Docente: Anna Valeria Germinario. Università di Bari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22



Documenti analoghi
Corso di Analisi Matematica. Polinomi e serie di Taylor

1 Serie di Taylor di una funzione

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

Applicazioni del calcolo differenziale allo studio delle funzioni

SIMULAZIONE TEST ESAME - 1

Basi di matematica per il corso di micro

Matematica generale CTF

SERIE NUMERICHE. prof. Antonio Greco

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

Le derivate versione 4

COGNOME e NOME: FIRMA: MATRICOLA:

Diario del corso di Analisi Matematica 1 (a.a. 2015/16)

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Università degli Studi di Catania A.A Corso di laurea in Ingegneria Industriale

Corso di Analisi Matematica Serie numeriche

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Prove d'esame a.a

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

3 GRAFICI DI FUNZIONI

FUNZIONI CONVESSE. + e x 0

I appello - 24 Marzo 2006

Grafico qualitativo di una funzione reale di variabile reale

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 8.30

Funzioni con dominio in R n

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Funzione reale di variabile reale

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Esame di Analisi Matematica prova scritta del 23 settembre 2013

Siano f e g due funzioni, allora x D f D g, cioè appartenente all intersezione dei loro domini, possiamo definire

COGNOME e NOME: FIRMA: MATRICOLA:

LE FIBRE DI UNA APPLICAZIONE LINEARE

2 Argomenti introduttivi e generali

Anno 5 4. Funzioni reali: il dominio

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

Successioni di funzioni reali

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

STUDIO DI UNA FUNZIONE

Matematica e Statistica

Equazioni non lineari

Indice. 1 Introduzione alle Equazioni Differenziali Esempio introduttivo Nomenclatura e Teoremi di Esistenza ed Unicità...

Corso di Calcolo Numerico

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)).

Limiti e continuità delle funzioni reali a variabile reale

LE FUNZIONI A DUE VARIABILI

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

Programma definitivo Analisi Matematica 2 - a.a Corso di Laurea Triennale in Ingegneria Civile (ICI)

Sviluppi di Taylor Esercizi risolti

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

FUNZIONE REALE DI UNA VARIABILE

Calcolo differenziale Test di autovalutazione

Interpolazione ed approssimazione di funzioni

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m =

Equazioni non lineari

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

7 - Esercitazione sulle derivate

Analisi 2. Argomenti. Raffaele D. Facendola

UNIVERSITA DEGLI STUDI DI GENOVA Facoltà di Scienze M. F. N.

Convessità e derivabilità

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del x 1.

Esercitazioni di Calcolo Numerico 23-30/03/2009, Laboratorio 2

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

2. Limite infinito di una funzione in un punto

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in

Serie numeriche e serie di potenze

STRUTTURE ALGEBRICHE


Dimensione di uno Spazio vettoriale

G3. Asintoti e continuità

Approssimazione polinomiale di funzioni e dati

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento

1. Distribuzioni campionarie

Quesiti di Analisi Matematica A

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Insiemi di livello e limiti in più variabili

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Capitolo 2. Operazione di limite

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere)

( x) ( x) 0. Equazioni irrazionali

LEZIONE 16. Proposizione Siano V e W spazi vettoriali su k = R, C. Se f: V W

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

Il concetto di valore medio in generale

Slide Cerbara parte1 5. Le distribuzioni teoriche

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione

PROGRAMMA DI MATEMATICA

IL PROBLEMA DELLE SCORTE

Funzioni in più variabili

Analisi Complessa. Prova intermedia del 7 novembre Soluzioni. (z 11 1) 11 1 = 0.

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Ottimizazione vincolata

10. Insiemi non misurabili secondo Lebesgue.

Programmazione Matematica classe V A. Finalità

Corso di Analisi Matematica. Successioni e serie numeriche

Transcript:

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Calcolo differenziale e approssimazioni, formula di Taylor Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22

Outline 1 Differenziale e approssimazione lineare 2 Formula di Taylor MacLaurin con resto di Peano 3 La formula di Taylor-MacLaurin con resto di Lagrange 4 Serie di Taylor A.V.Germinario (Università di Bari) Analisi Matematica ITPS 2 / 22

Differenziale e approssimazione lineare Approssimazione lineare Operazione di linearizzazione: approssimare una funzione non lineare tramite una funzione lineare, ottenendo informazioni sull errore commesso. Caso tipico: incremento di una funzione. Sia f : (a, b) R una funzione derivabile in x 0 (a, b) e diamo ad x 0 un incremento dx (che assumiamo molto piccolo in valore assoluto, cioè dx 1). In conseguenza f subisce un incremento f(x 0 ) = f(x 0 + dx) f(x 0 ). In generale f(x 0 ) non è proporzionale a dx (ossia non è lineare rispetto a dx). A.V.Germinario (Università di Bari) Analisi Matematica ITPS 3 / 22

Differenziale e approssimazione lineare Differenziale Invece, risulta essere proporzionale a dx l incremento di f lungo la retta tangente al grafico di f in x 0. Infatti tale incremento è uguale a f (x 0 )dx. Definizione Sia f : (a, b) R una funzione derivabile in x 0 (a, b). Si chiama differenziale di f in x 0 (e si denota con df(x 0 )) l incremento di lungo f lungo la retta tangente al grafico di f in x 0 : df(x 0 ) = f (x 0 )dx. Qual è l errore che si commette approssimando f in un intorno di x 0 con df(x 0 )? A.V.Germinario (Università di Bari) Analisi Matematica ITPS 4 / 22

Differenziale e approssimazione lineare Differenziale Sappiamo che f(x 0 + dx) f(x 0 ) dx f (x 0 ) per dx 0 da cui f(x 0 + dx) f(x 0 ) f (x 0 ) = ε(dx) dx ove ε(dx) 0 per dx 0. Quindi f(x 0 + dx) f(x 0 ) = f (x 0 )dx + dx ε(dx) f(x 0 ) = df(x 0 ) + dx ε(dx) ove dx ε(dx) è una funzione che divisa per dx tende a 0 cioè dx ε(dx) è un infinitesimo di ordine superiore rispetto a dx. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 5 / 22

Differenziale e approssimazione lineare o piccolo Una simbologia utile in questa circostanza: Definizione Siano f e g due funzioni definite in un intorno di x 0. Se f(x) lim x x 0 g(x) = 0 si scrive f(x) = o(g(x)) per x x 0 e si legge f(x) è un o piccolo di g(x). A.V.Germinario (Università di Bari) Analisi Matematica ITPS 6 / 22

Differenziale e approssimazione lineare Se g(x) è un infinitesimo per x x 0, f(x) = o(g(x)) significa che f(x) è un infinitesimo di ordine superiore rispetto a g(x). Dunque si ha f(x 0 ) = df(x 0 ) + o(dx) per dx 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 7 / 22

Differenziale e approssimazione lineare o grande Una definizione simile a quella di o piccolo, utile per lo studio della complessità degli algoritmi. Definizione Siano f e g due funzioni definite in un intorno di x 0. Se esiste M > 0 tale che si scrive f(x) g(x) M definitivamente per x x 0 f(x) = O(g(x)) per x x 0 e si legge f(x) è un o grande di g(x). Se per x x 0, f(x) = o(g(x)) allora f(x) = O(g(x)) A.V.Germinario (Università di Bari) Analisi Matematica ITPS 8 / 22

Differenziale e approssimazione lineare Relazione tra o piccolo e asintotico Teorema Sono equivalenti: 1 f(x) g(x) per x x 0 ; 2 f(x) = g(x) + o(g(x)) per x x 0. I limiti notevoli si possono rileggere tramite uguaglianze che coinvolgono o piccolo : sen x = x + o(x) per x 0; e x 1 = x + o(x) per x 0; 1 cos x = 1 2 x2 + o(x 2 ) per x 0. In modo equivalente, per x 0 cos x = 1 1 2 x2 + o(x 2 ). A.V.Germinario (Università di Bari) Analisi Matematica ITPS 9 / 22

Formula di Taylor MacLaurin con resto di Peano Formula di Taylor MacLaurin con resto di Peano Vogliamo ora generalizzare il procedimento di approssimazione per linearizzazione a quello di approssimazione polinomiale. Più precisamente, se f è derivabile n volte, esiste un polinomio di grado n che in un intorno di un punto fissato x 0 approssima la funzione meglio della sua retta tangente? Primo passo: individuare un polinomio che abbia tutte le derivate fino all ordine n uguali a quelle di f in x 0. Secondo passo: provare che il polinomio trovato approssima bene f in un intorno di x 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 10 / 22

Formula di Taylor MacLaurin con resto di Peano Polinomio di MacLaurin Per semplicità, consideriamo prima il caso in cui x 0 = 0. Teorema Data una funzione f derivabile n volte in x = 0, esiste uno ed un solo polinomio T n di grado n tale che Inoltre tale polinomio è dato da T (k) n (0) = f (k) (0) k = 0,..., n. T n (x) = n k=0 f (k) (0) x k k! e si chiama polinomio di MacLaurin di f(x) di grado n. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 11 / 22

Formula di Taylor MacLaurin con resto di Peano Formula di MacLaurin all ordine n con resto secondo Peano Il polinomio T n approssima bene f in un intorno di 0. Teorema Sia f : (a, b) R una funzione derivabile n volte in 0 (a, b). Allora il polinomio di Maclaurin di grado n T n verifica f(x) = T n (x) + o(x n ) per x 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 12 / 22

Formula di Taylor MacLaurin con resto di Peano Formula di Taylor all ordine n con resto di Peano Quanto detto di può generalizzare al caso x 0 0. Data una funzione f derivabile n volte in x 0, il suo polinomio di Taylor in x 0 è dato da Teorema T n,x0 (x) = n k=0 Vale il risultato di approssimazione. f (k) (x 0 ) (x x 0 ) k. k! Sia f : (a, b) R una funzione derivabile n volte in x 0 (a, b). Allora f(x) = T n,x0 (x) + o((x x 0 ) n ) per x x 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 13 / 22

Formula di Taylor MacLaurin con resto di Peano Formula di MacLaurin di ordine n per alcune funzioni elementari. e x = n k=0 log(1 + x) = sen x = cos x = arctg x = 1 k! xk + o(x n ) per x 0; n k=0 n k=0 n ( 1) k 1 x k + o(x n ) per x 0; k k=1 ( 1) k (2k + 1)! x2k+1 + o(x 2n+2 ) per x 0; ( 1) k (2k)! x2k + o(x 2n+1 ) per x 0; n k=0 ( 1) k 2k + 1 x2k+1 + o(x 2n+2 ) per x 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 14 / 22

La formula di Taylor-MacLaurin con resto di Lagrange La formula di Taylor-MacLaurin con resto di Lagrange Nelle applicazioni, si utilizza il polinomio di Taylor per approssimare una funzione f in un intorno di un punto fissato. Occorre stimare l errore commesso E n (x) = f(x) T n (x). Teorema (Formula di Taylor con resto di Lagrange) Sia f : [a, b] R una funzione derivabile n + 1 volte in [a, b] e x 0 [a, b]. Allora, per ogni x [a, b], x x 0, esiste c compreso tra x 0 e x tale che f(x) = T n,x0 (x) + f (n+1) (c) (n + 1)! (x x 0) n+1. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 15 / 22

La formula di Taylor-MacLaurin con resto di Lagrange La formula di Taylor-MacLaurin con resto di Lagrange Per n = 0 la formula di Taylor con resto di Lagrange è il teorema di Lagrange. L errore E n (x) è dunque dato da f (n+1) (c) (n + 1)! (x x 0) n+1 detto resto secondo Lagrange. Il punto c dipende da x 0, x e n ed è compreso tra x 0 e x. Se si riesce a provare che esiste M > 0 tale che f (n+1) (t) M per ogni t compreso tra x 0 e x allora f(x) T n,x0 (x) M (n + 1)! x x 0 n+1 che è una stima dell errore di approssimazione commesso. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 16 / 22

La formula di Taylor-MacLaurin con resto di Lagrange Formula di Taylor e convessità La formula di Taylor con resto di Lagrange è per n = 1 diventa f(x) = f(x 0 ) + f (x 0 )(x x 0 ) + f (c) (x x 0 ) 2 2! ove c è compreso tra x e x 0. Se f è convessa in un intorno di x 0 allora f(x) f(x 0 ) + f (x 0 )(x x 0 ) quindi il grafico di f si mantiene al di sopra della retta tangente a f in x 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 17 / 22

Serie di Taylor Serie di Taylor La formula di Taylor con resto di Lagrange si può scrivere come ove f(x) = n k=0 f (k) (x 0 ) (x x 0 ) k + E n (x) k! E n (x) = f (n+1) (c) (n + 1)! (x x 0) n+1 e c è un opportuno numero compreso tra x e x 0 A.V.Germinario (Università di Bari) Analisi Matematica ITPS 18 / 22

Serie di Taylor Serie di Taylor Se f ha derivate di ogni ordine si può considerare la serie (di potenze) k=0 f (k) (x 0 ) (x x 0 ) k. (1) k! Definizione La serie di potenze in (1), se ben definita, è detta serie di Taylor della funzione f centrata in x 0. Il polinomio di Taylor di f rappresenta la somma parziale della serie di Taylor di f. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 19 / 22

Serie di Taylor Convergenza Problema: stabilire se esiste un intorno di x 0 in cui vale l uguaglianza f(x) = k=0 f (k) (x 0 ) (x x 0 ) k. (2) k! Definizione Se la (2) è soddisfatta per ogni x in un certo intervallo I (contenente x 0 ) si dice che f è sviluppabile in serie di Taylor in I. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 20 / 22

Serie di Taylor Convergenza Osservazioni: Come per ogni serie si potenze, può accadere che I = R o che I = {x 0 } o che I sia un intorno di x 0 del tipo (x 0 δ, x 0 + δ). Una funzione f è sviluppabile in serie di Taylor in I se per ogni x in I E n (x) 0 per n +. Esempi: e x, sen x, cos x sono sviluppabili in serie di Taylor in R. Esistono funzioni che non sono sviluppabili in serie di Taylor. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 21 / 22

Serie di Taylor Esempio La funzione definita da f(x) = { e 1/x2 se x 0 0 se x = 0 non è sviluppabile in serie di Taylor di punto iniziale x 0 = 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 22 / 22