LA GRAN PARTE DI QUESTI ELEMENTI DOVREBBE ESSERE GIÀ NOTA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA GRAN PARTE DI QUESTI ELEMENTI DOVREBBE ESSERE GIÀ NOTA"

Transcript

1 I PRESUPPOSTI DELL ALGORITMO DEL SIMPLESSO CONSISTONO IN UN INSIEME DI ELEMENTI TEORICI LEGATI ALLO STUDIO DEGLI INSIEMI CONVESSI ED UN ALTRO INSIEME DI ELEMENTI TEORICI LEGATI ALLO STUDIO DEI SISTEMI DI EQUAZIONI LINERI. LA GRAN PARTE DI QUESTI ELEMENTI DOVREBBE ESSERE GIÀ NOTA

2 INSIEMI CONVESSI Un insieme A in E n si dice convesso se comunque si assegni una coppia di punti x ed y appartenenti ad esso, una qualsiasi combinazione lineare dei due punti appartiene ancora all'insieme. 0 y z x z = y + β(x-y) z = βx+y(-β) (0 β ) Geometricamente: se un insieme è convesso, tutti i punti del segmento congiungente due suoi punti appartengono ancora ad esso. Insiemi convessi Insieme non convesso

3 Per convenzione un insieme costituito da un solo punto è convesso. x y x x x Se A è un insieme convesso, qualsiasi combinazione convessa di m suoi punti individua ancora un punto appartenente ad esso. x ed x appartengono all'insieme A convesso. Il punto y: y = ìx + ( - ì)x (0 ì ) (a) essendo per ipotesi A convesso, appartiene ad A. x sia un altro punto di A. Il punto x: appartiene ad A. x = çx + ( - ç) y (0 ç ) (b)

4 Sostituendo (a)in (b) : Posto: risulta: x = = µ ηx + ( - η) [ µ x + ( µ ) x ] = ( η) x + ( η)( µ ) x + ηx µ ( η) ( η)( µ ) η = β = β = β i i β, β, β 0 e β =. Generalizzando, si può dire che, dato un insieme convesso A ed m punti x i appartenenti ad esso, un punto x definito come: x = m b i= i x i b i i = ; b i 0, ( i =,,...,m) appartiene ad A. [Espressione di x come combinazione convessa di m punti x i appartenenti ad un insieme A].

5 L'intersezione R di insiemi convessi definisce un insieme convesso. A x x R A Se x ed x sono elementi di R allora sono elementi di ciascuno degli m insiemi Ai. Inoltre, poiché A, A,..., A m sono convessi: y = λx + ( -λ)x (0 λ ) appartiene a ciascuno degli insiemi A,..., A m il che equivale a dire che appartiene alla loro intersezione. L'insieme R rispetta, quindi, la condizione di convessità.

6 Un iperpiano è un insieme convesso. E sufficiente mostrare che un iperpiano rispetta la condizione di convessità. x ed x z = c T x. siano due punti appartenenti all'iperpiano x* sia un punto sulla congiungente x, x x* = µ x + ( µ ) x ( 0 µ ) si verifica: c T x* = µc T x + ( - µ)c T x = µz + ( - µ)z = z Dunque x* appartiene all'iperpiano ed è, quindi, soddisfatta la condizione di convessità. In modo del tutto analogo è possibile dimostrare che: un semispazio definito da z c T x o z c T x è un insieme convesso.

7 Si può, in definitiva, affermare che: un'equazione lineare definisce un iperpiano, il quale è un insieme convesso; una disequazione lineare definisce un semispazio ed è anche esso convesso; l'insieme definito da un sistema di equazioni e disequazioni lineari (intersezione di insiemi convessi) è anche esso convesso, ovvero il dominio di definizione di un problema di programmazione lineare è un insieme convesso. Un insieme convesso particolare è il raggio. Esso costituisce l'insieme dei punti x definiti da: dove: x = x 0 + alfa d (d 0; alfa 0) x 0 è detto vertice del raggio; d è detto direzione del raggio.

8 Assegnato un insieme convesso, Un vettore non nullo d è detto direzione dell'insieme qualora, per ogni punto x 0 nell'insieme, il raggio x 0 + alfa d, con alfa 0, appartiene a sua volta all'insieme. Dalla definizione risulta evidente che in un insieme limitato non esistono direzioni che appartengano ad esso. PUNTI ESTREMI E DIREZIONI ESTREME Un punto x di un insieme convesso A viene definito estremo o vertice di esso se non può essere espresso come combinazione convessa di due punti distinti dell'insieme. E' evidente da tale definizione che un vertice deve appartenere alla frontiera dell'insieme, ma non tutti i punti di frontiera sono vertici.

9 A x x x x ed x sono vertici, il punto x, pur appartenendo alla frontiera non è un vertice. Ogni punto di un insieme convesso limitato può essere espresso come combinazione convessa dei vertici. Si dice direzione estrema di un insieme convesso una direzione dell'insieme che non può essere rappresentata come una combinazione positiva di due distinte direzioni dell'insieme. Ogni punto di un insieme convesso non limitato può essere espresso come combinazione convessa dei vertici più una combinazione lineare a coefficienti positivi delle direzioni estreme.

10 SISTEMI DI EQUAZIONI LINEARI Un sistema di equazioni lineari può essere: inconsistente (cioè non ammette soluzioni) consistente (ne ammette una o infinite) Teorema di Rouche-Capelli - Un sistema di m equazioni lineari in n variabili Ax = b è consistente se e solo se il rango della matrice dei coefficienti aumentata del vettore colonna dei termini noti Ab risulta eguale al rango della matrice dei coefficienti A. Se r(ab) = k = r(a) esistono k colonne linearmente indipendenti di A tali che ciascuna colonna di Ab (ed in particolare la colonna b possa essere espressa come combinazione lineare di esse, il che implica l'esistenza di un vettore x 0 tale che: Ax 0 = b ovvero il sistema ammette almeno una soluzione.

11 Se, invece: r(ab) = k = r(a) + ogni gruppo di k colonne indipendenti in Ab deve necessariamente contenere b la quale, quindi, non può essere espressa come combinazione lineare delle colonne di A, ovvero il sistema Ax = b non ammette soluzioni. Un sistema consistente di equazioni lineari Ax = b di m equazioni in n variabili ammette un'unica soluzione se e solo se r(a) = r(ab) = n. Se per un sistema consistente di equazioni lineari Ax = b di m equazioni in n variabili si verifica: r (A) = r (Ab) = k < n il sistema ammette n-k soluzioni determinate dalla possibilità di assegnare valori arbitrari ad (n-k) variabili (variabili indipendenti) ricavando i valori per le k residue (variabili dipendenti).

12 Qualora alle (n-k) variabili indipendenti venga assegnato il valore zero, la particolare soluzione che ne risulta è detta soluzione di base (o basica). Le k variabili dipendenti sono dette variabili di base; le (n-k) variabili indipendenti sono dette variabili non di base. Se infine: r (A) = r (Ab) = k < m esistono (m-k) equazioni del sistema ridondanti, cioè esprimibili come combinazione lineare delle altre e quindi ogni m pla che soddisfi le k equazioni indipendenti soddisfa le (m-k) ridondanti che possono dunque essere eliminate.

13 L'INSIEME DELLE SOLUZIONI DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Si consideri il sistema di relazioni: Ax = b x 0 che definisce l'insieme delle soluzioni di un generico problema di programmazione lineare. E' evidente che, perché sussista la possibilità di ottimizzare, devono verificarsi due condizioni: ) il sistema Ax = b deve essere compatibile, ovvero deve essere r(ab) = k = r(a), con k<n, caso in cui il numero delle soluzioni è infinito; ) il sistema Ax = b deve ammettere anche soluzioni non negative.

14 Le soluzioni del sistema possono essere classificate in cinque tipi. Soluzioni generiche: sono le infinite soluzioni del sistema Ax=b. Soluzioni ammissibili: sono quelle soluzioni del sistema Ax=b, che il vincolo di non negatività x 0 (dominio di ammissibilità del problema). Soluzioni di base: sono quelle soluzioni che soddisfano il sistema di equazioni Ax=b con (nm) variabili nulle. Un limite superiore al numero di soluzioni di base è: N b n = = m n! ( n m )!m!

15 Soluzioni di base ammissibili: sono quelle soluzioni di base che soddisfano il vincolo di non negatività. Soluzioni di base ammissibili degeneri: sono quelle soluzioni di base ammissibili che presentano più di (n-m) variabili nulle. SOLUZIONI DI BASE - SISTEMI IN FORMA CANONICA Si consideri il sistema Ax = b e si supponga il suo rango massimo pari ad m. Posto p = (n-m), si supponga che: le ultime m colonne di A siano linearmente indipendenti. ciascuna delle m colonne indipendenti presenti tutti valori nulli ed uno unitario. La matrice costituita dalle ultime m colonne è una matrice identità. Un tale sistema si dice in forma canonica.

16 Una forma canonica di un sistema è particolarmente vantaggiosa in quanto: annullando le p variabili non associate alle colonne unitarie (variabili non di base) è possibile ricavare immediatamente una soluzione di base in cui ciascuna delle variabili di base (quelle associate alle colonne unitarie) assume il valore del corrispondente termine noto b i. Infatti, risolvendo il sistema Ax = b rispetto alle m variabili da x p+ ad x n si ottiene: p x p + i = bi a ijx j (i =,,...,m) j= per cui, annullando le x j (j =,,..., p), si ottiene: x p+i =b i, (j =,,, p)

17 TRASFORMAZIONE DI UN SISTEMA DI EQUAZIONI LINEARI IN FORMA CANONICA La riduzione di un sistema lineare alla forma canonica può essere effettuata sfruttando il concetto di sistema equivalente. Due sistemi di equazioni lineari algebriche si dicono equivalenti quando hanno le stesse soluzioni. Un sistema assegnato di m equazioni in n variabili può essere trasformato in uno equivalente ad esso: scambiando tra loro due equazioni; moltiplicando coefficienti e termine noto di una equazione per uno scalare k 0; sostituendo ad una equazione la somma della stessa e di un'altra anche se moltiplicata per uno scalare diverso da zero.

18 LA TECNICA DEL PIVOT (METODO DI GAUSS E JORDAN) La tecnica del pivot trasforma la colonna p s della matrice A in un vettore unitario u r con l'uno nella r esima posizione utilizzando i principi enunciati e si esplica in tre fasi: scelta di un coefficiente a rs (pivot) diverso da zero nella equazione r esima, in corrispondenza della variabile s esima ; sostituzione dell'equazione r esima, E r, con: E'r = E r /a rs sostituzione di ogni altra equazione Ei del sistema con: E' i = E i a is E' r = E i E r a a is rs

19 ESEMPIO Si consideri il sistema: x x x + x + x x x + x + x 7x + x + 5x = = 6 = 4 (E (E (E ) ) ) e lo si voglia trasformare in forma canonica rispetto alle variabili x, x, x. Partendo dal coefficiente della x in E, si ha: x +/x /x 5/x + + x x x 7/x 4 +/x 4 +7/x 4 =/ =/ = 7/ (E' (E' (E' = E = E = E /a -a -a ) E' E' ) ) Effettuando una analoga operazione per il coefficiente di x in E' si ottiene:

20 x x + 5x 4x 8x +6x x 4x = 7 = = 4 (E'' (E'' (E'' = E' = E' = E' -a' /a' -a' E'' ) E'' ) ) Ed ancora per il coefficiente di x nella E'' si ha: x x x + x x + x = = = (E''' (E''' (E''' = E'' = E'' = E'' -a'' -a'' /a'' E''' E''' ) ) ) Che fornisce la forma canonica del sistema di partenza rispetto alle variabili x, x, x, da cui scaturisce la soluzione basica: x = ; x = ; x = ; x 4 = 0 Si comprende che se, ora, si volesse portare il sistema in forma canonica rispetto ad un altro insieme di variabile, sia x, x, x 4, sarebbe sufficiente effettuare una sola operazione di pivot sull'elemento a,4 ()

21 CORRISPONDENZA TRA SOLUZIONI DI BASE AMMISSIBILI DEL SISTEMA DI EQUAZIONI E VERTICI DEL DOMINIO DI DEFINIZIONE Una soluzione di base ammissibile del sistema Ax=b, x 0, corrisponde ad un vertice dell'insieme delle soluzioni ammissibili. La dimostrazione di tale teorema può essere condotta verificando che una soluzione di base ammissibile non può essere espressa come combinazione convessa di altre soluzioni appartenenti all'insieme di ammissibilità. Si può dimostrare che: In assenza di degenerazione, un vertice corrisponde ad una ed una sola soluzione di base ammissibile.

22 ESTREMI DELL'INSIEME DI DEFINIZIONE ED OTTIMO DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Dato un problema di programmazione lineare: z = s.a cx Min! Ax = b x 0 definito su un insieme convesso limitato con k vertici. La soluzione ottima si trova in corrispondenza di un vertice, cioè di una soluzione di base ammissibile. La generica soluzione x dell'insieme può essere espressa mediante una combinazione convessa dei k vertici x* j : x = β j j=,k j=,k β β j j x * j = 0 (j =,,..., k) ed il problema posto può essere trasformato in uno equivalente nelle variabili β j (j=,,...,k):

23 z = s.a k (c j= β j=,k j * x j ) β β j j Min! = 0 (j =,,..., k) Dunque il valore che la funzione obiettivo z assume in corrispondenza di una generica soluzione ammissibile, x, del problema può essere espresso come combinazione convessa dei valori che la funzione stessa assume in corrispondenza dei k vertici x*j dell'insieme di definizione. Indicando con [min j (cx* j )] il minimo dei valori assunti dalla funzione obiettivo in corrispondenza dei vertici, e sostituendolo a ciascuno dei termini della (5.4), si ha: cioè: z = cx k β j= j [min j (cx j )]

24 z [ * min (cx ] β j j ) k j= j essendo: = j=, k β j ne deriva: z = cx min j * ( cx j ) In corrispondenza di un qualsiasi punto dell'insieme di ammissibilità il valore assunto dalla funzione obiettivo risulta non inferiore ( ) del valore minimo che la stessa assume nell'insieme dei vertici, il minimo viene cioè attinto in corrispondenza di uno dei vertici, e, quindi, di una soluzione di base ammissibile.

25 RICERCA DELL'OTTIMO NELL'INSIEME DELLE SOLUZIONI DI BASE AMMISSIBILI Si è ricavato che: le soluzioni di base ammissibili di un problema di programmazione lineare corrispondono ai vertici dell'insieme delle soluzioni ammissibili l'ottimo, se esiste ed è finito, viene attinto in corrispondenza di una soluzione di base ammissibile. Questo risultato, sposta la ricerca della soluzione ottima di un problema p.l., dall'insieme delle (n-m) soluzioni del sistema Ax=b a quello, finito, delle soluzioni di base ammissibili, il cui numero è limitato dal valore: n m n! = ( n - m )! m! che costituisce il numero massimo delle soluzioni di base. La considerazione che il numero di soluzioni tra cui va ricercato l'ottimo è finito non deve creare eccessive illusioni circa la possibilità di risolvere il problema per enumerazione totale.

26 Il numero delle soluzioni basiche N b è limitato dal coefficiente binomiale CB. Per m = 5 ed n = 0 si ha: CB= 5 che rappresenta il numero di sistemi che bisognerebbe risolvere qualora si volesse ricercare l'ottimo in maniera esaustiva, attraverso, cioè, l'enumerazione totale delle soluzioni. I valori che N b può raggiungere allorché n ed m assumono, come spesso capita nella pratica, valori dell'ordine delle centinaia, delle migliaia, o delle diecine di migliaia, risultano sicuramente proibitivi rispetto ad una ricerca esaustiva. La ricerca dell'ottimo, nell'insieme delle soluzioni di base ammissibili, può essere effettuata con l'algoritmo del simplesso Tale algoritmo, estremamente efficace, consente, partendo da una prima soluzione di base ammissibile, di giungere all'ottimo passando per soluzioni che migliorano progressivamente il valore della funzione obiettivo, senza esplorare, nella gran parte dei casi, tutto l'insieme delle soluzioni di base ammissibili.

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare p. 1/39 Geometria della programmazione lineare Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria Geometria della programmazione

Dettagli

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8 Teoria della Programmazione Lineare Teoria della Programmazione Lineare p. 1/8 I problemi di PL in forma canonica In forma scalare: max n j=1 c jx j n j=1 a ijx j b i x j 0 i = 1,...,m j = 1,...,n Teoria

Dettagli

PROGRAMMAZIONE LINEARE E DUALITA'

PROGRAMMAZIONE LINEARE E DUALITA' PROGRAMMAZIONE LINEARE E DUALITA' 1) Dati i punti di R 2 (1, 2), (1, 4), (2, 3), (3, 5), (4, 1), (4, 2), (5, 5), (6, 2), (6, 5). Determinare graficamente: A - L'involucro convesso di tali punti. B - Quali

Dettagli

Soluzione dei Problemi di Programmazione Lineare

Soluzione dei Problemi di Programmazione Lineare Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle

Dettagli

Ricerca Operativa. Ricerca Operativa p. 1/6

Ricerca Operativa. Ricerca Operativa p. 1/6 Ricerca Operativa Ricerca Operativa p. 1/6 Ricerca Operativa Disciplina basata sulla modellizzazione e la risoluzione tramite strumenti automatici di problemi di decisione complessi. In tali problemi la

Dettagli

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene:

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene: M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 5 - Soluzioni Esercizio 5. - La norma Euclidea di è 9 6 5 - Il versore corrispondente

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

L ALGORITMO DEL SIMPLESSO REVISIONATO

L ALGORITMO DEL SIMPLESSO REVISIONATO L ALGORITMO DEL SIMPLESSO REVISIONATO L'algoritmo del simplesso revisionato costituisce una diversa implementazione dell algoritmo standard tesa a ridurre, sotto certe condizioni, il tempo di calcolo e

Dettagli

Programmazione lineare: basi e soluzioni di base

Programmazione lineare: basi e soluzioni di base Programmazione lineare:basi e soluzioni di base p. 1/33 Programmazione lineare: basi e soluzioni di base Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta Versione del 21/12/07 Metodi per il calcolo del rango di una matrice Sia A M m,n (K). Denotiamo con A (i) la riga i-ma di A, i {1,..., m}.

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

Programmazione Lineare

Programmazione Lineare Programmazione Lineare Andrea Scozzari a.a. 2012-2013 March 14, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare March 14, 2013 1 / 18 Metodo del Simplesso Dato un problema di PL in forma standard

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi, poliedri Sia a un vettore non nullo

Dettagli

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab Ricerca Operativa Programmazione Lineare Università Mediterranea di Reggio Calabria Decisions Lab Ottimizzazione In un problema di ottimizzazione si cerca di massimizzare o minimizzare una quantità specifica,

Dettagli

Corso di Matematica Applicata A.A

Corso di Matematica Applicata A.A Corso di Matematica Applicata A.A. 2012-2013 Programmazione lineare (II parte) Prof.ssa Bice Cavallo Soluzione di un problema PL Soluzione ottima Variabili slack e surplus A R mxn Ax b s R m, s i 0 : Ax

Dettagli

12 - Sistemi di Equazioni Lineari

12 - Sistemi di Equazioni Lineari Università degli Studi di Palermo Facoltà di Economia Dipartimento SEAS Appunti del corso di Matematica - Sistemi di Equazioni Lineari Anno Accademico 5/6 D. Provenzano, M. Tumminello, V. Lacagnina e A.

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari Siano X 1,, X n indeterminate Un equazione lineare (o di primo grado) nelle incognite X 1,, X n a coefficienti nel campo K è della forma a 1 X 1 + + a n X n = b, a i, b K,

Dettagli

Note sull algoritmo di Gauss

Note sull algoritmo di Gauss Note sull algoritmo di Gauss 29 settembre 2009 Generalità Un sistema lineare di m equazioni in n incognite x,..., x n è un espressione del tipo: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}.

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}. APPLICAZIONI Diremo applicazione (o funzione) da un insieme A ad un insieme B una legge f che associa ad ogni elemento a A uno ed un solo elemento b B. Scriviamo f : A B e il corrispondente o immagine

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

21 - Sistemi di Equazioni Lineari

21 - Sistemi di Equazioni Lineari Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica - Sistemi di Equazioni Lineari Anno Accademico 5/6 M. Tumminello,

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 8-9 Soluzioni di alcuni esercizi Esercizi - I 3. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE LINEARE, IL METODO DEL SIMPLESSO. 1di 18

LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE LINEARE, IL METODO DEL SIMPLESSO. 1di 18 LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE LINEARE, IL METODO DEL SIMPLESSO 1di 18 Metodo del Simplesso Il metodo del simplesso dovuto a Dantzing ed a Kantorovich è un algoritmo il cui nome deriva

Dettagli

Geometria della Programmazione Lineare

Geometria della Programmazione Lineare Capitolo 2 Geometria della Programmazione Lineare In questo capitolo verranno introdotte alcune nozioni della teoria dei poliedri che permetteranno di cogliere gli aspetti geometrici della Programmazione

Dettagli

Teoria della Programmazione Lineare

Teoria della Programmazione Lineare 6 Teoria della Programmazione Lineare In questo capitolo iniziamo lo studio formale dei problemi di Programmazione Lineare e, in particolare, dimostriamo il Teorema fondamentale della Programmazione Lineare.

Dettagli

ALGEBRA LINEARE PARTE III

ALGEBRA LINEARE PARTE III DIEM sez Matematica Finanziaria Università degli studi di Genova Dicembre 200 Indice PREMESSA 2 GENERALITA 2 RAPPRESENTAZIONE DI UN SISTEMA LINEARE IN FORMA MATRI- CIALE 2 3 SOLUZIONE DI SISTEMI LINEARI

Dettagli

L ANALISI POST-OTTIMALE

L ANALISI POST-OTTIMALE L ANALISI POST-OTTIMALE La soluzione ottima di un problema di programmazione lineare (variabili che costituiscono la base ottima e rispettivi valori) deriva dalla struttura del modello (variabili, vincoli,

Dettagli

SI RICORDA CHE LE LEZIONI DI MERCOLEDÌ 5 E 12 APRILE SI TERRANNO IN AULA D3 DALLE 9 ALLE 11

SI RICORDA CHE LE LEZIONI DI MERCOLEDÌ 5 E 12 APRILE SI TERRANNO IN AULA D3 DALLE 9 ALLE 11 SI RICORDA CHE LE LEZIONI DI MERCOLEDÌ 5 E 12 APRILE SI TERRANNO IN AULA D3 DALLE 9 ALLE 11 MARTEDÌ 11 APRILE LA LEZIONE SI TERRÀ IN AULA SEMINARI PIANO C 1di 26 LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila

Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sommario 1. Sistemi di disequazioni lineari e poliedri 2. Poliedri e insiemi convessi 3. Disequazioni

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

Algebra Proff. A. D Andrea e P. Papi Quarto scritto

Algebra Proff. A. D Andrea e P. Papi Quarto scritto Algebra Proff. A. D Andrea e P. Papi Quarto scritto LUGLIO 8 Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 6.5 6.5 3 6.5 4 6.5 5 6.5 otale 3 Occorre motivare le risposte. Una soluzione

Dettagli

Esercizi di Programmazione Lineare - Dualità

Esercizi di Programmazione Lineare - Dualità Esercizi di Programmazione Lineare - Dualità Esercizio n1 Dato il seguente problema 3 + 3 2 2 + a scriverne il duale; b risolvere il duale (anche geometricamente indicando cosa da esso si può dedurre sul

Dettagli

Il metodo del simplesso

Il metodo del simplesso Capitolo 5 Il metodo del simplesso 5. La forma standard Esercizio 5.. Porre il problema di Programmazione Lineare: in forma standard. min x +x + x + x x +x 5 x 4 x, x Si trasformano i vincoli di disuguaglianza

Dettagli

8 novembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

8 novembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y " #z = "1 & '#x " y+ z =1

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y  #z = 1 & '#x  y+ z =1 Istituzioni di Matematica I Esercizi su sistemi lineari Esempio. Dire per quali valori di λ R il sistema x " y+ z = 2 % x + y " z = " x " y+ z = ha una sola soluzione, per quali nessuna, per quali infinite

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2012 Rossi Algebra Lineare 2012 1 / 59 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 grafica Si consideri il seguente problema di programmazione lineare: max 3x 1 + 2x 2 s.t. + 2x 1 + x 2 4 2x 1 + x 2 2 + x 1 x 2 1 x 1, x 2 0 a) Risolvere il problema

Dettagli

Sistemi lineari 1 / 41

Sistemi lineari 1 / 41 Sistemi lineari 1 / 41 Equazioni lineari Una equazione lineare a n incognite, è una equazione del tipo: a 1 x 1 + a 2 x 2 + + a n x n = b, dove a 1,,a n,b sono delle costanti (numeri) reali. I simboli

Dettagli

PreCorso di Matematica - PCM Corso M-Z

PreCorso di Matematica - PCM Corso M-Z PreCorso di Matematica - PCM Corso M-Z DOCENTE: M. Auteri Outline Docente: Auteri PreCorso di Matematica 2016 2 Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti

Dettagli

5.3 Introduzione al metodo del simplesso

5.3 Introduzione al metodo del simplesso CAPITOLO 5 IL METODO DEL SIMPLESSO 105 53 Introduzione al metodo del simplesso Il Metodo del Simplesso permette di risolvere problemi di Programmazione Lineare in forma standard, cioè problemi di Programmazione

Dettagli

I sistemi lineari di n equazioni in n incognite

I sistemi lineari di n equazioni in n incognite I sistemi lineari I sistemi lineari di n equazioni in n incognite I sistemi lineari di n equazioni in n incognite, sono formati da equazioni di primo grado, in cui le incognite hanno tutte esponente uguale

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Ricerca Operativa. G. Liuzzi. Giovedí 19 Marzo Tableau del Simplesso Esempio Fase I del Simplesso Esempio

Ricerca Operativa. G. Liuzzi. Giovedí 19 Marzo Tableau del Simplesso Esempio Fase I del Simplesso Esempio 1 Giovedí 19 Marzo 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Tableau o Dizionario Qualche richiamo sulla generica iterazione della Fase II: B base ammissibile corrente x SBA corrente:

Dettagli

Prerequisiti didattici

Prerequisiti didattici Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 1 aprile 2015 Appunti di didattica della matematica applicata

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

Le condizioni di Karush-Kuhn-Tucker

Le condizioni di Karush-Kuhn-Tucker Capitolo 9 Le condizioni di Karush-Kuhn-Tucker 9. Introduzione In questo capitolo deriveremo le condizioni necessarie di Karush-Kuhn-Tucker (KKT) per problemi vincolati in cui S è descritto da vincoli

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 3 La dualità nella Programmazione Lineare 3.1 Teoria della dualità Esercizio 3.1.1 Scrivere il problema duale del seguente problema di Programmazione Lineare: min x 1 x 2 + x 3 2x 1 +3x 2 3 x

Dettagli

n +1 determinanti (D i, i =1,...,n e det A) n! prodotti per ciascun determinante n 1 moltiplicazioni per ciascun prodotto

n +1 determinanti (D i, i =1,...,n e det A) n! prodotti per ciascun determinante n 1 moltiplicazioni per ciascun prodotto METODI NUMERICI (A.A. 2007-2008) Prof. F.Pitolli Appunti delle lezioni sui sistemi lineari: metodi diretti; condizionamento Metodi diretti per la soluzione di sistemi lineari Metodi diretti Sono basati

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

Corso di Matematica Applicata A.A

Corso di Matematica Applicata A.A Corso di Matematica Applicata A.A. 2012-2013 Programmazione lineare (III parte) Prof.ssa Bice Cavallo Iterazioni del simplesso Basi teoriche dell algoritmo Operazione di pivot Sottomatrice di base B=I

Dettagli

Algoritmo del Simplesso

Algoritmo del Simplesso Algoritmo del Simplesso Renato Bruni bruni@dis.uniroma.it Univertà di Roma Sapienza Corso di Ricerca Operativa, Corso di Laurea Ingegneria dell Informazione Vertici e Punti Estremi di un Poliedro Un poliedro

Dettagli

4.4 Programmazione quadratica

4.4 Programmazione quadratica 4.4 Programmazione quadratica Minimizzare una funzione quadratica soggetta a vincoli lineari: min 1 2 xt Qx + c t x s.v. a t i x b i i D (P) a t i x = b i i U x R n dove Q matrice n n, D e U sono gli insiemi

Dettagli

LA PROGRAMMAZIONE LINEARE (p.l.)

LA PROGRAMMAZIONE LINEARE (p.l.) LA PROGRAMMAZIONE LINEARE (p.l.) La programmazione lineare è quella parte della programmazione matematica che concerne l impostazione e la soluzione di problemi di ottimo vincolato riconducibili alla ricerca

Dettagli

Metodo delle due fasi

Metodo delle due fasi Metodo delle due fasi Il problema artificiale la fase I del Simplesso esempi rif. Fi 3.2.5; Osservazione Nel problema min{c T x : Ax = 0, x 0}, dell esempio precedente si ha che b 0 e A contiene una matrice

Dettagli

Un sistema di equazioni lineari ( o brevemente un sistema lineare) di m equazioni in n incognite, si presenta nella forma:

Un sistema di equazioni lineari ( o brevemente un sistema lineare) di m equazioni in n incognite, si presenta nella forma: SISTEMI LINEARI Un sistema di equazioni lineari ( o brevemente un sistema lineare) di m equazioni in n incognite, si presenta nella forma: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =

Dettagli

Si considera, come al solito, un problema di programmazione lineare in forma standard:

Si considera, come al solito, un problema di programmazione lineare in forma standard: LA FASE I DEL METODO DEL SIMPLESSO 149 6.5 LA FASE I DEL METODO DEL SIMPLESSO Comegiàdetto, il primoobiettivo dellafase Idel metododelsimplessoèquellodi verificare l ammissibilità del problema da risolvere.

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 9 Marzo Programmazione Matematica Geometria di R n Esempi Teoria della PL Forma Standard. logo.

Ricerca Operativa. G. Liuzzi. Lunedí 9 Marzo Programmazione Matematica Geometria di R n Esempi Teoria della PL Forma Standard. logo. 1 Lunedí 9 Marzo 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Problema di Ottimizzazione min(o max) f (x) con la restrizione x S dove f (x) : R n R è detta funzione obiettivo S R n

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

Università Ca Foscari Venezia

Università Ca Foscari Venezia Università Ca Foscari Venezia Dipartimento di Scienze Ambientali, Informatica e Statistica Giovanni Fasano Brevi FAQ sul Metodo del SIMPLESSO Università Ca Foscari Venezia, Dipartimento di Management,

Dettagli

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione

Dettagli

Studio generale di una quadrica

Studio generale di una quadrica Studio generale di una quadrica Manlio De Domenico 19 Giugno 2003 Definizione 1 Si definisce quadrica Q un equazione algebrica F (x 1, x 2, x 3, x 4 ) = 0 del secondo ordine omogenea. Detta A la matrice

Dettagli

Il modello duale. Capitolo settimo. Introduzione

Il modello duale. Capitolo settimo. Introduzione Capitolo settimo Il modello duale Introduzione Il modello duale e la teoria della dualità assumono una grande importanza nella teoria della programmazione matematica. In questo testo i modelli primale

Dettagli

4 Autovettori e autovalori

4 Autovettori e autovalori 4 Autovettori e autovalori 41 Cambiamenti di base Sia V uno spazio vettoriale tale che dim V n Si è visto in sezione 12 che uno spazio vettoriale ammette basi distinte, ma tutte con la medesima cardinalità

Dettagli

1) Hamming bound, coset, codici equivalenti

1) Hamming bound, coset, codici equivalenti Argomenti della Lezione ) Hamming bound, coset, codici equivalenti 2) Esercizi sui codici lineari a blocchi Osservazione () Per effettuare la decodifica a rivelazione di errore si può seguire una delle

Dettagli

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Problema di PLI in forma standard: max cx Ax = b x 0, x I n I insieme degli interi. Regione ammissibile:

Dettagli

Spazi vettoriali. Indipendenza lineare.

Spazi vettoriali. Indipendenza lineare. Spazi vettoriali Indipendenza lineare Nel piano vettoriale G 2, fissato un punto O ed identificati i vettori con i segmenti orientati con origine in O, informalmente si puo dire che che due vettori sono

Dettagli

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R ANNO ACCADEMICO 25 6 SCIENZE GEOLOGICHE E SCIENZE NATURALI E AMBIENTALI MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PROFF MARCO ABATE E MARGHERITA LELLI-CHIESA PRIMA PARTE Esercizio (Testo

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Programmazione Non Lineare

Programmazione Non Lineare Capitolo 1 Programmazione Non Lineare 1.1 Introduzione Un problema di ottimizzazione viene definito come la minimizzazione o la massimizzazione di una funzione a valori reali su un insieme specificato.

Dettagli

Sistemi Lineari. Andrea Galasso

Sistemi Lineari. Andrea Galasso Sistemi Lineari Andrea Galasso Esercizi svolti Teorema. (Rouché-Capelli. Un sistema lineare Ax = b ammette soluzioni se e solo se il rango della matrice dei coefficienti A è uguale al rango della matrice

Dettagli

Indice. Premessa 13. Simboli ed abbreviaifoni 17. lntrodusione 19. Sistemi e modelli 31. La programmaifone matematica 45.

Indice. Premessa 13. Simboli ed abbreviaifoni 17. lntrodusione 19. Sistemi e modelli 31. La programmaifone matematica 45. Indice Premessa 13 Simboli ed abbreviaifoni 17 lntrodusione 19 Capitolo primo Sistemi e modelli 31 1.1 Alcune definizioni 1.2 Analisi e classificazione dei sistemi 1.3 I modelli e la loro classificazione

Dettagli

4 Sistemi di equazioni.

4 Sistemi di equazioni. 4 Sistemi di equazioni. Risolvere un sistema significa erminare le soluzioni comuni a tutte le equazioni che lo compongono. Il grado di un sistema è il prodotto dei gradi di tali equazioni. 4. Sistemi

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

OTTIMIZZAZIONE LINEARE MULTICRITERIO

OTTIMIZZAZIONE LINEARE MULTICRITERIO OTTIMIZZAZIONE LINEARE MULTICRITERIO NOTAZIONE Siano x ed y vettori di R n indicati estesamente con x x x x 1 Μ i Μ n, y y1 Μ yi Μ y n e si ponga N = {1,2,, n}. Scriveremo allora: x y ( x è diverso da

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Università di Pavia Richiami di Algebra Lineare Eduardo Rossi Vettori a : (n 1) b : (n 1) Prodotto interno a b = a 1 b 1 + a 2 b 2 +... + a n b n Modulo (lunghezza): a = a 2 1 +... + a2 n Vettori ortogonali:

Dettagli

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 Problemi di programmazione matematica: min f () s.v. X n insieme delle soluzioni ammissibili con funzione obiettivo

Dettagli