Istituzioni di Matematiche - Appunti per e ezioni - Anno Accademico / 6 5. Limiti di funzione. 5.. Funzioni imitate. Una funzione y = f(x) definita in un intervao [ a b] imitata superiormente in tae intervao se: x a, b f ( x) Λ. ε >, x Λ ε f ( x) Λ. esiste un numero Λ tae che [ ], si dice I numero Λ prende i nome di estremo superiore dea funzione ne intervao [ a, b]. Se esiste ameno un vaore di x per cui è verificato i segno di uguagianza nea disequazione., estremo superiore prende i nome di massimo assouto. Una funzione y = f(x) definita in un intervao [ a b] imitata inferiormente in tae intervao se: x a, b f ( x) λ. ε >, x λ f ( x) + ε. esiste un numero λ tae che [ ], si dice I numero λ prende i nome di estremo infereriore dea funzione ne intervao [ a, b]. Se esiste ameno un vaore di x per cui è verificato i segno di uguagianza nea disequazione., estremo inferiore prende i nome di minimo assouto. Una funzione si dice imitata in un intervao [ a b] sia inferiormente che superiormente. Aora a differenza = Λ λ si dice osciazione dea funzione ne intervao [ a, b]., se o è 6
Istituzioni di Matematiche - Appunti per e ezioni - Anno Accademico / 7 5.. Concetto di imite. Sia data una funzione y = f(x) e sia x un punto di accumuazione de dominio dea funzione ( x può o no appartenere a dominio). Cacoare i imite dea funzione a tendere di x ad x significa cacoare, quando è possibie, a quae numero finito o infinito si avvicina sempre più a funzione a tendere di x a vaori sempre più vicini ad x. Questa operazione si indica con quando i tendere avviene ne intorno competo di x. Pareremo di imite sinistro se intorno considerato di x è queo sinistro e indicheremo Di imite destro se intorno considerato di x è queo destro e indicheremo x x + Se x e sono due numeri finiti i casi che si possono presentare sono quattro: ) imite finito per x che tende ad un numero finito ) imite finito per x che tende ad infinito: x e x + 3) imite infinito per x che tende ad un numero finito = + = 7
Istituzioni di Matematiche - Appunti per e ezioni - Anno Accademico / 8 4) imite infinito per x che tende ad infinito: = x = + x = x + = + x + 5.3. Definizioni di imite. Limite finito per x che tende ad un numero finito Si dice che per x tendente ad x a funzione y = f(x) tende a imite finito se, comunque fissato un numeroε positivo piccoo a piacere, è possibie determinare in corrispondenza diε un intorno di x per ogni x de quae (escuso a più x ) è verificata a condizione: oppure in forma equivaente f ( x) < ε ε < f ( x) < + ε Ne caso particoare di = a funzione si dice infinitesima in x. Se è verificata soo a disequazione < f ( x) < + ε diremo che i imite è da di sopra e o indicheremo con = + Se è verificata soo a disequazione ε < f ( x) < diremo che i imite è da di sopra e o indicheremo con = 8
Istituzioni di Matematiche - Appunti per e ezioni - Anno Accademico / 9 imite finito per x che tende ad infinito di un funzione di dominio iimitato. Si dice che per x tendente ad infinito e cioè, +, a funzione y = f(x) tende a imite finito se, comunque fissato un numero ε positivo piccoo a piacere, è possibie determinare in corrispondenza diε un numero positivo N tae che: oppure in forma equivaente x > N f ( x) < ε x > N ε < f ( x) < + ε Vagono anche in questo caso e definizioni di infinitesimo, imite da di sopra e da di sotto fatti nea definizione precedente. Limite infinito per x che tende ad un numero infinito. Si dice che per x tendente ad x a funzione y = f(x) tende ad infinito se, fissato un numero M positivo, arbitrariamente grande, è possibie determinare in corrispondenza di M un intorno di x per ogni x de quae (escuso a più x ) è verificata a condizione: f ( x) > M Limite infinito per x che tende ad infinito. Si dice che per x tendente ad infinito a funzione y = f(x) tende ad infinito se, fissato un numero M positivo, arbitrariamente grande, è possibie determinare in corrispondenza di M un numero positivo N tae che x > N f ( x) > M 9
Istituzioni di Matematiche - Appunti per e ezioni - Anno Accademico / 5.4. Teoremi sui imiti. Unicità. Se a tendere di x a x a funzione y = f(x) tende a imite questo imite è unico. Permanenza de segno. Se a tendere di x a x a funzione y = f(x) tende a imite, esistente un intorno di x in cui (escuso a più x ) a funzione assume o stesso segno di. De confronto. Date tre funzioni y = f ( x), y = f ( x), y = f ( x) definite 3 rispettivamente negi insiemi I, I, I 3, detto x un punto di accumuazione di I, se avviene che. I I I 3 = I. x I, f ( x) f ( x) f 3 ( x) 3. im f ( x) im f 3( x) aora è anche im f ( x ) x x Dea funzione opposta Se a tendere di x a x a funzione y = f(x) tende a imite aora De vaore assouto [ f x ] im ( ) = Se a tendere di x a x a funzione y = f(x) tende a imite aora =
Istituzioni di Matematiche - Appunti per e ezioni - Anno Accademico / 5.5. Operazioni sui imiti. Limite dea somma: prima forma indeterminata. Date due funzioni y = f(x) e y = g(x), a prima definita ne insieme F, a seconda ne insieme G, se x è un punto di accumuazione appartenente o no a F G e se è e im g( x) sarà anche [ f x + g x ] im ( ) ( ) = + im g( x) + i che significa che i imite dea somma di due funzioni è uguae aa somma dei imiti di ogni funzione. Forma di indeterminazione: + Limite de prodotto: seconda forma indeterminata. Date due funzioni y = f(x) e y = g(x), a prima definita ne insieme F, a seconda ne insieme G, se x è un punto di accumuazione appartenente o no a F G e se è e im g( x) sarà anche [ f x g x ] im ( ) ( ) = im g( x) i che significa che i imite de prodotto di due funzioni è uguae a prodotto dei imiti di ogni funzione. Forma di indeterminazione: Limite dea funzione reciproca. Se a tendere di x a x a funzione y = f(x) tende a imite finito aora:
Istituzioni di Matematiche - Appunti per e ezioni - Anno Accademico / im = f ( x ) cioè i imite de reciproco di una funzione è i reciproco de imite dea funzione stessa. Limite de quoziente di due funzioni: terza e quarta forma indeterminata. Date due funzioni y = f(x) e y = g(x), a prima definita ne insieme F, a seconda ne insieme G, se x è un punto di accumuazione di appartenente o no a F G in un intorno de quae ( x a più escuso) a funzione y = g(x) non si annua mai, e se è e im g( x) con ed numeri finiti ed sarà anche f im ( x ) g( x) = i che significa che i imite de quoziente di due funzioni è uguae a quoziente dei imiti di ogni funzione. Forme di indeterminazione: ; Limite dea potenza di una funzione. Se a tendere di x a x a funzione y = f(x) tende a imite finito, se n è un numero intero aora sarà [ f x ] im ( ) n n cioè i imite di una potenza è uguae aa potenza de imite.