y 3y + 2y = 1 + x x 2.



Documenti analoghi
Analisi Matematica B Soluzioni prova scritta parziale n. 4

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali

SOLUZIONI COMPITO del 10/01/2019 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti:

ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A Prof. G.Cupini

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 2

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

Corso di Analisi Matematica 1 - professore Alberto Valli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4

Integrazione di funzioni razionali

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Canale SE-Z Prof.ssa Teresa D Aprile Analisi Matematica I Prova scritta del 19/07/2017

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO. f(x) = (µx ± 2µ) e 1/x,

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A Dott.ssa G. Bellomonte

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1

TEMI D ESAME DI ANALISI MATEMATICA I

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159

Equazioni differenziali

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:

Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio a) Studiare l esistenza e la natura degli estremi liberi della funzione.

Equazioni differenziali ordinarie di ordine n

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013

Equazioni differenziali

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 3 settembre 2018

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Equazioni differenziali lineari

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Matematica - Prova d esame (25/06/2004)

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2

Correzione terzo compitino, testo A

x + y = 1 3 y z = 2 x + y z = 4 3 Poichè il determinante della matrice incompleta è 5, applico Cramer e

Equazioni differenziali

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012

19 Marzo Equazioni differenziali.

Campi conservativi e forme esatte - Esercizi svolti

Equazioni separabili. Un esempio importante

Matematica e Statistica

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III compitino 25/5/2018. Esercizio 1. Calcolare il seguente integrale definito:

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

SOLUZIONI COMPITO del 13/02/2019 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A

Equazioni differenziali

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

SOLUZIONI COMPITO A. 3. Imponendo la condizione iniziale y(0) = 1 e, si ricava C = 0, quindi la soluzione cercata sarà. y(x) + 1 = exp(e x x2 2 1)

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Prof. Giuseppe Scippa [EQUAZIONI DIFFERENZIALI] Sintesi dei principali tipi dei equazioni differenziali.

Esercizio Determinare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (i) y = 3y cos(x);

exp(x 2 ) 1 (1 + x 2 ) 2/5 1

Funzioni derivabili (V. Casarino)

Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante)

Secondo appello 2005/ Tema 1

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Esercizi svolti sugli integrali

Equazioni differenziali del II ordine. y 5y + 6y = 0 y(0) = 0 y (0) = 1

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN.

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018

1. (4 punti) Calcolare i seguenti limiti: (a) lim. n arctan( n (log n)2 n. Assegnata la funzione f(x) = (3x + 1) e 1

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

TEMA 1. F (x, y) = e xy + x + y.

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Teoria Es. 1 Es. 2 Es.3 Es. 4 Totale. Cognome: Nome: Matricola: Prima Parte. x a dx

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia

6.3 Equazioni lineari del secondo ordine

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1

Appello di Matematica II Corso di Laurea in Chimica / Scienze Geologiche 19 Giugno ( 1) n sin 1. n 3

Analisi Matematica I

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Analisi Matematica 1 Soluzioni prova scritta n. 1

LEZIONI DI ANALISI MATEMATICA I. Equazioni Differenziali Ordinarie. Sergio Lancelotti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

FM1 - Equazioni differenziali e meccanica. Il metodo di variazione delle costanti (Livia Corsi)

Alcune primitive. Francesco Leonetti (1) 5 giugno 2009

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 10 Luglio 2019

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 16 gennaio 2018

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

7. Equazioni differenziali

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 9 punti; Es.2: 6 punti; Es.3: 6 punti; Es.4: 9 punti.

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

Analisi Numerica: Introduzione

Addendum equazioni differenziali

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame

Analisi Matematica 1+2

Transcript:

Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere la seguente equazione differenziale 3 + = + x x. La soluzione dell equazione differenziale assegnata sarà somma della soluzione 0 dell equazione omogenea ad essa associata e di una soluzione particolare p da ricercare con il metodo di somiglianza. Calcoliamo 0 : da cui 3 + = 0 λ λ + = 0 λ =, 0 (x) = C e x + C e x, C, C R. Nella ricerca della soluzione particolare osserviamo che il termine noto dell equazione assegnata è un polinomio di secondo grado, perciò la soluzione andrà cercata nella seguente forma Visto che p (x) = Ax + Bx + C. p(x) = Ax + B, p(x) = A, imponendo che sia soluzione dell equazione assegnata si ottiene e quindi il sistema A 6Ax 3B + Ax + Bx + C = + x x A = 6A + B = A 3B + C = la cui soluzione è A = /, B = e C = /. l integrale generale dell equazione differenziale assegnata è (x) = C e x + C e x x x.. Determinare l integrale generale dell equazione differenziale (x) = x + x + 5.

Si tratta di un equazione differenziale di primo ordine a variabili separabili. Si osserva che = 0 è soluzione dell equazione assegnata. Supponendo che 0 si passa a separare le variabili e ad integrare: Si ha perciò x + x + 5 = ( 4 d = + ( x+ x + x + 5. ) ) = ( ) x + arctan + C, C R, = ( ) x + arctan + C, C R, da cui l integrale generale dell equazione differenziale è (x) = arctan ( ) x+, C R. + C Si osserva che non esiste costante C tale che = 0, per cui la soluzione = 0 è una soluzione singolare dell equazione data. 3. Risolvere l equazione differenziale x = (x + )( + ). Si tratta di un equazione del primo ordine a variabili separabili. Osserviamo innanzitutto che = 0 e = sono entrambe soluzioni dell equazione differenziale assegnata (si ricavano studiando + = 0). Supponendo che 0 e, separiamo le variabili ed integriamo membro a membro: d x + + = x = x + x = log x x + C, C R Calcoliamo separatamente il primo integrale applicando Hermite d + = d + d = log log + = log + dunque log + = log x x + C = log + = log x x + C = log x x + C da cui ( + = exp log x ) x + C = + = x e x e C = Cx e x, C > 0 facendo assorbire il segno del modulo dalla costante C otteniamo + = Cx e x, C 0

da cui = ( + )Cx e x = ( Cx e x ) = Cx e Cx e x x = =, C 0. Cx e x A questo punto osserviamo che per C = 0 si otterrebbe la soluzione = 0 mentre non è possibile ottenere con nessuna scelta di C la soluzione costante = che risulta quindi una soluzione singolare dell equazione assegnata. In definitiva le soluzioni dell equazione data sono = e = Cx e x Cx e x 4. Risolvere l equazione differenziale: al variare di C R. + x = x 3. Si tratta di un equazione differenziale del primo ordine della forma = a(x) + b(x) dove a(x) = x e b(x) = x 3. Tutte le soluzioni di tale equazione non omogenea sono ( ) (x) = e A(x) e A(x) b(x) + C, C R, calcolo dunque A(x) = x = x /, e x / x 3 = e x / x xe x / = e x / x e x /, dove ho integrato per parti scegliendo f(x) = e x / x = F (x) = e x / x = e x / e g(x) = x = g (x) = x. ( ) (x) = e x / e x / x e x / + c = x + ce x /. 5. Risolvere l equazione differenziale: = e x sin x. Si ha (x) = e x sin x. Integrando per parti si ha e x sin x = e x sin x e x cos x = e x sin x = e x sin x e x cos x e x sin x [ e x cos x ] e x ( sin x) perciò e quindi e x sin x = ex sin x e x cos x + c, c R (c) = ex (sin x cos x) + c, c R. 3

6. Risolvere l equazione differenziale 6 4 7 = e x. Si tratta di un equazione differenziale lineare del secondo ordine a coefficienti costanti. La soluzione generale è del tipo (x) = o (x) + p (x) dove o (x) è la soluzione generale dell equazione omogenea associata all equazione data, ovvero dell equazione 6 4 7 = 0, mentre p (x) è una soluzione particolare dell equazione assegnata. Iniziamo con la ricerca di o (x). Si ha 6λ 4λ 7 = 0 = λ = 7/4, λ = /4 = o (x) = c e 7/4x + c e /4x, c, c R Per trovare p (x) utilizziamo il metodo di somiglianza. Visto che il secondo membro dell equazione assegnata è e x, cerchiamo p nella forma p (x) = ce x con c costante da determinare imponendo che una tale p sia soluzione dell equazione assegnata : p(x) = ce x, (x) = ce x = 6ce x 4ce x 7ce x = e x = 5ce x = e x = c = /5 (x) = c e 7/4x + c e /4x 5 ex. 7. Risolvere il problema di Cauch 5 = x (0) = 0 (0) = Per risolvere l equazione differenziale associata al problema di Cauch assegnato consideriamo l equazione omogenea ad essa associata 5 = 0 la cui soluzione dipende dalle soluzioni dell equazione caratteristica λ 5λ = 0 = λ(λ 5) = 0 = λ = 0, λ = 5 Dunque la soluzione dell equazione omogenea è 0 (x) = c + c e 5x. Per trovare la soluzione dell equazione non omogenea cerchiamo una sua soluzione particolare applicando il metodo di somiglianza. Il termine noto di tale equazione è di tipo polinomiale, precisamente un polinomio di primo grado. Mancando il termine con la ricerchiamo la soluzione particolare nella forma p (x) = ax + bx + c Il secondo membro è una funzione del tipo f(x) = P n(x)e γx dove P n(x) =, ovvero è un polinomio di grado zeo (una costante) e γ = non è soluzione dell equazione caratteristica. per questa ragione la p si ricerca nella forma sopra indicata. 4

Imponiamo che p sia soluzione dell equazione 5 = x, ovvero che p 5 p = x. Si ha { { p(x) = ax+b, p(x) 0a = a = /5 = a = a 0ax 5b = x = a 5b = 0 = b = /5a = /5 (la costante arbitraria c non viene coinvolta perciò possiamo sceglierla uguale a 0) quindi la soluzione generale dell equazione 5 = x è (x) = 0 (x) + p (x) = c + c e 5x 5 x 5 x. Per calcolare ora la soluzione (unica) del problema di Cuach assegnato basterà imporre le condizioni iniziali: (0) = = c + c = = c = c (x) = 5c e 5x 5 x 5 = 0 = (0) = 5c 5 = c = 5 = c = 5 = 3 5. (x) = 3 5 + 5 e5x 5 x 5 x. 5