I D R O S T A T I C A

Documenti analoghi
IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

STATICA E DINAMICA DEI FLUIDI

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Dinamica dei Fluidi. Moto stazionario

IDRODINAMICA. Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T].

Densita. FLUIDI : liquidi o gas. macroscop.:

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI

Alcuni utili principi di conservazione

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

I fluidi Approfondimento I

Meccanica dei Fluidi: statica e dinamica

Corso di Componenti e Impianti Termotecnici RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE

Bilanci macroscopici. Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione n.2. Prof. D. P. Coiro

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale

Meccanica dei fluidi, dove e cosa studiare

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Corso di Idraulica ed Idrologia Forestale

Lezione 4 GEOTECNICA. Docente: Ing. Giusy Mitaritonna

Lezione 9. Statica dei fluidi

Cap Fluidi

CENNI DI FLUIDODINAMICA

STATICA EQUILIBRIO DEI FLUIDI

PIANO DI STUDIO D ISTITUTO

COMPITO DI MECCANICA DEI FLUIDI del 12 gennaio 2007

è completamente immerso in acqua. La sua

I FLUIDI. Archimede Pascal Stevino Torricelli

MODULO 3. La pressione

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1

La corrente di un fluido

Legge di Stevino ( d.c.)

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000.

ELEMENTI DI STATICA DEI FLUIDI

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera

SCHEDA 1 PORTATA DI UNA CONDOTTA

Fisica Applicata, Area Infermieristica, M. Ruspa MECCANICA DEI FLUIDI. Fluidostatica: fluidi in quiete Fluidodinamica: fluidi in moto

INDICE XIII. Ringraziamenti dell Editore. Presentazione dell edizione italiana. Prefazione all edizione americana. Guida alla lettura

Applicazione equazione di Bernoulli: stenosi arteriosa(restringimento arteria)

Esempi di esercizi per la preparazione al primo compito di esonero

Idraulica e Idrologia: Lezione 16 Agenda del giorno

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica

STATI DI AGGREGAZIONE DELLA MATERIA E PROPRIETÀ DEI FLUIDI

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

Caratteristiche energetiche di un onda

Modulo B Unità 3 Equilibrio dei fluidi Pagina 1. Solidi, liquidi, aeriformi

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore

Applicazioni. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato

Corso di Idraulica Agraria ed Impianti Irrigui

Pillole di Fluidodinamica e breve introduzione alla CFD

Fluidodinamica. Q=V/Δt=costante

COMPITO DI MECCANICA DEI FLUIDI del 12 gennaio 2005

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Progettazione Costruzioni ed Impianti IMPIANTI TECNOLOGICI CAP. I IMPIANTO IDRICO

INDICE 1 INTRODUZIONE E CONCETTI DI BASE 1 2 PROPRIETÀ DEI FLUIDI 31

la Riccia Donatella (232315) - Ricciotti Stefania (232401) 23/04/2014 alle ore 9:30-12:30

Vd Vd Vd Re = Per definire il REGIME di moto si individua il: Numero indice di Reynolds (adimensionale)

Meccanica dei Fluidi A. A. 2015/ II Semestre

Prof. Roberto Riguzzi

Lezione 9. Fluidi in moto. Definizione di portata. Legge di Bernoulli. Effetto Venturi. Viscosità. Legge di Hagen Poiseuille.

Meccanica dei fluidi

1. Statica dei fluidi

CAPITOLO. 1 Gli strumenti di misura Gli errori di misura L incertezza nelle misure La scrittura di una misura 38

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 6 ELEMENTI DI IDROSTATICA E IDRODINAMICA

OBIETTIVI CONTENUTI PERIODO METODOLOGIA VALUTAZIONE

Meccanica dei FLUIDI

Corso di Idraulica ed Idrologia Forestale

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Calcolo idraulico. 8.1 Definizione di idraulica. 8.2 Proprietà dell acqua

PRESSIONE ATMOSFERICA

ANNO SCOLASTICO CLASSE II E DISCIPLINA: FISICA DOCENTE: Romio Silvana A. PROGRAMMA

COMPITO DI MECCANICA DEI FLUIDI del 29 gennaio olio. acqua. γ o = 8.0 kn/m 3. γ = 9.8 kn/m3. Cognome. Nome Matricola Docente TEMA 1

Test Esame di Fisica

Statica ed equilibrio dei corpi

FISICA-TECNICA Statica e dinamica dei fluidi

PERDITE DI CARICO. Gianluca Simonazzi matr Michael Zecchetti matr Lezione del 28/03/2014 ora 14:30-17:30

Idrodinamica prova scritta 12/03/ Compito A

Alcuni valori della densita'

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Prof. Ernesto Trinaistich

Meccanica dei Fluidi - Fluidostatica -

Corso di Idraulica ed Idrologia Forestale

PROGRAMMA EFFETTIVAMENTE SVOLTO DAL DOCENTE

ESAME DI AERODINAMICA 12/12/2006

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione:

Stati di aggregazione della materia:

METODI DI RAPPRESENTAZIONE DI UN SISTEMA

Test Esame di Fisica

Corso di Idraulica Agraria ed Impianti Irrigui

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone.

Lezione 10 Moto dei fluidi

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Appello straordinario del 28 maggio 2008

Eq. bilancio quantità di moto

Transcript:

I D R O S T A T I C A Caratteristiche stato liquido (descr.) FLUIDI Massa volumica (def. + formula) Volume massico (def. + formula) Peso volumico (def. + formula) Legame massa volumica - peso volumico (dim. + formula) Pressione (def.) multipli: bar e atm (calcolo) pressione relativa o effettiva (def.) pressione assoluta (def.) legame tra pressione assoluta e relativa (formula) Legge di Stevino (enunciato + dimostr.+ formula) Distribuzione delle pressioni nei serbatoi (appl.) Spinta e centro di spinta (def. + calcolo) Principio dei vasi comunicanti (enunciato) Principio di Pascal (enunciato) torchio idraulico (appl.) Principio di Archimede (enunciato) spinta (calcolo) Strumenti per la misura della pressione manometro ad U (descr.) principio di funzionamento (descr.) campo di applicazione (descr.) manometro a molla (descr.) principio di funzionamento (descr.) campo di applicazione (descr.) Energia di un fluido in quiete Energia di pressione per unità di peso Energia potenziale per unità di peso Conservazione dell energia ENUNCIATI PRINCIPI DELL IDROSTATICA Incomprimibili LIQUIDI Proprietà Viscosità dinamica Massa volumica Volume massico Peso volumico Comprimibilità Un liquido si dice ideale se: si considera nulla la viscosità; si può trascurare la comprimibilità. Pressione Principio di Pascal Effettiva Assoluta Legge di Stevino (variazione della pressione al variare della profondità) Comprimibili GAS, VAPORI Principio di pascal: la pressione esercitata in un punto qualsiaai di una massa liquida in quiete, si trasmette con la stessa intensità in ogni punto del liquido e in ogni direzione. Principio dei vasi comunicanti: un liquido in quiete contenuto in diversi recipienti, fra loro comunicanti, raggiunge, in tutti, lo stesso livello, indipendentemente dalla profondità e dalla forma di questi. Principio di Archimede: un corpo immerso in un fluido in quiete, riceve da questo una spinta, diretta dal basso verso l alto, la cui intensità è uguale al peso del volume di fluido spostato; quando il corpo galleggia, esso sposta il volume di fluido di peso sufficiente a bilanciare esattamente il peso del corpo.

IDRODINAMICA Liquido perfetto (def.) continuità ed omogeneità (propr.) incomprimibilità (propr.) fluidità perfetta (propr.) Regimi di moto moto di regime variabile (def.) uniforme, non uniforme (def.) moto di regime permanente o stazionario (def.) uniforme, non uniforme (def.) moto monodimensionale (def.) Viscosità dinamica Numero di Reynolds moto laminare o di Poiseuille (def.) moto turbolento o idraulico (def.) Portata volumetrica (def.) massica (def.) ponderale (def.) IDRODINAMICA se viscosità nulla MOTO DEI LIQUIDI Uniforme Stazionario o Permanente LIQUIDO IDEALE Profilo di velocità costante Equazione di continuità (enunciato + formula) conseguenza fondamentale (formula) Forme di energia per i liquidi energia di pressione (formula) energia di potenziale (formula) energia cinetica (formula) Teorema di Bernoulli (enunciato + formula) applicazioni condotta in pendenza a sezione costante (appl.) condotto convergente orizzontale (appl.) condotto divergente orizzontale (appl.) rappresentazione grafica (appl.) Teorema di Torricelli (enunciato + formula) applicazioni (calcolo) Portata ENERGIA di un liquido in moto Monodimensionale Laminare Turbolento Velocità media Volumetrica Massica PRINCIPIO DI CONSERVAZIONE DELLA MASSA Energia potenziale Energia cinetica Energia di pressione PRINCIPIO DI CONSERVAZIONE DELL ENERGIA L energia per unità di peso è dimensionalmente una lunghezza (altezza) Numero di REYNOLDS se ρ = costante Equazione di BERNOULLI (fluido ideale) Equazione di CONTINUITÀ Teorema di TORRICELLI (velocità di efflusso) Strumenti di misura della portata: venturimetro della velocità: tubo di Pitot Energia potenziale = carico geodetico Peso Energia cinetica = carico cinetico Peso Energia di pressione = carico di pressione Peso RAPPRESENTAZIONE GRAFICA (moto stazionario)

3 L IDRODINAMICA è quella parte della meccanica dei fluidi che studia le leggi che regolano il moto dei fluidi. Per essi valgono le leggi della dinamica già studiati nella meccanica dei corpi solidi e, in particolare il primo, il secondo e il terzo principio della dinamica. Al solito, non considereremo il fluido reale, ma un fluido che ha particolari caratteristiche, gia viste nello studio dell idrostatica, chiamato fluido ideale o perfetto. Il movimento dei punti di un fluido può variare da punto a punto e da istante a istante. Vediamo quali sono i tipi di moto che può assumere un fluido considerandolo mentre scorre all interno di un condotto. Moto uniforme Condotto dove scorre il fluido 3 v 3 In ciascun punto del fluido, (in figura sono rappresentati tre punti) la velocità si mantiene costante in intensità, direzione, verso, anche col passare del tempo. v = v = v 3 sempre, in qualsiasi istante Se tali condizioni non si verificano, cioè la velocità in un dato istante varia da punto a punto, il moto si dice non uniforme. Moto stazionario o permanente Condotto dove scorre il fluido (tempo t ) p v p 3 p Condotto dove scorre il fluido (tempo t ) p v p 3 3 3 v 3 v 3 In ciascun punto del fluido, i valori della velocità e della pressione possono essere diversi, ma rimangono costanti, per ciascun punto, col passare del tempo. v v 3 p p p 3 Ma nel punto la velocità sarà sempre e la pressione p ; nel punto la velocità sarà sempre v e la pressione p ; nel punto 3 la velocità sarà sempre v 3 e la pressione p 3 ; p Se tali condizioni non si verificano, cioè le condizioni di moto cambiano al variare del tempo, il moto si dice non stazionario. Quando il moto è stazionario, la massa di fluido che si trova tra due sezioni qualsiasi del condotto rimane costante. Ciò vuol dire che se la massa di fluido M entra dalla sezione la stessa massa M deve uscire dalla sezione. IL moto stazionario può essere uniforme o non uniforme. Massa in entrata M Sezione Sezione Massa in uscita M

4 Moto monodimensionale o unidimensionale Il moto di un fluido si dice MONODIMENSIONALE quando velocità, pressione e quota (dislivello rispetto a un piano di riferimento) variano soltanto lungo la direzione di spostamento del fluido e non da punto a punto di una data sezione trasversale; per sezione trasversale s intende la sezione del condotto perpendicolare alla direzione di spostamento. Ciò vuol dire considerare tutte le proprietà del fluido (velocità, pressione, quota) uniformi su una data sezione trasversale. z Sez. v p p z Sez. Direzione di spostamento Piano di riferimento z = 0 In qualsiasi punto della sezione si considerano costanti i valori di v, p, z, assumendo per questi i valori medi Analogamente nella sezione e cosi per qualsiasi altra sezione. Quando il moto è considerato monodimensionale, la velocità del fluido è diretta perpendicolarmente alla sezione e ha il profilo costante. Sez. - Quando sono contemporaneamente soddisfatte le condizioni di moto stazionario e moto monodimensionale il tipo di moto si chiama STAZIONARIO MONODIMENSIONALE. Moto stazionario monodimensionale È il moto caratteristico che si assume per lo studio della macchine a fluido. Infatti, a parte un periodo iniziale transitorio, solitamente molto breve, caratterizzato da una sensibile variazione delle grandezze, in funzione del tempo, segue un periodo di regime (funzionamento abituale della macchina), in cui le principali grandezze che individuano il moto del fluido si mantengono stabili. Inoltre il moto si può considerare monodimensionale, perchè rappresentativo di quanto avviene nel condotto della macchina. v Profilo della velocità Sez. p v In qualsiasi sezione perpendicolare alla direzione di spostamento del fluido, i valori di v, p, z, costanti per tutti i punti della sezione, non variano al passare del tempo, pur potendo assumere valori diversi da sezione a sezione. Sez. p z In generale v p p z z z ma al passare del tempo, nella sezione il valore della velocità Piano di riferimento z = 0 sarà sempre, della pressione sempre p, della quota sempre z ; analogamente nella sezione : la velocità sarà sempre v, la pressione sempre p, la quota sempre z, e così per tutte le altre sezioni.

5 Viscosità dinamica È l attrito interno del fluido che ne ostacola lo scorrimento. Rappresenta la resistenza offerta dal fluido a sforzi tangenziali. L esperienza mostra che per fare scorrere con velocità v un piatto di area A rispetto a un piatto v fisso, ad esso parallelo, posto a distanza h, F all interno dei quali c è un fluido, occorre applicare A A v una forza tangenziale che vale F = µ con h v = v µ = viscosità dinamica o coefficiente di viscosità. h v = 0 Piatto fermo Dall analisi dimensionale si determina la sua unità F h N m N s di misura µ = = = Pa s A v m m m s La viscosità µ dipende dal tipo di fluido e per lo stesso fluido varia con la temperatura e la pressione. Per i liquidi diminuisce all aumentare della temperatura e aumenta all aumentare della pressione. Per i fluidi ideali si considera nulla la viscosità dinamica. Numero di Reynolds: moto laminare e moto turbolento Nel moto di un fluido possono esistere due tipi di moto essenzialmente diversi, caratterizzati da un parametro adimensionale chiamato numero di Reynolds R ρ L v R = µ ρ = massa volumica L = lunghezza caratteristica (diametro per condotti circolari) con v = velocità del fluido µ = viscosità del fluido Per bassi valori del numero di Reynolds (R < 00) il moto è laminare, con le particelle di fluido che si muovono in modo ordinato, per linee parallele; per alti valori del numero di Reynolds (R > 4000) il moto è turbolento, con continue fluttuazioni (piccole variazioni) nella intensità e nella direzione della velocità del fluido. Per valori compresi tra 00 e 4000 il moto si dice di transizione: moto di passaggio dal laminare al turbolento. I valori sopra riportati sono relativi a esperienze fatte utilizzando tubazioni a sezione circolare, assumendo come parametro geometrico caratteristico del sistema il diametro della tubazione Esperienze di questo tipo furono fatte da O. Reynolds iniettando del colore all ingresso di un tubo trasparente alimentato da un serbatoio. Egli vide che, per basse velocità, il sottile filamento di colore rimaneva praticamente intatto per tutta la lunghezza del tubo, mostrando così che le particelle d acqua si muovevano per linee parallele; per velocità via via più alte, il filamento si rompeva e il colore si diffondeva nel volume: il liquido tendeva a colorarsi tutto, mostrando così che le particelle del fluido non si muovevano in modo ordinato, ma occupavano posizioni diverse nelle successive sezioni trasversali.

6 PERDITE DI CARICO NELLE CONDOTTE (Distillazione verticale) Moto dei liquidi reali viscosità (def.) viscosità dinamica (formula) viscosità cinematica (formula) distribuzione della velocità (descr.) numero di Reynolds (formula + utilizzo) Perdite di carico distribuite (def.) formula di Darcy (appl.) Perdite di carico concentrate (def.) brusco allargamento di sezione (appl.) brusco restringimento di sezione (appl.) condotto conico divergente (appl.) condotto conico convergente (appl.) deviazione in una condotta (appl.) Teorema di Bernoulli per i liquidi reali (enunciato + formula) applicazioni (calcolo) Strumenti per la misura della portata venturimetro (descr.) principio di funzionamento (descr.) campo di applicazione (descr.)

7 ESERCIZI PROPOSTI (da svolgere anche in gruppo) Suggerimento: ogni gruppo può svolgere un diverso esercizio e poi vi scambiate il lavoro fatto da ogni gruppo Una condotta rettilinea, a sezione costante, ha lunghezza 000 m e pendenza verso l alto del %. Il suo diametro vale 0,3 m e convoglia una portata di 80 kg/s di olio (ρ = 880 kg/m 3 ). Un manometro posto nella sezione finale (quella più in alto) segna una pressione di bar. Calcolare ASSUMENDO IL FLUIDO COME IDEALE Ognuno dei termini del trinomio di Bernoulli nelle sezioni iniziale e finale. Rappresentare la linea dei carichi totali e la linea piezometrica. ASSUMENDO IL FLUIDO COME REALE La perdita di carico nella condotta assumendo β = 0,003. Ognuno dei termini del trinomio di Bernoulli nelle sezioni iniziale e finale. La perdita di potenza. Rappresentare la linea dei carichi effettivi e la linea piezometrica. Sul fondo di un grande serbatoio è praticato un foro di diametro 0 cm. L acqua in esso contenuta mantiene un livello costante di altezza 5 m. Calcolare Il tempo teorico necessario per l efflusso in atmosfera di 00 m 3 di acqua. Una condotta, a sezione circolare, ad asse orizzontale, come in figura, convoglia una portata d acqua di 0, m 3 /s. Nella sezione iniziale, un manometro segna una pressione di,5 bar. Calcolare La perdita di carico nella condotta assumendo β = 0,00. La perdita di potenza.