nuero di gradi di libertà si ottiene soando quelli relativi ai singoli stadi, più grado di libertà relativo alla scelta da parte del progettista del nuero di stadi, e sottraendo da questa soa le relazioni

2 di uguaglianza di portate e coposizioni delle correnti che connettono tra loro gli stadi stessi. Avreo pertanto: n variabili 7 (gdl di un singolo stadio) N (n di stadi) (scelta n di stadi) 7 N n equazioni (N-) (n correnti tra gli stadi) 3 (n equazioni di uguaglianza) 6 (N-) n gradi di libertà 7 N- 6 (N-) N 7 I prii N gradi di libertà sono saturati iponendo che l estratto uscente da ogni stadio non contenga il solido, ossia che z Ei per i..n. Altri 6 gradi di libertà sono utilizzati specificando portate e coposizioni del raffinato entrante nel I stadio e dell estratto entrante nell N-esio stadio E N L ultio grado di libertà può essere saturato sostanzialente in due odi: ) iponendo che l operazione si svolga in un nuero N di stadi e ricavando quindi le portate e le coposizioni delle correnti uscenti dall estrattore N ed E ; ) iponendo la resa del processo, e quindi la coposizione del raffinato uscente N, e ricavando poi portata e coposizione dell estratto E nonché il nuero di stadi necessari per ottenere la resa voluta.

3 - Diagrai ternari Lo studio dei processi di estrazione può essere effettuato indifferenteente attraverso la risoluzione analitica delle equazioni di bilancio di ateria e di equilibrio oppure ediante procedienti grafici. In quest ultio caso si fa uso di diagrai cosiddetti ternari nei quali è possibile visualizzare la coposizione di iscele a tre coponenti. Tali diagrai hanno la fora di triangolo, equilatero o più frequenteente rettangolo isoscele, i cui vertici e i cui lati rappresentano rispettivaente ciascuno dei tre coponenti puri e tutte le possibili iscele binarie dei coponenti relativi ai due vertici connessi. Nel seguito indichereo con le lettere A, e C rispettivaente il soluto (coponente da estrarre), il solido inerte (il coponente insolubile) ed il solvente, entre con i siboli, e z si farà riferiento alle corrispondenti concentrazioni (espresse coe frazioni in assa). C Fraz. solvente [kg C /kg iscela ],6, Luogo dei punti che rappresentano tutte le possibili iscele di AC Luogo dei punti che rappresentano tutte le possibili iscele di C A,,6 Luogo dei punti che rappresentano tutte le possibili iscele di A Fraz. soluto [kg A /kg iscela ] Tutti i punti interni al diagraa rappresentano iscele ternarie la cui coposizione si ottiene proiettando il punto in questione sui due cateti. Si noti tuttavia che con questo tipo di diagraa è possibile specificare solo le concentrazioni di solvente e di soluto presenti nella iscela, la concentrazione del solido inerte si ricaverà coe copleento ad della soa delle precedenti due: z 3

4 3 - Il punto soa E facile verificare adesso che, se P e P sono i punti rappresentativi di due iscele, e, la soa di queste (ottenuta escolando le iscele stesse) è rappresentata sul diagraa da un punto P che si trova sul segento congiungente i punti P e P, all interno di questo e ad una distanza dai vertici P e P tale che: (regola della leva) dove le quantità P P P P rappresentano le lunghezze dei corrispondenti segenti isurati sul diagraa, entre, e sono le asse delle iscele in questione. Fraz. solvente,6 P P, P,,6 Fraz. soluto Infatti da i bilanci di ateria avreo: ossia, sostituendo la pria equazione nelle altre due: ( ) ( ) 4

5 5 ovvero: ( ) ( ) (*) ( ) ( ) (**) e, dividendo ebro a ebro: Ma il prio terine della eguaglianza rappresenta l inverso del coefficiente angolare del segento P P entre il secondo ebro è l inverso del coefficiente angolare del segento P P. Pertanto risulta diostrata l asserzione che giace sulla congiungente P P. Sepre dalle uguaglianze (*) e (**), elevando al quadrato e soando ebro a ebro: ( ) ( ) [ ] ( ) ( ) [ ] ossia: P P da cui: coe volevasi diostrare.

6 4 - Il punto differenza Analogaente a quanto detto per la soa di due iscele, supponiao adesso di sottrarre, ossia di separare, una iscela da una iscela iniziale per ottenere una terza iscela. L operazione di sottrazione in realtà, a differenza dell operazione di addizione vista in precedenza, non sepre ha un significato fisico preciso, potendo risultare addirittura ipossibile se le due iscele e che si desidera separare non sono forate da fasi diverse. Tuttavia l utilità di considerare, anche solo da un punto di vista ipotetico, questa operazione risulterà ben presto evidente. Anche in questo caso è facile verificare che, se P e P sono i punti rappresentativi delle due iscele e, la differenza di queste è rappresentata sul diagraa da un punto P che si trova sul segento congiungente i punti P e P, all esterno di questo, dalla parte opposta di P rispetto a P se la iscela è sottratta da (oppure dalla parte opposta di P rispetto a P, se è la iscela ad essere sottratta da ) e ad una distanza dai vertici P e P tale che: (regola della leva) dove le quantità P P P P P P rappresentano le lunghezze dei corrispondenti segenti isurati sul diagraa, entre, e sono le asse delle iscele in questione. Fraz. solvente,6 P P, - P,,6 Fraz. soluto 6

7 7 Infatti da i bilanci di ateria avreo: ossia, sostituendo la pria uguaglianza nelle altre due: ( ) ( ) ovvero ( ) ( ) (*) ( ) ( ) (**) e dividendo ebro a ebro: Ma il prio terine della eguaglianza rappresenta l inverso del coefficiente angolare del segento P P entre il secondo ebro è l inverso del coefficiente angolare del segento P P. Pertanto risulta diostrata l asserzione che giace sulla congiungente P P. Sepre dalle uguaglianze (*) e (**), elevando al quadrato e soando ebro a ebro: ( ) ( ) [ ] ( ) ( ) [ ] ossia: P P P P da cui: P P e, poiché >, il punto P si trova all esterno del segento P P, dalla stessa parte di P rispetto a P (per l uguaglianza dei coefficienti angolari dei segenti P P e P P aventi entrabi origine in P ).

8 5 - La curva del raffinato La fase raffinata uscente da uno stadio di estrazione non è ai costituita solo da solido inerte puro poiché quest ultio, avendo in genere una struttura porosa, trattiene al suo interno, coe una spugna, una certa quantità della soluzione (iscela di soluto A solvente C) che costituisce la fase liquida all esterno del solido, ossia la fase estratta E. La quantità di estratto trattenuto per unità di peso di solido inerte, deterina, insiee alla coposizione di detta fase estratta, la coposizione della fase raffinata. Sono in pratica possibili 3 casi: ) la fase raffinata trattiene una quantità sepre costante di estratto; ) la fase raffinata trattiene una quantità sepre costante di solvente; 3) la fase raffinata trattiene una quantità di estratto variabile a seconda della coposizione di questo. Nel prio caso, indicando con k la quantità (costante) di estratto trattenuto dal raffinato (espressa coe kg di estratto (iscela AC) contenuti in kg di solido inerte ) avreo che: Fraz. solvente,6 k k,,,6 Fraz. soluto A z C A C 8

9 9 C A k k k k k (*) la (*) è l equazione di una retta, di coefficiente angolare (quindi parallela all ipotenusa del triangolo rettangolo del diagraa ternario) che interseca l asse delle nel punto di ordinata k/k. Nel secondo caso, indicando con la quantità (costante) di solvente trattenuta dal raffinato (espressa coe kg di solvente C contenuti in kg di solido inerte ), avreo che:,,6,,6 Fraz. soluto Fraz. solvente C A C A z

10 ( ) ( ) ( ) ( ) ( ) z A A ( ) (**) la (**) è l equazione di una retta che interseca l asse delle nel punto di ordinata / e quello delle nel punto di ascissa.,,6,,6 Fraz. soluto Fraz. solvente f( )

11 Nel terzo ed ultio caso non è possibile ricavare una relazione analitica tra le coposizioni e, la relazione in questione può essere deterinata solo per via sperientale e la sua rappresentazione grafica sarà quella di una linea curva. In conclusione, la curva del raffinato è una linea del diagraa ternario che rappresenta il luogo dei punti di tutte le possibili coposizioni della fase raffinata uscente da uno stadio di estrazione per il sistea ternario in questione. Essa è ottenuta iponendo che il raffinato uscente trattenga una quantità fissa o variabile a counque sepre ben deterinata di estratto. Il punto rappresentativo P del raffinato effettivaente uscente da uno stadio di estrazione si ottiene sepliceente unendo l origine degli assi (che rappresenta il solido inerte puro) con il punto corrispondente all estratto E uscente dal edesio stadio. Il raffinato, essendo dato dall insiee, ossia dalla soa, di inerte ed estratto E, si troverà sull intersezione della congiungente i punti P e P E con la curva del raffinato. Punto P E rappresentativo dell'estratto Fraz. solvente,6 Punto P rappresentativo del raffinato,,,6 Fraz. soluto

12 6 - Il calcolo Coe già accennato nel prio paragrafo, il calcolo di un sistea di estrazione solidoliquido può essere orientato alla deterinazione di: ) coposizione e portata delle fasi raffinata ed estratta uscenti (e quindi della resa del processo) da una batteria di estrazione forata da N stadi; ) nuero N di stadi necessari all otteniento di una deterinata resa di estrazione. Caso singolo stadio E E Essendo note le portate e le coposizioni del raffinato e dell estratto E entranti nello stadio, sarà possibile posizionare i punti rappresentativi di queste correnti, P e P E, sul diagraa ternario e calcolare, con il etodo visto nel 3 paragrafo, la posizione del punto soa P : Punto P E rappresentati vo del solvente entrante nello stadio Fraz. solvente,6 Punto soa P rappresentativo della soa delle due correnti, Punto P rappresentati vo del raffi nato entrante nello stadio,,6 Fraz. soluto La posizione dei punti corrispondenti alle correnti E ed (estratto e raffinato uscenti dallo stadio) può quindi essere deterinata ricordando che, in base al bilancio globale di ateria: E E, dette correnti hanno lo stesso punto soa P e che il raffinato, il cui punto rappresentativo P giace sulla curva del raffinato, è

13 costituito dalla soa di solido inerte puro ed estratto E, per cui i punti P e P E saranno deterinati congiungendo l origine degli assi (che rappresenta l inerte puro) con il punto P e prolungando sull ipotenusa: Punto P E rappresentati vo dell'estratto uscente dallo stadio Fraz. solvente,6 Punto P rappresentati vo del raffi nato uscente dallo stadio,,,6 Fraz. soluto Caso stadi ultipli E N E N N- N Anche in questo caso, essendo note le portate e le coposizioni di ed E N, sarà possibile posizionare sul diagraa i punti rappresentativi di queste correnti ed il corrispondente punto soa P. D altra parte supponendo nota anche la resa di estrazione, ossia la percentuale di soluto iniziale che deve essere recuperata, sarà possibile posizionare (sepre sulla curva del raffinato) il punto P N rappresentativo dell estratto uscente dal processo. Infatti, chiaando r la resa percentuale di estrazione, avreo: N (- ) (assa di inerte nella corrente N di raffinato uscente) NA (-r/) (assa di soluto A nella corrente N ) N NA /( NA N ) (concentrazione di A in N, al netto del solvente) 3

14 per cui è possibile posizionare sul diagraa il punto P N rappresentativo del raffinato N uscente, privo di solvente. Il punto P N, del raffinato effettivo uscente, si otterrà, sulla curva del raffinato, congiungendo il vertice del diagraa P EN (che rappresenta il solvente C puro) con il punto P N. Il punto P E potrà quindi essere ricavato nel solito odo congiungendo P N con P e prolungando sulla ipotenusa: E N Fraz. solvente,6 N E, ' N,,6 Fraz. soluto Una volta posizionati sul diagraa i punti rappresentativi delle correnti entranti e uscenti dall insiee degli stadi di estrazione (, E N,, E ) è possibile passare alla seconda fase ossia quella del calcolo del nuero N di stadi necessari. A questo proposito scriviao l equazione di bilancio per i diversi stadi del processo: E E E E (I stadio) E 3 E E E 3 (I II stadio) E N N E E N E N (tutti gli N stadi) Coe si nota, le diverse correnti di estratto e di raffinato che si incrociano tra un generico stadio i e quello successivo i ( i, E i ) presentano tutte la stessa differenza E. Il punto P rappresentativo di tale differenza può essere ottenuto sul diagraa dall intersezione dei prolungaenti dei segenti P P E e P N P EN : 4

15 E N,6 E N, Fraz. solvente -, -,,6 Fraz. soluto -, , -,4 -,6 5

16 Il calcolo a questo punto proseguirà congiungendo il punto P E con l origine, deterinando la posizione del punto P sulla curva del raffinato, unendo poi P con P e prolungando sull ipotenusa, deterinando P E e così via. La costruzione terinerà allorquando l ultio punto P i deterinato sulla curva del raffinato, si troverà in corrispondenza di una i uguale, o inferiore, a quella relativa al punto P N definito in precedenza in base al bilancio globale. 6

17 E N E 5 E 4 E 3 E,6 E N 5 4 3, Fraz. solvente -, -,,6 Fraz. soluto -, , -,4 -,6 7

La retta. Materia: Matematica Autore: Mario De Leo

La retta. Materia: Matematica Autore: Mario De Leo La retta Definizioni Rette particolari Rappresentazione grafica Rette parallele e perpendicolari Retta per un punto e per due punti Distanza di un punto da una retta Intersezione tra due rette Esercizi

Dettagli

Maturità scientifica P.N.I Q.1

Maturità scientifica P.N.I Q.1 Luigi Lecci\Liceo Scientifico G. Stapacchia - Tricase (LE) 08-54400 Maturità scientifica P.N.I. 99 Q. In un piano cartesiano ortogonale Oxy si considerino le parabole C e C di equazione rispettivaente:

Dettagli

IMPIANTI E PROCESSI CHIMICI Esercitazione n 10

IMPIANTI E PROCESSI CHIMICI Esercitazione n 10 IMPIANTI E PROCESSI CHIMICI Esercitazione n 10 Estrazione con solvente configurazione ultistadio controcorrente Soluzione Utilizzando i dati di equilibrio è possibile ricavare il seguente diagraa, che

Dettagli

1 Simulazione di prova d Esame di Stato

1 Simulazione di prova d Esame di Stato Siulazione di prova d Esae di Stato Problea Risolvi uno dei due problei e 5 dei 0 quesiti in cui si articola il questionario Sia y = f) una funzione reale di variabile reale tale che la sua derivata seconda

Dettagli

Carlo Sintini, Problemi di maturità, 1965 Settembre, matematicamente.it

Carlo Sintini, Problemi di maturità, 1965 Settembre, matematicamente.it Carlo Sintini, Problei di aturità, 196 Settebre, ateaticaente.it Settebre 196 In un riferiento cartesiano ortogonale O(x,y) è data la curva di equazione x 1 (1) y x Essendo una costante reale. 1) Ricercare

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

ESTRAZIONE SOLIDO/LIQUIDO - ESERCIZI

ESTRAZIONE SOLIDO/LIQUIDO - ESERCIZI ESTRAZIONE SOLIDO/LIQUIDO - ESERCIZI versione#b1 - Prof.A.Tonini www.andytonini.com ES. 1* ESTRAZIONE SOLIDO/LIQUIDO - MONOSTADIO discontinua 200 Kg di prodotto vegetale costituito da semi con 30% di olio

Dettagli

PROBLEMA 1 Nel piano cartesiano Oxy è data la circonferenza C con centro O e raggio r = 3.

PROBLEMA 1 Nel piano cartesiano Oxy è data la circonferenza C con centro O e raggio r = 3. Sessione ordinaria all estero (AMERICHE) 8 - ESAMI DI STATO DI LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO AMERICHE CORSO DI ORDINAMENTO Indirizzo: SCIENTIFICO Tea di: MATEMATICA Il candidato risolva

Dettagli

PRINCIPIO DI INDUZIONE

PRINCIPIO DI INDUZIONE PRINCIPIO DI INDUZIONE LORENZO BRASCO Contents. Qualche richiao. Esercizi. Qualche richiao Sia n N e siano a,..., a n nueri reali. Ricordiao il sibolo di soatoria a a 0 + a + + a n. Ricordiao la definizione

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2)

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2) Esercizio tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa 0.5 Kg è agganciato ad un supporto fisso traite una olla di costante elastica 2 N/; il corpo è in quiete nel punto O di un piano orizzontale,

Dettagli

Liceo scientifico comunicazione opzione sportiva

Liceo scientifico comunicazione opzione sportiva PROVA D ESAME SESSIONE ORDINARIA 7 Liceo scientifico counicazione opzione sportiva Il candidato risolva uno dei due problei e risponda a quesiti del questionario. Durata assia della prova: ore. È consentito

Dettagli

Compito di febbraio 2004

Compito di febbraio 2004 Copito di febbraio 004 Una laina oogenea di assa, avente la fora di un disco di raggio da cui è stato asportato il triangolo equilatero inscritto ABC, rotola senza strisciare lungo l asse delle ascisse

Dettagli

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6 PRINCIPIO DI INDUZIONE LORENZO BRASCO Esercizio. Diostrare che per ogni n si ha nn + ) ). 2 Esercizio 2. Diostrare che per ogni n si ha 2) 2 nn + )2n + ). Soluzione. Procediao per induzione: la 2) è ovviaente

Dettagli

Amperometri analogici passivi

Amperometri analogici passivi ppunti di Misure Elettriche peroetri analogici passivi NTODUZONE L aperoetro è, in generale, lo struento atto a isurare una corrente elettrica. Parliao invece di galvanoetro quando tale corrente è di intensità

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) 1 Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

2. Fissato nello spazio un punto O, consideriamo lo spazio vettoriale geometrico

2. Fissato nello spazio un punto O, consideriamo lo spazio vettoriale geometrico Algebra lineare (Mateatica C.I.) 0.2.3. Fissato nello spazio un punto O, consideriao lo spazio vettoriale geoetrico S O dei vettori dello spazio con origine nel punto O. Sia π un piano passante per il

Dettagli

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2) 1 Esercizio (tratto dal Problea 4.7 del Mazzoldi 2) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica = 70 N/, che si trova alla lunghezza

Dettagli

CIRCUITI MAGNETICI GIOGO TRAFERRO COLONNA

CIRCUITI MAGNETICI GIOGO TRAFERRO COLONNA CIRCUITI MAGNETICI Si definisce circuito agnetico un certo sviluppo di linee di induzione tale da svolgersi prevalenteente entro ateriali ferroagnetici cioè con alta pereabilità. Le linee di induzione

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

Isometrie Ad ogni simmetria delle Natura corrisponde una quantità conservata (Emmy Noether)

Isometrie Ad ogni simmetria delle Natura corrisponde una quantità conservata (Emmy Noether) Isoetrie Ad ogni sietria delle Natura corrisponde una quantità conservata (E Noether) Le isoetrie sono particolari affinità cioè trasforazioni lineari del piano in sé, che lasciano invariata la distanza

Dettagli

Indice degli argomenti: I numeri naturali

Indice degli argomenti: I numeri naturali Indice degli argomenti: I numeri naturali Le potenze La divisibilità I numeri razionali Rappresentazione razionale dei decimali I numeri reali relativi Approfondimento: il piano cartesiano pag. pag. pag.

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Gli strumenti necessari per lo studio

Gli strumenti necessari per lo studio La potenza di un fucile a olla Sunto E possibile deterinare la potenza di un fucile a olla quando sono note la costante elastica K della olla, la isura d della copressione e la assa del proiettile sparato?

Dettagli

RETTA NEL PIANO CARTESIANO

RETTA NEL PIANO CARTESIANO RETTA NEL PIANO CARTESIANO Def: una funzione matematica del tipo rappresenta nel piano cartesiano una RETTA. Quindi l EQUAZIONE DI UNA RETTA in forma generica è sempre della forma: COEFFICIENTE ANGOLARE:

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Lezione 12. Sottogruppi finiti di ordine fissato. I Teoremi di Sylow.

Lezione 12. Sottogruppi finiti di ordine fissato. I Teoremi di Sylow. Lezione 1 Prerequisiti: Lezioni, 7. ruppi di perutazioni. Riferienti ai testi: [Fd] Sezione.1; [H] Sezione.7; [PC] Sezione 5.1 Sottogruppi finiti di ordine fissato. I Teorei di Sylow. Dal Teorea di Lagrange

Dettagli

( 3) y passano, al variare di m, tutte per il centro PARTE A) ESERCIZI A RISPOSTA MULTIPLA O A RISPOSTA BREVE APERTA. Risposta: [D] Risposta: [C]

( 3) y passano, al variare di m, tutte per il centro PARTE A) ESERCIZI A RISPOSTA MULTIPLA O A RISPOSTA BREVE APERTA. Risposta: [D] Risposta: [C] PARTE A) ESERCIZI A RISPOSTA MULTIPLA O A RISPOSTA BREVE APERTA su scheda A) Quale punto NON appartiene alla retta di equazione y x +? [A] ( ;) [B] ( ; ) 5 [C] 0; [D] ; [E] ; 0 Sostituendo alla x e alla

Dettagli

Esercizi svolti di Statica e Dinamica

Esercizi svolti di Statica e Dinamica Esercizi svolti di Statica e Dinaica 1. La assa è sospesa coe in figura. Nota la costante elastica k della olla, deterinarne l allungaento in condizioni di equilibrio. 1.6 Kg ; θ 30 ; k 10 N -1 θ Il diagraa

Dettagli

CAPITOLO 20 IL MODELLO MICROSCOPICO DELLA MATERIA ( ) ( ) ( ) " ( 1,50 "10 #3 m 3 ) ( ) ( ) = 1,0!10 5 Pa 3! 0,20 m 3 = 3,0 "10 2 K.

CAPITOLO 20 IL MODELLO MICROSCOPICO DELLA MATERIA ( ) ( ) ( )  ( 1,50 10 #3 m 3 ) ( ) ( ) = 1,0!10 5 Pa 3! 0,20 m 3 = 3,0 10 2 K. Problei di paragrafo 1 Perché la assa inerziale di un granello di polline per quanto piccola è olto aggiore di quella di una olecola di acqua Perché gli urti sono nuerosissii e la loro intensità e frequenza

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO FACOLTÀ DI INGEGNERIA CORSO DI AZZERAMENTO - MATEMATICA ANNO ACCADEMICO 010-011 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

LAVORO DI UNA FORZA (1)

LAVORO DI UNA FORZA (1) LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

Moto di caduta di un corpo. Un corpo K, supposto puntiforme e di massa m, cade verso il suolo da un altezza h. Studiamone il moto.

Moto di caduta di un corpo. Un corpo K, supposto puntiforme e di massa m, cade verso il suolo da un altezza h. Studiamone il moto. Moto di caduta di un corpo 1. Preessa Un corpo K, supposto puntifore e di assa, cade verso il suolo da un altezza h. Studiaone il oto. Si tratta allora di deterinare: tutte le forze agenti sul corpo; la

Dettagli

ELEMENTI DI LOGICA MATEMATICA LEZIONE X

ELEMENTI DI LOGICA MATEMATICA LEZIONE X ELEMENTI DI LOGICA MATEMATICA LEZIONE X MAURO DI NASSO Dedichiao questa lezione all introduzione dei nueri reali R, definiti a partire dall insiee dei nueri razionali Q. Con questo ultio passo, avreo così

Dettagli

POLITECNICO DI TORINO 1 a Facoltà di Ingegneria A.A. 2011/2012. Progetto di Infrastrutture Viarie. Corso di Laurea Magistrale in Ingegneria Civile

POLITECNICO DI TORINO 1 a Facoltà di Ingegneria A.A. 2011/2012. Progetto di Infrastrutture Viarie. Corso di Laurea Magistrale in Ingegneria Civile POLITECNICO DI TOINO a Facoltà di Ingegneria A.A. 0/0 Corso di Laurea Magistrale in Ingegneria Civile Progetto di Infrastrutture Viarie prof. Marco Bassani ing. oberto Melotti Esercizio : Progetto di una

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Compito di Fondamenti di Automatica - 21 giugno 2006 Soluzioni

Compito di Fondamenti di Automatica - 21 giugno 2006 Soluzioni Copito di Fondaenti di Autoatica - 21 giugno 200 Soluzioni Esercizio 1A. Dato lo schea di figura u k b y x dove = 1 é la assa dei due carrelli, k la costante elastica della olla, b il coefficiente di attrito

Dettagli

CONTROLLO DI QUALITÀ. 1. Generalità. 2. Campioni di controllo qualità

CONTROLLO DI QUALITÀ. 1. Generalità. 2. Campioni di controllo qualità CONTROLLO DI QUALITÀ 1. Generalità Il Decreto legislativo 2 febbraio 2001, n. 31 all art. 7, coa 3, ipone al gestore del servizio idrico integrato l obbligo di avvalersi di laboratori di analisi interni

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

Esercizi e problemi sulla parabola

Esercizi e problemi sulla parabola Esercizi e problemi sulla parabola Esercizio 1. Si consideri l'insieme di parabole: con k R, k 1. Γ k : y = (k + 1)x x + k 4 (a) Determinare, per quali k, la parabola passa per l'origine. (b) Determinare,

Dettagli

Isometrie. Tipi di isometrie

Isometrie. Tipi di isometrie Isoetrie Una Isoetria è una corrispondenza biunivoca del piano in sé che conserva le distanze. : 1) Una retta viene trasforata in una retta, un segento in un segento congruente, un cerchio in un cerchio

Dettagli

A questo punto è possibile ricavare il taglio ed il momento generati dalla somma delle due distribuzioni:

A questo punto è possibile ricavare il taglio ed il momento generati dalla somma delle due distribuzioni: 1. Sia data un ala, odellata coe coe una trave libera di lunghea =. l carico a cui è soggetta l ala è dovuto alla soa (algebrica) di una distribuione di portana di tipo parabolico, con valore nullo alle

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Parabole (per studenti del biennio)

Parabole (per studenti del biennio) Parabole (per studenti del biennio) - - - 5 - - Equazione della parabola con vertice in O(0,0) : = a 5 - - - Equazione della parabola con vertice in V( 0,0) : = a 0 - - - 5 - Equazione della parabola con

Dettagli

Il sistema di riferimento cartesiano

Il sistema di riferimento cartesiano 1 Il sistema di riferimento cartesiano Un sistema di riferimento cartesiano si compone di due semirette orientate, tra loro perpendicolari, dette assi cartesiani. L asse delle ascisse (o delle x), è quello

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

APPUNTI DI CALCOLO NUMERICO

APPUNTI DI CALCOLO NUMERICO APPUNTI DI CALCOLO NUMERICO Introduzione al calcolo nuerico Rappresentazione dei nueri sul calcolatore Stailità e condizionaento Metodi nuerici Un fenoeno fisico può essere rappresentato attraverso un

Dettagli

Compito di matematica Classe III ASA 23 aprile 2015

Compito di matematica Classe III ASA 23 aprile 2015 Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9

Dettagli

Appunti ed esercizi di geometria analitica PRIMA PARTE

Appunti ed esercizi di geometria analitica PRIMA PARTE Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.

Dettagli

LA RETTA DI REGRESSIONE LINEARE E SISTEMI SOVRADETERMINATI

LA RETTA DI REGRESSIONE LINEARE E SISTEMI SOVRADETERMINATI LA RETTA DI REGRESSIONE LINEARE E SISTEMI SOVRADETERMINATI MAURIZIO PAOLINI - CORSO PAS CLASSE A048 Dipartiento di Mateatica e Fisica, Università Cattolica, sede di Brescia. paolini@df.unicatt.it E-ail

Dettagli

Reti Logiche Appello del 9 gennaio 2007 Seconde prove

Reti Logiche Appello del 9 gennaio 2007 Seconde prove Appello del 9 gennaio 27 econde prove (D2) ualunque funzione di coutazione di due variabili f ( y, ) può essere espressa nella fora f ( y, ) = a b cy dy Ricavare i coefficienti a, b, c, d in funzione dei

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite 1. U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite 1. U.D. N 08 I sistemi di primo grado a due incognite Unità Didattica N 08 I sistemi di primo grado a due incognite 1 U.D. N 08 I sistemi di primo grado a due incognite 01) Coordinate cartesiane 0) I sistemi di primo grado a due incognite 03) Metodo di sostituzione

Dettagli

Carlo Sintini, Problemi di maturità, 1968 Luglio, matematicamente.it

Carlo Sintini, Problemi di maturità, 1968 Luglio, matematicamente.it Luglio 1968 Sia ABC un triangolo equilatero di lato a ed E un punto generico del lato AC. Condotta da E la parallela ad AB ed indicata con F la sua intersezione con BC, si denoti con D il punto del prolungamento

Dettagli

Il Tableau M M O M M M M M M M M O M M M M. valore dell obiettivo (soluzione corrente) coeff. dell obiettivo. nomi delle variabili fuori base

Il Tableau M M O M M M M M M M M O M M M M. valore dell obiettivo (soluzione corrente) coeff. dell obiettivo. nomi delle variabili fuori base Il ableau L algorito del siplesso può essere eseguito utilizzando una tabella, detta ableau, in cui vengono disposti i coefficienti della funzione obiettivo e dei vincoli. ali coefficienti sono quelli

Dettagli

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto. TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Esame di Stato di Liceo Scientifico Corso di Ordinamento. Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 2010.

Esame di Stato di Liceo Scientifico Corso di Ordinamento. Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 2010. Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 00. Sommario Problema... Punto.... Punto.... Punto.... 4 Punto 4.... 5 Problema... 6 Punto.... 6 Punto.... 7 Punto....

Dettagli

Insegnamento di Idrologia. Esercitazione n. 3

Insegnamento di Idrologia. Esercitazione n. 3 Insegnaento di Idrologia Esercitazione n. 3 Si vuole progettare una fognatura nella zona sud di Milano e si accetta un'insufficienza della rete ediaente ogni 20 anni. Per l'analisi idrologica sono disponibili

Dettagli

Potenze, logaritmi, equazioni esponenziali e logaritmiche.

Potenze, logaritmi, equazioni esponenziali e logaritmiche. Potenze, logariti, equazioni esponenziali e logaritiche Potenza con esponente intero di un nuero reale Sia a R ed n Z Ricordiao, anzitutto, le seguenti definizioni: ) se n >, si chiaa potenza ennesia (che,

Dettagli

Nel Sistema Internazionale l unità di misura dell angolo è il radiante

Nel Sistema Internazionale l unità di misura dell angolo è il radiante Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale

Dettagli

Frequenze proprie di una catena unidimensionale

Frequenze proprie di una catena unidimensionale UNIVERSITA DEGLI STUDI DI CATANIA Dipartiento di Scienze MM FF NN Corso di Laurea di prio livello in Fisica Frequenze proprie di una catena unidiensionale Cristalli e quasicristalli Oscillazioni e onde

Dettagli

La funzione di risposta complessa in frequenza (Figura 5.2) possiede la forma:

La funzione di risposta complessa in frequenza (Figura 5.2) possiede la forma: DISSIPAZIONE PASSIVA 5. Sorzatori a assa accordata Si definisce sorzatore a assa accordata una assa collegata a una struttura ediante un sistea di olle (e dissipatori). Regolando le olle in odo tale che

Dettagli

Esercitazione 09: Forze d inerzia e oscillatore armonico

Esercitazione 09: Forze d inerzia e oscillatore armonico Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo II Prof. Leonardo BERTINI Ing. Ciro SANTUS Esercitazione 09: Forze d inerzia e oscillatore aronico Indice 1 Moto relativo

Dettagli

3A ALGEBRA Numeri relativi Esercizi supplementari di verifica 1 Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione.

3A ALGEBRA Numeri relativi Esercizi supplementari di verifica 1 Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione. Numeri relativi Esercizi supplementari di verifica Esercizio Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione. a) V F L insieme dei numeri interi relativi è un sottoinsieme dell

Dettagli

Gli insiemi, la logica

Gli insiemi, la logica Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) A (d) A risp (e) {1, } A Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali

Dettagli

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

Compito di matematica Classe III ASA 20 novembre 2014

Compito di matematica Classe III ASA 20 novembre 2014 Compito di matematica Classe III ASA 0 novembre 014 1. Risolvere le seguenti disequazioni irrazionali: 8 x x > 1 x x 1 (x 1) Soluzione (algebrica): La prima disequazione è del tipo A(x) > B(x) e l insieme

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

Appunti per la classe terza. Geometria Analitica

Appunti per la classe terza. Geometria Analitica Istituto Professionale L. Lagrange Torino A.S. 008-009 Appunti per la classe terza Geometria Analitica Autore: Di Liscia Francesca Indice 1 Piano cartesiano 1.1 Punto medio......................................

Dettagli

2 x y x 2 y 2 2p. Le lunghezze dei lati del trapezio sono. BC x y AB 2y y 2 CD 2x x 2 E quindi il suo perimetro è

2 x y x 2 y 2 2p. Le lunghezze dei lati del trapezio sono. BC x y AB 2y y 2 CD 2x x 2 E quindi il suo perimetro è Luglio 935 Primo problema Di un trapezio convesso isoscele, le cui diagonali sono perpendicolari fra loro, si conosce il perimetro p e si sa che è equivalente a un quadrato di lato lungo m. Determinare

Dettagli

Nome Cognome Numero di matricola Coordinata posizione. Quarto compito di Fisica Generale 1 + Esercitazioni, a.a Settembre 2018

Nome Cognome Numero di matricola Coordinata posizione. Quarto compito di Fisica Generale 1 + Esercitazioni, a.a Settembre 2018 Noe Cognoe Nuero di atricola Coordinata posizione Quarto copito di isica Generale + Esercitazioni, a.a. 207-208 3 Settebre 208 ===================================================================== Preesse

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

Determina il terzo vertice A di un triangolo di cui. l ortocentro

Determina il terzo vertice A di un triangolo di cui. l ortocentro La Retta Esercizi Esercizio 6. Determina il terzo vertice A di un triangolo di cui sono noti due vertici ; 1, 1; e l ortocentro ;. Soluzione 1 Analizziamo il problema ragionando, per semplicità, su un

Dettagli

2.1 Numeri naturali, interi relativi, razionali

2.1 Numeri naturali, interi relativi, razionali 2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

Gli insiemi, la logica

Gli insiemi, la logica Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) 2 A (d) A (e) {1, } A 2 Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali

Dettagli

Compito di matematica Classe III ASA 28 maggio 2015

Compito di matematica Classe III ASA 28 maggio 2015 Compito di matematica Classe III ASA 8 maggio 015 1. Risolvere le seguenti equazioni e disequazioni esponenziali: 4 x x 1 = 16 x + x 1 x+ = 5 x x+ x 1 + 4 = 0 (4 x 1) 49 ( ) x 1 x + 10 x 81 x 1 x 4 + 1

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

che rappresenta l equazione differenziale del moto armonico. La soluzione dell equazione differenziale è espressa come

che rappresenta l equazione differenziale del moto armonico. La soluzione dell equazione differenziale è espressa come Esperienza n. Forze elastiche Cenni teorici Si dicono elastici i corpi che quando vengono deforati con una copressione o dilatazione reagiscono con una forza di richiao proporzionale alla deforazione.

Dettagli

Complementi di algebra

Complementi di algebra Complementi di algebra Equazioni di grado superiore al secondo Come per le equazioni di grado, esistono formule risolutive anche per le equazioni di e grado ma non le studieremo perché sono troppo complesse,mentre

Dettagli

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1. L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze

Dettagli

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario. LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE ORDINARIA Il candidato risolva uno dei due problei e 5 dei quesiti scelti nel questionario. N. De Rosa, La prova di ateatica per il liceo PROBLEMA t La funzione

Dettagli

La retta. y 5 x ; 5y. Esercizio 6. 6 x 3. y x. Essendo ;,, i tre punti sono allineati.

La retta. y 5 x ; 5y. Esercizio 6. 6 x 3. y x. Essendo ;,, i tre punti sono allineati. La retta Esercizi Esercizio eterminare l equazione della retta passante per ; 7 e parallela alla retta. 7 ( ) ; 7 ;. Esercizio eterminare l equazione della retta passante per 7 e perpendicolare alla retta.

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio

Dettagli

Coordinate Cartesiane

Coordinate Cartesiane - - Coordinate Cartesiane Su di una retta r consideriamo un punto, detto origine, un verso positivo indicato con una freccia ed un segmento unitario U. In questo caso la retta r dicesi asse delle ascisse

Dettagli

Sezione III Metodi quantitativi per la misurazione e gestione dei rischi

Sezione III Metodi quantitativi per la misurazione e gestione dei rischi Sezione III Metodi quantitativi per la isurazione e gestione dei rischi Test n. Teoria della probabilità e distribuzioni di probabilità univariate e ultivariate ) Secondo la definizione classica, la probabilità

Dettagli

Corso di MATEMATICA E FISICA per C.T.F. - A. A. 2015/16 Prova "in itinere" Modulo di Matematica NOME

Corso di MATEMATICA E FISICA per C.T.F. - A. A. 2015/16 Prova in itinere Modulo di Matematica NOME Corso di MATEMATICA E FISICA per C.T.F. - A. A. 05/6 Prova "in itinere" Modulo di Matematica 9.0.06 COGNOME NOME Nota: non sempre la risposta esatta è una delle tre risposte indicate come a,b,c. In questo

Dettagli

Cubiche e quartiche luoghi geometrici di punti del piano (parte II) Elena Stante

Cubiche e quartiche luoghi geometrici di punti del piano (parte II) Elena Stante Cubiche e quartiche luoghi geoetrici di punti del piano (parte II) Elena Stante Il bicorno Il bicorno, detto anche feluca, è una curva che appartiene ad una serie di quartiche studiate dai ateatici Slvester

Dettagli

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario. LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA Il candidato risolva uno dei due problei e degli 8 quesiti scelti nel questionario. N. De Rosa, La prova di ateatica per il liceo

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Fluidodinamica applicata Esercizi Finali

Fluidodinamica applicata Esercizi Finali ESERCZO (NS MENSONE CONOTTO) U Condotto infinito di sezione x Usando l analisi diensionale, studiao la dipendenza del gradiente della pressione dagli altri paraetri del flusso: f (,, U, ) dove U velocità

Dettagli