Introduzione al Calcolo Scientifico - A.A Laboratorio nr.8

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione al Calcolo Scientifico - A.A Laboratorio nr.8"

Transcript

1 Introduzione al Calcolo Scientifico - A.A. 9- Laboratorio nr.8 Discretizzazione di un problema iperbolico D Si consideri il seguente problema iperbolico lineare D: trovare u = u(x, t) tale che u t + a u = in Q = Ω (, T), x u(, t) = u(, t), u(x, ) = u (x), () dove a R \ {}, Ω = (, ) e T è il tempo finale di integrazione. La soluzione u(x, t) rappresenta un onda viaggiante con velocità costante a.. Si scriva la forma della soluzione esatta del problema (). Per la discretizzazione di () si considerino i seguenti schemi espliciti alle differenze finite, dopo aver introdotto un passo di discretizzazione temporale dt, un passo di discretizzazione spaziale dx e aver definito il parametro = dt dx : UPWIND u n+ j = u n j a(un j+ un j ) + a (un j+ un j + un j ) LAX-FRIEDRICHS LAX-WENDROFF u n+ j = (un j+ + un j ) a(un j+ un j ) u n+ j = u n j a(un j+ un j ) + a (u n j+ un j + un j )

2 3. Quale è la restrizione su dt imposta dalla condizione di stabilità dei metodi al punto precedente? Si chiami dt cr il valore massimo del passo di discretizzazione temporale per un fissato passo di discretizzazione spaziale 4. Si implementino i metodi upwind, Lax-Friedrichs, Lax-Wendroff nel codice iperbolico.m. Si permetta all utente la scelta del metodo tramite l uso di un istruzione switch. 5. Si testi il codice iperbolico.m considerando il problema con dato iniziale cos(8πx).5 x.5, u (x) = altrove. e i valori a =, T =. Si prenda dx = /. e si considerino, per i tre metodi, i valori dt = [.75dt cr, dt cr,.5dt cr ]. Si confrontino i risultati ottenuti con la soluzione esatta, mostrando la propagazione dell onda esatta e di quelle approssimate in funzione del tempo. 6. Si ripetano i test del punto precedente considerando il problema con gli stessi parametri di sopra e dato iniziale discontinuo u (x) = 3 x 3, altrove, 7. Si consideri ora il problema con dato iniziale costituito da un pacchetto di due onde sinusoidali sin( π x).5 l x.5 + l, u (x) = l altrove, di uguale lunghezza d onda l = dx, con dx =.. Si scelga dt =.75dt cr e si confronti la soluzione esatta con la soluzione numerica ottenuta con i tre metodi in termini di errore di dissipazione (ampiezza dell onda) e di dispersione (angolo di fase) dopo un intervallo di tempo pari a 5adt.

3 Soluzione - Discretizzazione di un problema iperbolico D. La soluzione del problema iperbolico lineare proposto è del tipo u(x, t) = u (x at), ovvero si tratta di un onda viaggiante con velocità costante a, con ampiezza costante nel tempo. Se a >, l onda si propaga verso destra, se a < verso sinistra.. Scriviamo i metodi di discretizzazione nella forma matriciale u (n+) = u (n) + Au (n), dove u (k) è un vettore di dimensione (nx + ) che rappresenta la soluzione al tempo t = kdt. Avremo, riorganizzando i termini a ( a a) 3 ( a + a)... A UPW = ( a + a) ( a ) ( a a), ( a a) ( a a) a ( a) 3 ( + a)... A LF = ( + a) ( a), ( a) ( + a) ( a ) A LW = 6 4 ( + a) ( + a)... ( + a) ( a ) ( + a)... ( + a) ( + a) ( a ) 3 3, 7 5

4 dove si osserva che imporre la condizione al bordo periodica significa richiedere che u = u N e in particolare avere le identità u u N, u N+ u. Una possibile versione del codice iperbolico.m è la seguente: clear all close all % velocita di propagazione a = ; % parametri discretizzazione T = 3; xstart=; xend=5; dx=.; nx=ceil((xend-xstart)/dx); dt=.75*dx/a; nt=ceil(t/dt); x=linspace(xstart,xend,nx+); t=linspace(,t,nt+); % condizione iniziale % funzione seno l=; 4

5 u=and((x>=.5),(x<=.5)).*(-cos(8*pi*x))/; % soluzione esatta % funzione seno uex=inline(.*x+and(((x-a*t)>=.5),((x-a*t)<=.5)).*... (-cos(8*pi*(x-a*t)))/, x, t, a, l ); lambda = dt/dx; x=linspace(xstart,xend,nx+); t=linspace(,t,nt+); u = zeros(nx+,nt+); u(:,) = u; A=sparse(nX+,nX+); method= upwind ; switch (method) %%%%%%%%%%%%%%% UPWIND %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case{ upwind } A= diag((-lambda*abs(a))*ones(nx+,))+... diag(lambda/*(abs(a)+a)*ones(nx,),-)+... diag(lambda/*(abs(a)-a)*ones(nx,),); A(,nX) = lambda/*(abs(a)+a); A(nX+,) =lambda/*(abs(a)-a); %%%%%%%%%%%%%%% LAX-Friedrichs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case{ lf } 5

6 disp( metodo--> Lax-Friedrichs ) A= diag(/*(+lambda*a)*ones(nx,),-)+... diag(/*(-lambda*a)*ones(nx,),); A(,nX) = /*(+lambda*a); A(nX+,) =/*(-lambda*a); %%%%%%%%%%%%%%% LAX-WENDROFF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case{ lw } disp( metodo--> Lax-Wendroff ) A= diag((-(lambda*a)^)*ones(nx+,))+... diag(lambda/*(+lambda*a)*ones(nx,),-)+... diag(lambda/*(-+lambda*a)*ones(nx,),); A(,nX) = lambda/*(+lambda*a); A(nX+,) =lambda/*(-+lambda*a); end % switch for j = :nt+ u(:,j) = A*u(:,j-); end for j = 5::5 plot(x,u(:,j), - ) hold on plot(x,uex(x,j*dt,a,), r- ) 6

7 %pause(.5) end 3. Tutti i metodi proposti sono espliciti; pertanto, per garantire la stabilità della soluzione numerica è necessario scegliere (condizione CFL) 4. Consideriamo il dato iniziale dt < dx a. u=and((x>=.5),(x<=.5)).*(-cos(8*pi*x))/; la cui corrispondente soluzione esatta è uex=inline(.*x+and(((x-a*t)>.4),((x-a*t)<.5)).*... (-cos(8*pi*(x-a*t)))/, x, t, a ); In Fig. sono mostrati i risultati ottenuti per i vari metodi con passo di discretizzazione temporale dt = [.75dt ct, dt cr,.5dt cr ] dopo 5 passi di tempo. 5. Imponiamo come condizione iniziale lo scalino u=and((x>=/3),(x<=/3)); la corrispondente soluzione esatta è uex=inline(.*x+and(((x-a*t)>=/3),((x-a*t)<=/3)), x, t, a ); Osserviamo nel caso di Lax-Wendroff la formazione di oscillazioni non fisiche. Tale situazione richiede, in generale, un trattamento più sofisticato (limitatori di pendenza). 6. Imponiamo come condizione iniziale il pacchetto di onde 7

8 l=*dx; u=and(x>=.5-l,x<=.5+l).*sin(*pi/l*x); la corrispondente soluzione esatta è uex=inline(.*x+and((x-a*t)>=.5-l,(x-a*t)<=.5+l).*... sin(*pi/l*(x-a*t)), x, t, a, l ); I grafici ottenuti con i tre metodi dopo 5 passi di tempo sono rappresentati in Fig.. Si osserva che il metodo di Lax-Wendroff è il meno dissipativo. Inoltre, il metodo di Lax-Friedrichs presenta un errore di dispersione positivo, ovvero l onda numerica tende ad anticipare quella esatta. Per gli altri due metodi vale il contrario. 8

9 . UPWIND LAX FRIEDRICHS LAX WENDROFF Esatta UPWIND LAX FRIEDRICHS LAX WENDROFF Esatta UPWIND LAX FRIEDRICHS LAX WENDROFF Esatta Figura : Soluzione approssimata del problema iperbolico dopo 5 passi di tempo. Nella figura in alto dt =.75dt cr, nella figura in centro dt = dt cr, nella figura in basso dt =.5dt cr. Per dt = dt cr, i tre metodi forniscono soluzioni praticamente sovrapposte.

10 UPWIND LAX FRIEDRICHS LAX WENDROFF Figura : Soluzione approssimata del problema iperbolico con condizione iniziale pacchetto di onde dopo 5 passi di tempo. In ciascun grafico, la soluzione esatta è rappresentata in linea tratteggiata, quella approssimata in linea continua.

Introduzione al Calcolo Scientifico - A.A

Introduzione al Calcolo Scientifico - A.A Introduzione al Calcolo Scientifico - A.A. 2009-2010 Discretizzazione di un problema ai limiti Si consideri il seguente problema ai limiti del secondo ordine (problema dell elasticità 1D in regime di piccole

Dettagli

Lezione 11 Funzioni sinusoidali e onde

Lezione 11 Funzioni sinusoidali e onde Lezione 11 Funzioni sinusoidali e onde 1/18 Proprietà delle funzioni seno e coseno sono funzioni periodiche di periodo 2π sin(α + 2π) = sin α cos α + 2π = cos α a Sin a Cos a a a 2/18 Funzione seno con

Dettagli

MODELLI E METODI NUMERICI -01FGW. TEMI d ESAME

MODELLI E METODI NUMERICI -01FGW. TEMI d ESAME MODELLI E METODI NUMERICI -01FGW 1 Problemi ellittici 1.1 Esercizio TEMI d ESAME u = f in R = (0, 1) (0, 2) u = 0 su R, dove quindi R è un rettangolo, mentre R indica il bordo del rettangolo. Il carico

Dettagli

Dinamica dei Fliudi Lezione 11 a.a

Dinamica dei Fliudi Lezione 11 a.a Dinamica dei Fliudi Lezione 11 a.a. 2009-2010 Simone Zuccher 28 Maggio 2010 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 9 Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 9 Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2016-2017 Laboratorio 9 Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I R,

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2010-2011 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dottssa Maria Carmela De Bonis aa 2013-14 Metodi diretti Si chiamano metodi diretti quei metodi numerici che risolvono sistemi lineari in un numero finito di passi In altri termini, supponendo di effettuare

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 12 Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 12 Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2017-2018 Laboratorio 12 Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I R,

Dettagli

Equazioni Iperboliche

Equazioni Iperboliche Equazioni Iperboliche Le equazioni iperboliche rappresentano probabilmente la classe che descrive il più ampio numero di fenomeni in diversi campi della fisica fisica (fluidodinamica, acustica, elettromagnetismo

Dettagli

Angoli e misura degli angoli

Angoli e misura degli angoli Angoli e misura degli angoli Prima definizione di angolo Si definisce angolo ciascuna delle due parti in cui un piano è diviso da due semirette distinte con l origine in comune, semirette comprese. Le

Dettagli

Il metodo di Galerkin Elementi Finiti Lineari

Il metodo di Galerkin Elementi Finiti Lineari Il metodo di Galerkin Elementi Finiti Lineari Si consideri il problema: u(x) = f(x), x (, ), u() = 0, u() = 0. Se ne fornisca la corrispondente formulazione debole. Si costruiscano inoltre la matrice di

Dettagli

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 27 marzo 2019

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 27 marzo 2019 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 27 marzo 2019 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima pagina

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1 Scritto del sesto appello, 6 luglio 208 Testi Prima parte, gruppo.. Trovare α [0, 2π) per cui vale l identità trigonometrica sin(x π/3) = cos(x + α). 2. Trovare il polinomio di Taylor (in 0) di ordine

Dettagli

Trasformata discreta di Fourier diunasequenzafinita: algoritmifft

Trasformata discreta di Fourier diunasequenzafinita: algoritmifft diunasequenzafinita: algoritmifft La TDF di una sequenza finita può essere calcolata utilizzando algoritmi, computazionalmente efficienti, quali gli algoritmi Fast Fourier Transform (FFT). L efficienza

Dettagli

Principio di sovrapposizione.

Principio di sovrapposizione. Principio di sovrapposizione. Il principio di sovrapposizione si applica ogni volta che due (o più) onde viaggiano nello stesso mezzo nello stesso tempo. Le onde si attraversano senza disturbarsi. In ogni

Dettagli

Coppia di forze ONDE ELASTICHE

Coppia di forze ONDE ELASTICHE Coppia di forze ONDE ELASTICHE LEZIONE N 26d Corso di fisica II Prof. Giuseppe Ciancio 1 Si definisce onda elastica meccanica, la propagazione di una perturbazione con trasporto di energia ma non di materia,

Dettagli

Equazioni alle derivate parziali ANALISI NUMERICA CALCOLO NUMERICO (A.A ) Prof. F. Pitolli

Equazioni alle derivate parziali ANALISI NUMERICA CALCOLO NUMERICO (A.A ) Prof. F. Pitolli ANALISI NUMERICA CALCOLO NUMERICO (A.A. -3) Equazioni alle derivate parziali Un equazione differenziale alle derivate parziali è una relazione ce lega una funzione incognita u(x,,x r ) alle sue derivate

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2018-2019 Laboratorio 11 Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I R,

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 8 Problema Si consideri una chitarra classica in cui il diapason (lunghezza totale della corda vibrante) vale l = 65 mm e

Dettagli

UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie. Tecnologie e strumentazione biomedica. Accenni sulla Trasformata di Fourier.

UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie. Tecnologie e strumentazione biomedica. Accenni sulla Trasformata di Fourier. UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie Tecnologie e strumentazione biomedica Accenni sulla Trasformata di Fourier Alberto Macerata Dipartimento di Ingegneria dell Informazione Fourier (1768-183)

Dettagli

Introduzione al Calcolo Scientifico A.A Lab. 5

Introduzione al Calcolo Scientifico A.A Lab. 5 Introduzione al Calcolo Scientifico A.A. 2009-2010 - Lab. 5 Si consideri il moto di un corpo di massa m che, soggetto alla forza di gravità g, si sposta lungo una guida dalla posizione A = (0, 0) alla

Dettagli

Approfondimenti. Rinaldo Rui. ultima revisione: 31 maggio 2019

Approfondimenti. Rinaldo Rui. ultima revisione: 31 maggio 2019 Approfondimenti Rinaldo Rui ultima revisione: 31 maggio 019 5 Oscillazioni e Onde 5. Lezione #1 5..1 Equazione Differenziale delle Onde In tutti i casi analizzati precedentemente si osserva che le onde

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2012-2013 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Una particella si muove lungo l asse x seguendo la seguente legge oraria

Una particella si muove lungo l asse x seguendo la seguente legge oraria 1 Esercizio Una particella si muove lungo l asse x seguendo la seguente legge oraria 1. Determinare le unità di misura delle costanti α e b. Si supponga ora x 0 1 m, α 1 m/s 2 e b 1 m/s. x(t) x 0 + α t

Dettagli

Calcolo Numerico - Prova Matlab 19 luglio 2013

Calcolo Numerico - Prova Matlab 19 luglio 2013 9 luglio 0 () tempo a disposizione per completare la prova: ora; () lo svolgimento della prova deve essere salvato in file denominati cognomenome#m; () è fatto assoluto divieto di aprire applicazioni diverse

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche n Equazione delle onde per i campi n Corda vibrante n Onde piane n Polarizzazione n Energia e quantita` di moto - vettore di Poynting n Velocita` di fase e di gruppo Equazione delle

Dettagli

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una  a antonio.pierro[at]gmail.com Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,

Dettagli

Foglio Esercizi A (interpolazione, approssimazione, integrazione)

Foglio Esercizi A (interpolazione, approssimazione, integrazione) Foglio Esercizi A (interpolazione, approssimazione, integrazione) Esercizio cos( ) +, [,π ] Costruire una approssimazione f ( ) di f () utilizzando elemento di ermite a nodi non equispaziati (, π, π )

Dettagli

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB Calcolo Numerico ed Elementi di Analisi - Allievi AEROSPAZIALI Proff. S. Micheletti, S. Perotto A.A. 20/202, Appello 28 Gennaio 203 NOME... COGNOME... MATRICOLA... DOCENTE... AULA... PC... Ver.A I seguenti

Dettagli

Appunti della lezione sulla Equazione Differenziale delle Onde

Appunti della lezione sulla Equazione Differenziale delle Onde Appunti della lezione sulla Equazione Differenziale delle Onde ultima revisione: 21 giugno 2017 In tutti i casi analizzati precedentemente si osserva che le onde obbediscono alla stessa Equazione Differenziale

Dettagli

Analisi Numerica (A.A )

Analisi Numerica (A.A ) Analisi Numerica (A.A. 2014-2015) Appunti delle lezioni: Equazioni differenziali alle derivate parziali del primo ordine 1 Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

CAPITOLO 1. Equazione del telegrafo, equazione delle onde

CAPITOLO 1. Equazione del telegrafo, equazione delle onde CAPITOLO 1 Equazione del telegrafo, equazione delle onde 1.1. Un modello matematico per un filo elettrico Un filo telegrafico può essere considerato come una sequenza di elementi analoghi a quello raffigurato

Dettagli

SISSA Area Matematica. Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni. 10 Settembre 2019

SISSA Area Matematica. Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni. 10 Settembre 2019 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 10 Settembre 2019 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima

Dettagli

(E) x > 0 (F) x < 1/2 (E) (1/ 2) 1. (E) f 1 (x) = 2x 2 (F) f 1 (x) = x. (E) x = 2 ln 3 (F) x = 3 ln 2 (F) 1/2

(E) x > 0 (F) x < 1/2 (E) (1/ 2) 1. (E) f 1 (x) = 2x 2 (F) f 1 (x) = x. (E) x = 2 ln 3 (F) x = 3 ln 2 (F) 1/2 1 Esercizi 8 di Calcolo e Biostatistica Es. 1. Rispondere alle seguenti sette domande nel tempo massimo di 30 minuti, senza usare strumenti elettronici (a) sapendo che log 10 0.3 e log 10 3 0.8, i valori

Dettagli

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda.

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda. 1. Problema della corda vibrante Si consideri una corda monodimensionale, di sezione nulla avente densità per unità di lunghezza ρ e modulo elastico lineare E. Una corda reale approssima quella ideale

Dettagli

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma Serie di Fourier L idea che sta alla base degli sviluppi in serie di Fourier è quella di approssimare, in qualche senso, le funzioni (integrabili periodiche per mezzo di funzioni più regolari e/o più facilmente

Dettagli

ONDE STAZIONARIE : DESCRIZIONE MATEMATICA

ONDE STAZIONARIE : DESCRIZIONE MATEMATICA ONDE STAZIONARIE : DESCRIZIONE MATEMATICA In questi appunti tratterò della descrizione matematica di un onda stazionaria, cioè di come rappresentare un onda stazionaria attraverso un equazione matematica.

Dettagli

Utilizzo di calcolo numerico parallelo per la soluzione dell equazione del trasporto

Utilizzo di calcolo numerico parallelo per la soluzione dell equazione del trasporto Utilizzo di calcolo numerico parallelo per la soluzione dell equazione del trasporto Edoardo Rognini CNR-IPCF, via Moruzzi 1, 56124, Pisa Abstract Nel presente rapporto viene mostrato un esempio applicativo

Dettagli

Le onde. Rappresentazione delle onde Classificazione delle onde Propagazione delle onde

Le onde. Rappresentazione delle onde Classificazione delle onde Propagazione delle onde Le onde Rappresentazione delle onde Classificazione delle onde Propagazione delle onde Definizione di onda Le onde sono perturbazioni locali di un mezzo continuo che si ripetono, nel tempo e/o nello spazio,

Dettagli

Il campo magnetico rotante

Il campo magnetico rotante Il campo magnetico rotante Data una bobina circolare di raggio R, situata nel piano xy e percorsa da una corrente I, il campo I magnetico generato da I nel centro della bobina vale H = zˆ, dove il verso

Dettagli

E = E 2 E =(jωɛ)( jωµ 0 )E = k 2 E E = Propagazione in mezzi non dissipativi. Mezzo privo di dissipazioni (g = ɛ =0)

E = E 2 E =(jωɛ)( jωµ 0 )E = k 2 E E = Propagazione in mezzi non dissipativi. Mezzo privo di dissipazioni (g = ɛ =0) Propagazione in mezzi non dissipativi Mezzo privo di dissipazioni (g = ɛ =0) Si ricava H dalla prima equazione di Maxwell e si sostituisce nella seconda E = E 2 E =(jωɛ)( jωµ 0 )E = k 2 E dove si è posto

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora)

DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora) DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora) 1. Equazione del trasporto omogenea su R: esistenza, unicità e stabilità. Si consideri il problema u t + 3u x =, u(x, ) = cos(2πx). Si ha u(x,

Dettagli

Sistemi Dinamici Corso di Laurea in Matematica Compito del

Sistemi Dinamici Corso di Laurea in Matematica Compito del Sistemi Dinamici Corso di Laurea in Matematica Compito del 6--9 Esercizio. punti) i) Studiare al variare del parametro µ R, il ritratto di fase del sistema meccanico dato da un punto materiale di massa

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 7 gennaio 00 (Cognome) (Nome) (Numero di matricola) Esercizio Si consideri la successione

Dettagli

Derivate. Derivata di una funzione in un punto. = velocita media di P nell intervallo [x. = pendenza del segmento P 0 P.

Derivate. Derivata di una funzione in un punto. = velocita media di P nell intervallo [x. = pendenza del segmento P 0 P. Derivate Derivata di una funzione in un punto Definizione Interpretazioni Definizione 1 Sia f : I x0 R una funzione definita in un intorno I x0 di un punto x 0 Per ciascun x I x0 con x = x 0 consideriamo

Dettagli

Problemi parabolici. u(0, t) = u(l, t) = 0 t (1)

Problemi parabolici. u(0, t) = u(l, t) = 0 t (1) Problemi parabolici L esempio più semplice di equazione differenziale di tipo parabolico è costituito dall equazione del calore, che in una dimensione spaziale è data da u t (x, t) ku xx (x, t) = x [,

Dettagli

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo;

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo; Esercizio Una particella si muove lungo una retta seguendo la legge oraria con u 3 m/s e 4 s.. Determinare in quali istanti la particella si trova nell origine;. Disegnare la legge oraria; x(t) u t ( sin

Dettagli

Equazione del calore

Equazione del calore Equazione del calore Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 29 maggio 2017 Alvise Sommariva Equazione del calore 1/ 1 Equazione del calore. Consideriamo l equazione

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Equazioni di Evoluzione

Equazioni di Evoluzione Equazioni di Evoluzione Le equazioni di evoluzione descrivono fenomeni che variano in funzione del tempo, tra gli altri per esempio fenomeni di onde, termodinamici, di dinamica delle popolazioni. Le equazioni

Dettagli

Misure di polarizzazione mediante ricevitori differenziali a microonde

Misure di polarizzazione mediante ricevitori differenziali a microonde Misure di polarizzazione mediante ricevitori differenziali a microonde Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Corso di laboratorio di strumentazione spaziale I A. Mennella

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 6/7 Marzo 7 - Esercizi Compito B Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t) = sin(3

Dettagli

Calcolo Numerico - A.A Laboratorio 6

Calcolo Numerico - A.A Laboratorio 6 Calcolo Numerico - A.A. 2011-2012 Laboratorio 6 Approssimazione ai minimi quadrati Siano (x i, y i ), per i = 0,..., n, n + 1 coppie di dati di origine sperimentale o originati dal campionamento y i =

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

Modelli e Metodi Matematici della Fisica. Esonero 2

Modelli e Metodi Matematici della Fisica. Esonero 2 Modelli e Metodi Matematici della Fisica. Esonero 2 Cesi/Presilla A.A. 25 6 Nome Cognome penalità problema voto 1 2 3 4 5 6 7 8 penalità ritardo totale coeff. voto in trentesimi (1) (5 pt). Sia V = C 2

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

Esercitazione 4 - Matematica Applicata

Esercitazione 4 - Matematica Applicata Esercitazione - Matematica Applicata Lucia Pilleri // Esercizio dal compito del //). Considerato il seguente metodo alle differenze finite, dipendente dai parametri reali e β )] η i+ = η i + h 5fx i, η

Dettagli

Serie di Fourier - Esercizi svolti

Serie di Fourier - Esercizi svolti Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx Serie di Fourier Indichiamo con V l insieme delle funzioni f : R R che siano periodiche di periodo π, si abbia cioè f ( + π) = f (), e che risultino integrabili nell intervallo [, π]. Tra queste funzioni

Dettagli

ENERGIA DI UN ONDA. INTENSITA

ENERGIA DI UN ONDA. INTENSITA ENEGIA DI UN ONDA. INTENSITA O- 1 Un onda si propaga perche ogni parte del mezzo comunica il moto alle parti adiacenti Poiche iene fatto del laoro, iene trasferita energia Quanta energia si sposta per

Dettagli

Esercitazione 1 TRASPORTO CONVETTIVO

Esercitazione 1 TRASPORTO CONVETTIVO http://svolgimentotracceesame.altervista.org/ Esercitazione 1 TRASPORTO ONVETTIVO Si effettui la simulazione di un fenomeno di trasporto puramente convettivo (E=0) all interno di un dominio monodimensionale

Dettagli

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Considero l equazione di Schrödinger per gli autovalori Ĥψ = Eψ e prendo un s.o.n.c. di funzioni u j (x). ψ si potrà esprimere come

Dettagli

Gasdinamica Numerica

Gasdinamica Numerica Facoltà di Ingegneria Aeronautica e dello Spazio Appunti del Corso di Gasdinamica Numerica Sergio Pirozzoli & Matteo Bernardini Anno Accademico 2009/200 Capitolo Leggi di conservazione scalari D. Introduzione

Dettagli

INTERPOLAZIONE. Introduzione

INTERPOLAZIONE. Introduzione Introduzione INTERPOLAZIONE Quando ci si propone di indagare sperimentalmente la legge di un fenomeno, nel quale intervengono due grandezze x, y simultaneamente variabili, e una dipendente dall altra,

Dettagli

Equazioni differenziali con valori al bordo

Equazioni differenziali con valori al bordo Equazioni differenziali con valori al bordo Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Equazioni di diffusione reazione 2 Equazioni di diffusione reazione Si consideri

Dettagli

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A.

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. 1 PRELIMINARI 1.1 NOTAZIONI denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. B A si legge B è un sottoinsieme di A e significa che ogni elemento di B è anche elemento di

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 2

FISICA APPLICATA 2 FENOMENI ONDULATORI - 2 FISICA APPLICATA 2 FENOMENI ONDULATORI - 2 DOWNLOAD Il pdf di questa lezione (onde2.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 10/10/2017 LE ONDE NELLO SPAZIO Finora si è considerata

Dettagli

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye 1 / 5 Corso:Fisica moderna/calore specifico dei solidi/modello di Debye Debye riprende l intero modello di Planck per il corpo nero: non solo la quantizzazione dell energia ma anche l idea che vi siano

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Concetti di base: segnali - Classificazione dei segnali -

Concetti di base: segnali - Classificazione dei segnali - Corso di Tecnologie per le Telecomunicazioni e sviluppo in serie di Fourier 1 - Classificazione dei segnali - Le forme d onda di interesse per le Telecomunicazioni possono essere sia una tensione v(t)

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 10

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 10 Complementi di Matematica e Calcolo Numerico A.A. 2014-2015 Laboratorio 10 Convergenza di metodi iterativi per sistemi lineari UnmetodoiterativoperlarisoluzionediunsistemalineareAx = b si scrive in forma

Dettagli

. Imponiamo la validità del teorema di Carnot: =

. Imponiamo la validità del teorema di Carnot: = PROBLEMA 1 Nel piano riferito a coordinate cartesiane, ortogonali e monometriche, si considerino i triangoli ABC con A(1, 0), B(, 0) e C variabile sulla retta d equazione y =. 1. Si provi che i punti (1,

Dettagli

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1 Scritto del quinto appello, 11 settembre 019 Testi 1 1. a) Dato u L 1 R), sia vx) := u x); esprimere ˆv in termini di û. b) Caratterizzare le funzioni u L 1 R) tali che û è una funzione dispari a valori

Dettagli

Trasformata di Fourier

Trasformata di Fourier Trasformata di Fourier Operazione matematica per convertire una funzione di una certa variabile (es. t) in una funzione di un altra variabile (es. w) qualora le variabili siano legate dall esponenziale

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

OSCILLAZIONI SMORZATE E FORZATE

OSCILLAZIONI SMORZATE E FORZATE OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Analisi Numerica: quadratura

Analisi Numerica: quadratura Analisi Numerica: quadratura S. Maset Dipartimento di Matematica e Geoscienze, Università di Trieste In situazioni come queste, si ricorrerà a metodi numerici come quelli che presenteremo per calcolare

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del 30-0-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1.

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1. 1 Moti periodici 7. Forze elastiche Un caso particolare di moto accelerato è un moto periodico. In figura 1 è riportato un esempio di moto periodico unidimensionale. Un moto periodico si ripete identicamente

Dettagli

Metodi numerici per ODE. Metodi numerici per ODE

Metodi numerici per ODE. Metodi numerici per ODE Problema di Cauchy Consideriamo un equazione differenziale (sistema di equazioni) del primo ordine in forma normale con condizioni iniziali assegnate. { y (x) = f (x, y(x)) x [x 0, x F ] y(x 0 ) = y 0

Dettagli

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Corso di Fisica Matematica 2, a.a. 2013-2014 Dipartimento di Matematica, Università di Milano 13 Novembre 2013 1

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 2 gennaio 214 Studiare la convergenza puntuale e uniforme della serie di potenze n=1 n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

26 - Funzioni di più Variabili Limiti e Derivate

26 - Funzioni di più Variabili Limiti e Derivate Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 26 - Funzioni di più Variabili Limiti e Derivate Anno Accademico 2013/2014 M.

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 3

FISICA APPLICATA 2 FENOMENI ONDULATORI - 3 FISICA APPLICATA 2 FENOMENI ONDULATORI - 3 DOWNLOAD Il pdf di questa lezione (onde3.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 16/10/2017 PRINCIPIO DI HUYGENS La descrizione della

Dettagli

Energia del campo elettromagnetico

Energia del campo elettromagnetico Energia del campo elettromagnetico 1. Energia 2. Quantità di moto 3. Radiazione di dipolo VII - 0 Energia Come le onde meccaniche, anche le onde elettromagnetiche trasportano energia, anche se non si propagano

Dettagli

c.l. Matematica Analisi 3 prof. Molteni/Cavaterra 17 Giugno 2019 IV Appello d esame versione A

c.l. Matematica Analisi 3 prof. Molteni/Cavaterra 17 Giugno 2019 IV Appello d esame versione A c.l. Matematica Analisi 3 prof. Molteni/Cavaterra 17 Giugno 2019 IV Appello d esame versione A 1A](8 p.ti) L obiettivo del seguente esercizio è tracciare le curve del piano che sono grafici delle soluzioni

Dettagli

Controlli Automatici L-B - A.A. 2002/2003 Esercitazione 16/06/2003

Controlli Automatici L-B - A.A. 2002/2003 Esercitazione 16/06/2003 Controlli Automatici L-B - A.A. 22/23 Esercitazione 16/6/23 1. Si consideri lo schema a blocchi di figura. x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τ zs + 1 τ p s + 1, G(s) = (s + 5) s(s + 5)(s + 1) Assumendo

Dettagli

Soluzioni del Foglio 9

Soluzioni del Foglio 9 ANALISI Soluzioni del Foglio 9 4 dicembre 9 9.. Esercizio. Si scriva il polinomio di Taylor T 5 (x, ), di punto iniziale x = e ordine n = 5 della funzione f(x) = ex e x La funzione f(x) assegnata é, generalmente,

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

1 Quale di questi diagrammi di Eulero-Venn rappresenta la relazione fra gli insiemi Z, R Q e S = { 2, 0, 3.5}?

1 Quale di questi diagrammi di Eulero-Venn rappresenta la relazione fra gli insiemi Z, R Q e S = { 2, 0, 3.5}? Simulazione prova di recupero Ogni risposta esatta vale un punto, ogni risposta errata comporta una penalizzazione di 0,5 punti. La prova è superata con un punteggio di almeno 7,5 punti. 1 Quale di questi

Dettagli