CAPITOLO 1. Equazione del telegrafo, equazione delle onde

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CAPITOLO 1. Equazione del telegrafo, equazione delle onde"

Transcript

1 CAPITOLO 1 Equazione del telegrafo, equazione delle onde 1.1. Un modello matematico per un filo elettrico Un filo telegrafico può essere considerato come una sequenza di elementi analoghi a quello raffigurato in figura Ricordiamo che i componenti elettronici idealizzati resistenza, induttanza e condensatore legano la corrente I che li attraversa alla differenza di potenziale elettrico V presente ai loro estremi secondo le seguenti regole (1.1.1 (1.1. (1.1.3 V = RI V = L di dt V = q C dove q = t 0 I( td t è la carica immagazzinata nel condensatore. La legge di Kirchoff stabilisce che la somma algebrica delle correnti che entrano o escono da un qualunque punto di un circuito elettrico deve essere uguale a zero. Poiché la corrente elettrica non è altro che il flusso di carica, la legge di Kirchoff non è altro che una forma particolare della legge di conservazione della carica elettrica. Applicata al nodo A, essa garantisce che la corrente I che attraversa la resistenza è uguale alla corrente che attraversa l induttanza. Pertanto, la differenza di potenziale fra i punti B ed A è data da (1.1.4 V B V A = RI + L di dt. Applicando la legge di Kirchoff al nodo A, si ottiene (1.1.5 I 1 = I + I 3. R I 1 A I A B L I 3 T C FIGURA Un elemento di filo elettrico offre alla corrente che lo percorre una resistenza R, una induttanza L e genera una capacità C rispetto a terra. 1

2 1. EQUAZIONE DEL TELEGRAFO, EQUAZIONE DELLE ONDE Derivando rispetto al tempo l equazione (1.1.3 ed inserendo la risultante espressione per I 3 nell equazione (1.1.5 si ottiene (1.1.6 I I 1 = C d dt (V T V A. Dividendo (1.1.4 e (1.1.6 per la distanza tra i punti A e B e passando al limite 0, si ottiene il seguente sistema di equazioni differenziali accoppiate, nelle incognite I e V (1.1.7 (1.1.8 V I = RI + L I = C V dove si è posto R = lim 0 R/, L = lim 0 L/, C = lim 0 C/, e si è sfruttato il fatto che la tensione di terra V T è costante sia nello spazio che nel tempo. Queste equazioni possono essere combinate in un unica equazione che ha come sola incognita la corrente. Derivando (1.1.7 parzialmente rispetto al tempo, derivando (1.1.8 parzialmente rispetto allo spazio ed eliminando il termine in V, si ottiene (1.1.9 CL I + CR I = I che è l equazione del telegrafo in forma dimensionale. Osserviamo che [ ] t [CR] = l e che [ ] t [CL] = In altre parole, (CR 1 ha le stesse dimensioni di un coefficiente di diffusione, mentre (CL 1/ ha le stesse dimensioni di una velocità. In un filo che abbia L = 0 la corrente sarebbe soggetta all equazione del calore. In un filo che abbia R = 0, posto c = (CL 1/ la corrente sarebbe soggetta all equazione ( che è l equazione lineare delle onde. l I = c I 1.. La soluzione di D Alembert dell equazione delle onde Per analogia con l identità algebrica a b = (a + b(a b scriviamo l equazione lineare delle onde ( ( + c ( c u = 0 È facile verificare che questa espressione coincide con (1.1.10, come pure l espressione ( c ( + c u = 0. Pertanto, qualunque soluzione dell equazione ( + c u = 0 o dell equazione ( c u = 0 è anche una soluzione dell equazione lineare delle onde. Per quanto visto nei capitoli precedenti, se il dominio è l intera retta reale R, le soluzioni sono u = R(x ct, u = L(x + ct, dove R e L sono arbitrarie funzioni reali di variabile reale, alle quali imponiamo il solo vincolo di essere di classe C (in modo da assicurare l esistenza delle derivate seconde che appaioni in (

3 1.3. RIFLESSIONE DELLE ONDE SU DI UNA BARRIERA 3 Cerchiamo di soddisfare le seguenti condizioni iniziali: u(x, 0 = f(x (x, 0 = g(x Congetturiamo che qualunque soluzione sia la somma di una soluzione che si propaga verso destra ed una che si propaga verso sinistra, ovvero (1..1 u(x, t = R(x ct + L(x + ct. Derivando rispetto al tempo abbiamo (1.. (x, t = c (L (x + ct + R(x ct. Al tempo t = 0 vogliamo che sia L(x + R(x = f(x c (L (x R (x = g(x Integrando la seconda di queste equazioni otteniamo L(x + R(x = f(x L(x R(x = 1 c x 0 g( xd x + k dove k è una costante di integrazione. Sommando e sottraendo abbiamo R(x = 1 ( f(x 1 x g( xd x k c 0 L(x = 1 ( f(x + 1 x g( xd x + k c Estendendo queste espressioni per R e L al generico tempo t e sommando si ottiene la soluzione di D Alembert: u(x, t = 1 ( x+ct f(x ct + f(x ct + g( x d x. Questa soluzione è unica perché, se esistesse una soluzione ū che soddisfa l equazione delle onde ( con le medesime condizioni iniziali, allora la funzione v = u ū soddisferebbe l equazione delle onde con condizioni iniziali v(x, 0 = 0 e t v(x, 0 = 0, il che è impossibile perché implicherebbe l esistenza di una soluzione non nulla dell equazione di avvezione lineare partendo da condizioni iniziali pari a zero. 0 x ct 1.3. Riflessione delle onde su di una barriera Consideriamo il dominio semi-infinito x > 0 ed imponiamo una condizione al contorno in x = 0. In particolare scegliamo (1.3.1 u(0, t = 0 oppure (1.3. Se le condizioni iniziali sono (0, t = 0. u(x, 0 = f(x (x, 0 = cf (x su di una retta infinita otterremmo la soluzione (1.3.3 u(x, t = f(x + ct

4 4 1. EQUAZIONE DEL TELEGRAFO, EQUAZIONE DELLE ONDE che si propaga verso sinistra. Poiché esiste una barriera in x = 0 utilizziamo il metodo delle immagini, e postuliamo che la soluzione del problema sul dominio semi-infinito sia pari alla somma della soluzione sulla retta infinita e di una sua opportuna immagine speculare (cioè una funzione ottenuta dalla soluzione (1.3.3 tramite opportune operazioni di simmetria discreta. Con qualche prova si ottiene che la soluzione soggetta alla condizione al contorno (1.3.1 è u(x, t = f(x + ct f( (x ct e la soluzione soggetta alla condizione al contorno (1.3. è u(x, t = f(x + ct + f( (x ct Soluzione dell equazione del telegrafo In questo paragrafo troveremo la soluzione dell equazione del telegrafo in un dominio di lunghezza finita l. Prima di procedere, scriveremo l equazione in forma adimensionale, utilizzando le seguenti trasformazioni x = l π x l (1.4.1 t = π CL t. Poiché la scala dei tempi è basata sull induttanza, diremo che abbiamo effettuato una adimensionalizzazione induttiva. Una possibilità alternativa è quella della adimensionalizzazione resistiva, che utilizza le trasformazioni x = l π x (1.4. t = l π CR t. Essendo noi interessati maggiormente al caso di piccole resistività (in particolare desideriamo poter eseguire il limite R 0 la trasformazioni appropriata è la (1.4.1, in quanto la (1.4. perde la scala dei tempi se R = 0. Sostituendo la (1.4.1 nell equazione (1.1.9, ed omettendo le otteniamo la seguente forma adimensionale dell equazione del telegrafo I I ( γ = I dove 1 la costante adimensionale γ è definita da γ = lr L π C. Con questa adimensionalizzazione il dominio spaziale in cui lavoriamo è l intervallo [0, π]. Ai bordi di questo dominio dovremo imporre delle condizioni al contorno. Fra le infinite scelte possibili, noi studieremo due casi (quelli esaminati nel paragrafo 1.3 ovvero (1.4.4 I(0, t = I(π, t = 0 oppure, in alternativa I I (1.4.5 (0, t = (π, t = 0. Oltre alle condizioni al contorno, le soluzioni dovranno soddisfare le seguenti condizioni iniziali (1.4.6 I(x, 0 = f(x (x, 0 = g(x I 1 Il fattore numerico ha il solo scopo di rendere un po più compatte le formula successive, ed è una di quelle cose che si introducono col senno del poi.

5 1.4. SOLUZIONE DELL EQUAZIONE DEL TELEGRAFO 5 con f, g funzioni reali arbitrarie. Il metodo di soluzione che utilizziamo è quello, già ampiamente sfruttato in precedenza, della separazione delle variabili. Cerchiamo, infatti, una soluzione del tipo (1.4.7 I(x, t = A(tB(x. Inserendo (1.4.7 in (1.4.3 otteniamo Ä + γȧ (1.4.8 = B A B dove i punti denotano derivazione rispetto al tempo e gli apici rispetto allo spazio. Poiché il lato sinistro dell equazione (1.4.8 dipende solo da t e quello destro dipende solo da x, se ne deduce che l uguaglianza può essere soddisfatta solo se queste dipendenze si cancellano ed entrambi i termini risultano essere, in effetti, pari ad una costante µ. Quindi l equazione (1.4.8 si scinde nelle seguenti due equazioni alle derivate ordinarie (1.4.9 Ä + γȧ µa = 0 e ( B µb = 0. Risolviamo per prima la ( È un semplice esercizio mostrare che le soluzioni non nulle che si ottengono se µ > 0 non soddisfano né le condizioni al contorno (1.4.4 né le condizioni al contorno ( Per µ = 0 la soluzione generale di ( è B(x = β 1 x + β. Se dobbiamo imporre le condizioni al contorno (1.4.4, anche in questo caso non abbiamo soluzioni non nulle. Se dobbiamo imporre le condizioni al contorno (1.4.5 dobbiamo scegliere β 1 = 0. Le soluzioni interessanti (non nulle, né costanti si ottengono per µ < 0. Posto µ = k, la soluzione generale di ( è B(x = b 1 sin(kx + b cos(kx. Qui esaminiamo esplicitamente solo il caso in cui si debbano imporre le condizioni al contorno ( L altro caso è lasciato come esercizio. In x = 0 abbiamo In x = π abbiamo B(0 = b = 0. B(π = b 1 sin(kx = 0. Quest ultima equazione è soddisfatta per qualunque scelta della costante di integrazione b se è soddisfatta la condizione di quantizzazione ( k = 1,,.... Pertanto, facendo variare k fra 1 e n, le soluzioni dell equazione ( soggette alle condizioni (1.4.4 sono una base ortogonale dello spazio S n. Passiamo, ora, all equazione (1.4.9, che non è altro che l equazione di un oscillatore armonico smorzato. In dipendenza dai valori di k e di γ, la sua soluzione generale è una delle seguenti tre ( ( (1.4.1 A(t = e γt a 1 sin k γ t + a cos( k γ t k > γ ( ( A(t = a 1 e γ k γ A(t = e γt (a 1 t + a k = γ t + a e γ k +γ t k < γ. In questa sede può essere utile pensare a f e a g come a funzioni di classe C, ma in termini più generali, è sufficiente richiedere che siano a quadrato integrabili nell intervallo [0, π].

6 6 1. EQUAZIONE DEL TELEGRAFO, EQUAZIONE DELLE ONDE Se la soluzione appropriata per A è la (1.4.1 allora una soluzione dell equazione del telegrafo è ( ( ( I(x, t = e γt p sin(kxsin k γ t ( + q sin(kxcos k γ t = = e γt (p cos(k(x ct p cos(k(x ct + q sin(k(x ct + q sin (k(x + ct dove sono state utilizzate le identità di prostaferesi 3 e sono state definite le costanti p = a 1 b 1, q = a b 1 e ( c = 1 γ k. Pertanto, abbiamo trovato una classe di soluzioni dell equazione del telegrafo che si comporta in modo simile alle soluzioni dell equazione delle onde: le soluzioni ( sono la somma di coppie di funzioni trigonometriche che traslano con velocità c e con velocità c. In effetti, se poniamo γ = 0 otteniamo delle soluzioni dell equazione delle onde nell intervallo [0, π], soggetta alle condizioni al contorno ( Più in generale, le soluzioni separabili dell equazione del telegrafo possono essere scritte come ( I k (x, t = (p k φ k (t + q k ψ k (tsin(kx dove p k, q k sono costanti da determinarsi, e ( e γt sin k γ t k > γ φ k = te γt k = γ γ e k γ t k < γ e cos( γt k γ t k > γ ψ k = e γt k = γ. e γ k +γ t k < γ Finora non abbiamo discusso come imporre le condizioni iniziali generiche ( Se f, g S n allora n f(x = f k sin(kx e g(x = k=1 n g k sin(kx. k=1 Poiché l equazione del telegrafo è lineare, la somma di soluzioni del tipo ( è ancora una soluzione. Poniamo n ( I(x, t = I k (x, t. k=1 Questa soluzione soddisfa le condizioni iniziali (1.4.6 a patto di scegliere le costanti p k e q k come soluzioni del seguente sistema di equazioni algebriche { pk φ k (0 + q k ψ k (0 = f k p k φk (0 + q k ψ k (0 = g k k = 1,..., n. Infine notiamo che nella somma ( solo le componenti che soddisfano la relazione k > γ possono essere interpretate fisicamente come onde. Le altre componenti non si 3 Le identità di prostaferesi sono: sin(α cos(β = sin(α β + sin(α + β; sin(α sin(β = cos(α β cos(α + β; cos(α cos(β = cos(α β + cos(α + β.

7 1.5. ESERCIZI 7 propagano, ed hanno un comportamento che ricorda quello delle soluzioni dell equazione del calore. Inoltre, le componenti che si propagano, non lo fanno tutte alla medesima velocità. Infatti, la velocità di propagazione ( è una funzione del numero d onda k. Per questo motivo le soluzioni dell equazione del telegrafo sono dette dispersive: al passare del tempo la forma d onda cambia, mano a mano che ciascuna componente si sposta con la sua propria velocità. Se poniamo γ = 0, stiamo allora risolvendo l equazione delle onde, le cui soluzioni, invece, sono non dispersive. Infatti, per γ = 0, c perde ogni dipendenza dal numero d onda k, quindi ogni componente della soluzione viaggia (o verso destra o verso sinistra alla stessa velocità di tutte le altre Esercizi EXERCISE 1.6. Trovate una adimensionalizzazione dell equazione del telegrafo (1.1.9 tale da eliminare ogni parametro numerico nell equazione. EXERCISE 1.7. Considerate una catena di molle di lunghezza a riposo e costante elastica k, e di punti materiali di massa m in posizione x 1, x,...,x n,... k k k k k m m m m m m x1 x x3 x4 x5 x6 Dimostrate che, nel limite di 0, si ottiene l equazione delle onde. Dimostrate inoltre che, se ciascuna massa è soggetta anche alla forza viscosa Fi visc = νẋ i, nel limite precedente si ottiene l equazione del telegrafo. SUGGERIMENTO: i valori di k e di m non possono rimanere costanti mentre 0 (perché?. Che cosa, fisicamente, deve rimanere costante in questo processo al limite? EXERCISE 1.8. Trovate la soluzione dell equazione delle onde nel dominio x > 0 con le condizioni al contorno (1.3.1 e (1.3., soggetta ad arbitrarie condizioni iniziali u(x, 0 = f(x (x, 0 = g(x.

Analisi Matematica B Soluzioni prova scritta parziale n. 4

Analisi Matematica B Soluzioni prova scritta parziale n. 4 Analisi Matematica B Soluzioni prova scritta parziale n. 4 Corso di laurea in Fisica, 017-018 4 maggio 018 1. Risolvere il problema di Cauchy { u u sin x = sin(x), u(0) = 1. Svolgimento. Si tratta di una

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda.

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda. 1. Problema della corda vibrante Si consideri una corda monodimensionale, di sezione nulla avente densità per unità di lunghezza ρ e modulo elastico lineare E. Una corda reale approssima quella ideale

Dettagli

Metodo dei Minimi Quadrati. Dott. Claudio Verona

Metodo dei Minimi Quadrati. Dott. Claudio Verona Metodo dei Minimi Quadrati Dott. Claudio Verona E in generale interessante studiare l andamento di una variabile in funzione di un altra e capire se c è una funzione matematica che le lega. Viceversa è

Dettagli

METODI NUMERICI. Metodo delle differenze finite

METODI NUMERICI. Metodo delle differenze finite METOI NUMERICI Lo sviluppo dei moderni calcolatori ha consentito di mettere a disposizione della scienza e della tecnica formidabili strumenti che hanno permesso di risolvere numerosi problemi la cui soluzione

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Argomento 8 Integrali indefiniti

Argomento 8 Integrali indefiniti 8. Integrale indefinito Argomento 8 Integrali indefiniti Definizione 8. Assegnata la funzione f definita nell intervallo I, diciamo che una funzione F con F : I R è una primitiva di f in I se i) F è derivabile

Dettagli

Definizione: Due equazioni si dicono equivalenti se ammettono le stesse soluzioni.

Definizione: Due equazioni si dicono equivalenti se ammettono le stesse soluzioni. Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF3 / PS-MF3 II Lezione EQUAZIONI E SISTEMI Dr. E. Modica erasmo@galois.it www.galois.it IDENTITÀ ED EQUAZIONI Si consideri un uguaglianza

Dettagli

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Mosè Giordano 6 novembre Introduzione I seguenti esercizi mostrano alcuni esempi di applicazioni degli integrali dipendenti da

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA VIA A.SCARPA

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

E, la successione di numeri {f n (x 0. n f n(x) (15.1)

E, la successione di numeri {f n (x 0. n f n(x) (15.1) Capitolo 15 15.1 Successioni e serie di funzioni Sia {f n } una successione di funzioni, tutte definite in un certo insieme E dello spazio R n ; si dice che essa è convergente nell insieme E se, comunque

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Generalità sulle equazioni differenziali ordinarie del primo ordine Si chiama equazione differenziale ordinaria[ ] del primo ordine un equazione nella quale compare y = y e la sua

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

Equazioni Differenziali

Equazioni Differenziali Equazioni Differenziali Carla A. Ferradini December 9, 217 1 Introduzione e notazioni Un equazione differenziale è un equazione che ha come incognita una funzione. In particolare un equazione differenziale

Dettagli

Equazioni differenziali. f(x, u, u,...,u (n) )=0,

Equazioni differenziali. f(x, u, u,...,u (n) )=0, Lezione Equazioni differenziali Un equazione differenziale è una relazione del tipo f(x, u, u,...,u (n) )=, che tiene conto del valori di una funzione (incognita) u e delle sue derivate fino ad un certo

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Terzo appello 8 Settembre 4 Compito B Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi: Es.:

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

Fondamenti di Meccanica Quantistica (Prof. Tarantelli)

Fondamenti di Meccanica Quantistica (Prof. Tarantelli) Fondamenti di Meccanica Quantistica (Prof. Tarantelli) 1 MOTO LINEARE E L OSCILLATORE ARMONICO 2 EQUAZIONE DI SCHRODINGER Equazione di Schrödinger: descrive il comportamento di un insieme di particelle:

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

5.2 Sistemi ONC in L 2

5.2 Sistemi ONC in L 2 5.2 Sistemi ONC in L 2 Passiamo ora a considerare alcuni esempi di spazi L 2 e di relativi sistemi ONC al loro interno. Le funzioni trigonometriche Il sistema delle funzioni esponenziali { e ikx 2π },

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP

Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP Docente:Alessandra Cutrì Equazione delle onde unidimensionale non omogenea u tt (x, t = a 2 u xx (x,

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Lezione 11 Funzioni sinusoidali e onde

Lezione 11 Funzioni sinusoidali e onde Lezione 11 Funzioni sinusoidali e onde 1/18 Proprietà delle funzioni seno e coseno sono funzioni periodiche di periodo 2π sin(α + 2π) = sin α cos α + 2π = cos α a Sin a Cos a a a 2/18 Funzione seno con

Dettagli

CIRCUITI IN CORRENTE CONTINUA

CIRCUITI IN CORRENTE CONTINUA IUITI IN ONT ONTINUA Un induttanza e tre resistenze 2 J J 2 L Il circuito sta funzionando da t = con l interruttore aperto. Al tempo t = 0 l interruttore viene chiuso. alcolare le correnti. Per t 0 circola

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Campi conservativi e forme esatte - Esercizi svolti

Campi conservativi e forme esatte - Esercizi svolti Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Ingegneria Tessile, Biella Analisi II

Ingegneria Tessile, Biella Analisi II Ingegneria Tessile, Biella Analisi II Esercizi svolti In questo file sono contenute le soluzioni degli esercizi sui campi vettoriali (cf foglio 5 di esercizi) Attenzione: in alcuni esercizi il calcolo

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2013/2014 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2013/2014 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2013/2014 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Identità ed equazioni

Identità ed equazioni Matematica e-learning - Identità ed equazioni Prof. erasmo@galois.it A.A. 2009/2010 1 Generalità sulle equazioni Si consideri un uguaglianza tra due espressioni algebriche A = B Se si sostituiscono al

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. 1 Dom Es. 1 Es. Es. 3 Es. 4 Totale Analisi e Geometria 1 Primo appello 16 febbraio 016 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola:

Dettagli

4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159

4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159 4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159 Una volta stabilito che per ogni funzione continua f l equazione (4.23) è risolubile, ci interessa determinarne l integrale generale.

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli

Integrali Curvilinei

Integrali Curvilinei Integrali Curvilinei Gianluca Gorni 11 gennaio 2006 1 Lunghezza di una curva Definizione 1.1. Una curva N-dimensionale è una funzione definita su un intervallo (compatto, se non specificato altrimenti)

Dettagli

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare: 42 Roberto Tauraso - Analisi 2 Ora imponiamo condizione richiesta: ( lim c e 4x + c 2 + c 3 e 2x cos(2x) + c 4 e 2x sin(2x) ) = 3. x + Il limite esiste se e solo c 3 = c 4 = perché le funzioni e 2x cos(2x)

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Versione da non divulgare. Scritta per comodità degli studenti. Può contenere errori. 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Dicembre 2013 Generalità

Dettagli

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio 2015 - Soluzioni degli esercizi Risolvere le seguenti equazioni. Dove è necessario, scrivere le condizioni di accettabilità e usarle

Dettagli

3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene:

3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene: 1 EQUAZIONI 1. (Da Veterinaria 2006) L equazione di secondo grado che ammette per soluzioni x1 = 3 e x2 = -1/ 2 è: a) 2x 2 + (2 3-2)x - 6 = 0 b) 2x 2 - (2 3-2)x - 6 = 0 c) 2x 2 - (2 3-2)x + 6 = 0 d) 2x

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA b) Dal testo sappiamo già che si tratta di un isometria. Rappresentando i punti si vede che sia

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA b) Dal testo sappiamo già che si tratta di un isometria. Rappresentando i punti si vede che sia CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI GEOMETRIA 008/09 Esercizio.. Dati i punti i O0, 0), A, ), B, ), determinare l isometria fx, y) = x, y ) tale che fo) = O, fa) = A, fb)

Dettagli

Introduzione alla Matematica per le Scienze Sociali - parte II

Introduzione alla Matematica per le Scienze Sociali - parte II Introduzione alla Matematica per le Scienze Sociali - parte II Lucrezia Fanti Istituto Nazionale per l Analisi delle Politiche Pubbliche (INAPP) lucrezia.fanti@uniroma1.it Lucrezia Fanti Intro Matematica

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 8/9 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - dicembre 8 Integrali

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

La topologia della retta (esercizi svolti)

La topologia della retta (esercizi svolti) La topologia della retta (esercizi svolti) Massimo Pasquetto ITS Cangrande della Scala Verona 6 novembre 2017 Esercizi tratti dal capitolo 12 del libro di testo [1] e svolti nelle classi 4A e 4C dell ITS

Dettagli

Corso di Radioastronomia 1

Corso di Radioastronomia 1 Corso di Radioastronomia 1 Aniello (Daniele) Mennella Dipartimento di Fisica Prima parte: introduzione e concetti di base Parte 1 Lezione 3 Caratteristiche principali delle linee di trasmissione Linee

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

Circuiti RC. i(t = 0) = V 0. Negli istanti successivi l equazione per i potenziali risulterà

Circuiti RC. i(t = 0) = V 0. Negli istanti successivi l equazione per i potenziali risulterà Circuiti C Carica e scarica del condensatore (solo le formule) Consideriamo un condensatore di capacità C collegato in serie ad una resistenza di valore. I due elementi sono collegati ad una batteria che

Dettagli

Esercitazione del 6 Dicembre 2011

Esercitazione del 6 Dicembre 2011 Facoltà di Ingegneria dell Università degli Studi di Firenze CdS in Ingegneria per l Ambiente, le Risorse ed il Territorio Complementi di Analisi Matematica A.A. 11/1 Esercitazione del 6 Dicembre 11 Attenzione:

Dettagli

y 3y + 2y = 1 + x x 2.

y 3y + 2y = 1 + x x 2. Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

1 Equazioni Differenziali

1 Equazioni Differenziali Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log 1 + (x y 2 ) x 2.

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log 1 + (x y 2 ) x 2. Analisi Matematica II Corso di Ingegneria Gestionale Compito del 7-7-6 - È obbligatorio consegnare tutti i fogli, anche la brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme Capitolo 1 Vettori applicati 1.1 Richiami teorici Definizione 1.1 Un sistema di vettori applicati Σ è un insieme {(P i,v i ), P i E, v i V, i = 1,...,N}, (1.1) dove P i è detto punto di applicazione del

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Serie di Fourier - Esercizi svolti

Serie di Fourier - Esercizi svolti Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

Coordinate cartesiane e coordinate omogenee

Coordinate cartesiane e coordinate omogenee Coordinate cartesiane e coordinate omogenee Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Ad ogni punto P del piano possiamo associare le coordinate cartesiane (x, y),

Dettagli

Calcolo Scientifico e Matematica Applicata Primo Parziale,

Calcolo Scientifico e Matematica Applicata Primo Parziale, Calcolo Scientifico e Matematica Applicata Primo Parziale, 19.11.2018 Risolvere gli esercizi 2,, 4 oppure, in alternativa, gli esercizi 1, 2,, 5. Valutazione degli esercizi: 1 4, 2 14, 8, 4 8, 5 4. 1.

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli

M557- Esame di Stato di Istruzione Secondaria Superiore

M557- Esame di Stato di Istruzione Secondaria Superiore Ministero dell Istruzione, dell Università e della Ricerca M557- Esame di Stato di Istruzione Secondaria Superiore Indirizzi: LI, EA SCIENTIFICO LI, EA9 SCIENTIFICO Opzione Scienze Applicate Tema di: MATEMATICA

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (3/09/011) Università di Verona - Laurea in Biotecnologie - A.A. 010/11 1 Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O, P-Z)

Dettagli

Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga

Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga Gruppo N Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti utilizzati. Esercizio (1) Si ponga (a) F(x) = ln(3 + sin t )dt. Giustificando

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Analisi e Modelli Matematici

Analisi e Modelli Matematici Analisi e Modelli Matematici Marzo - Aprile 04 Lezione 3 Equazioni differenziali del primo ordine Una equazione differenziale del primo ordine si scrive nella forma: F (x, y, y )=0 oppure, isolando la

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 3 settembre 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 3 settembre 2018 Università di Pisa - orso di Laurea in Informatica nalisi Matematica Pisa, settembre 208 ( cos x sin se x 0 Domanda Sia f : R R definita da f(x = x 0 se x = 0. non esiste la derivata di f in x = 0 f (0

Dettagli

Risoluzione del compito n. 2 (Febbraio 2018/1)

Risoluzione del compito n. 2 (Febbraio 2018/1) Risoluzione del compito n. Febbraio 18/1 PROBLEMA 1 Dopo averlo scritto in forma trigonometrica, determinate le radiciquadrate complesse del numero +i 3. Determinate tutte le soluzioni w C dell equazione

Dettagli

Equazioni differenziali

Equazioni differenziali Capitolo 2 Equazioni differenziali I modelli matematici per lo studio di una popolazione isolata sono equazioni differenziali. Premettiamo dunque allo studio dei modelli di popolazioni isolate una breve

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

TSRR. Vademecum sulle equazioni differenziali I. D. Mugnai( 1 ) ( 1 ) IFAC-CNR, Via Madonna del Piano 10, Sesto Fiorentino (FI), Italy

TSRR. Vademecum sulle equazioni differenziali I. D. Mugnai( 1 ) ( 1 ) IFAC-CNR, Via Madonna del Piano 10, Sesto Fiorentino (FI), Italy TSRR IFAC-TSRR vol. 3 (2011) 93-97 Vademecum sulle equazioni differenziali I D. Mugnai( 1 ) ( 1 ) IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy IFAC-TSRR-TR-10-011 (66-5) ISSN

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (08/07/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O, P-Z) (08/07/20)

Dettagli

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a LE EQUAZIONI LINEARI 1 LE IDENTITA a b = ( a + b)( a b) () 1 a = a + a ( ) ( a + b) = a + ab + b () 3 Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a b = ( a+ b)( a b) È sempre vera qualunque

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una  a antonio.pierro[at]gmail.com Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,

Dettagli

ẋ + a 0 x = 0 (1) Dimostrazione. Risolvendo la (1) per separazione di variabili, troviamo x(t) = c 0 e a0t (2) φ :R S 1 ẍ + a 1 ẋ + a 0 x = 0 (3)

ẋ + a 0 x = 0 (1) Dimostrazione. Risolvendo la (1) per separazione di variabili, troviamo x(t) = c 0 e a0t (2) φ :R S 1 ẍ + a 1 ẋ + a 0 x = 0 (3) Corso di laurea in Matematica - Anno Accademico 006/007 FM1 - Equazioni dierenziali e meccanica Il metodo della variazione delle costanti (Livia Corsi Il metodo della variazione delle costanti è una tecnica

Dettagli

Matematica II prof. C.Mascia

Matematica II prof. C.Mascia Corso di laurea in CHIMICA INDUSTRIALE Sapienza, Università di Roma Matematica II prof CMascia alcuni esercizi, parte, 7 marzo 25 Indice Testi degli esercizi 2 Svolgimento degli esercizi 4 Testi degli

Dettagli

Es. 1 Es. 2 Es. 3 Totale Teoria. Punteggi degli esercizi: Es.1: 12= punti; Es.2: 12=5+5+2 punti; Es.3: 8 punti.

Es. 1 Es. 2 Es. 3 Totale Teoria. Punteggi degli esercizi: Es.1: 12= punti; Es.2: 12=5+5+2 punti; Es.3: 8 punti. Es. 1 Es. Es. 3 Totale Teoria Analisi e Geometria 1 Seconda prova in itinere Febbraio 15 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi:

Dettagli

Equaz. alle differenze - Equaz. differenziali

Equaz. alle differenze - Equaz. differenziali 1 Introduzione Problemi statici: Le quantità e le equazioni comportamentali (e di equilibrio) sono funzioni di un dato periodo. Il prezzo corrente di un bene dipende dalla domanda corrente dei consumatori.

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari Sito Personale di Ettore Limoli Lezioni di Matematica Prof. Ettore Limoli Sommario Lezioni di Matematica... Equazioni differenziali lineari... Generalità... Equazione differenziale lineare omogenea del

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Equazioni e disequazioni

Equazioni e disequazioni Equazioni e disequazioni Le equazioni Una uguaglianza tra espressioni letterali che risulta vera per ogni valore delle lettere che vi compaiono prende il nome di identità. 2a=2a (a+b)(a-b)=a 2 -b 2 Una

Dettagli