Integrale curvilinei (o di densità) 19 Novembre 2018

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Integrale curvilinei (o di densità) 19 Novembre 2018"

Transcript

1 Integrale curvilinei (o di densità) 19 Novembre 2018 Indice: urve parametrizzate nello spazio. Lunghezza di una curva. Integrali curvilinei. Applicazioni geometriche e fisiche. Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 1/24

2 urva parametrizzata nel piano o nello spazio Definizione (urva parametrizzata, o cammino parametrizzato) Una curva parametrizzata nello spazio R 3 è una funzione [a, b] R 3 t (t) = (x(t), y(t), z(t)) t [a, b] Il sostegno di una curva è l immagine Im della funzione, cioè l insieme di tutti i punti (t), al variare di t in [a, b]: Sostegno di = Im = {(t) R 3, t [a, b]} Analogamente, una funzione [a, b] R 2 parametrizzata nel piano R 2. è una curva Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 2/24

3 urve di classe 1. Vettore tangente. Definizione Una curva [a, b] R 3, (t) = (x(t), y(t), z(t)), si dice di classe 1 se le sue componenti x(t), y(t), z(t) sono di classe 1, cioè, sono derivabili con derivata continua sull intervallo [a, b]. Se è una curva parametrizzata di classe 1, il vettore (t) = (x (t), y (t), z (t)) si chiama vettore tangente o vettore velocità istantanea della curva in t. Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 3/24

4 Esempio. Elica cilindrica. z z x a 0 y x R 0 y Figura : Elica cilindrica: [0, 2π] R 3 (t) = (a cos t, a sin t, bt) (a > 0; b > 0) Figura : Elica cilindrica: [0, 4π] R 3 (t) = (a cos t, a sin t, bt) (a > 0; b > 0). Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 4/24

5 Esempio. Elica cilindrica (b < 0). z x a 0 y Figura : Elica cilindrica [0, 4π] R 3, (t) = (a cos t, a sin t, bt), b < 0. Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 5/24

6 La cicloide y (πr, 2r) y r θ x = r(θ sin θ) y = r(1 cos θ) x r θ Figura : Un arco della cicloide 2πr x [0, 2π] R 2, (ϑ) = (r(ϑ sin ϑ), r(1 cos ϑ)) La cicloide è la curva descritta da un punto di una circonferenza di raggio r quando la circonferenza rotola, senza strisciare, sull asse delle x. Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 6/24

7 Lunghezza di una poligonale inscritta in una curva (t k 1 ) (t k ) (a) (b) Presa una suddivisione = (t 0,..., t k,..., t m ) di [a, b] (con t 0 = a <... < t k <... < t m = b), il numero m l = (t k ) (t k 1 ) k=1 rappresenta la lunghezza di una poligonale inscritta nel cammino [a, b] R 3. Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 7/24

8 Lunghezza di un cammino continuo Definizione (Lunghezza di un cammino continuo; cammini rettificabili.) Si dice lunghezza di un cammino continuo [a, b] R 3 l estremo superiore (da intendersi eventualmente uguale a + ) delle lunghezze di tutte le poligonali inscritte: L() = sup al variare di nell insieme di tutte le partizioni dell intervallo [a, b]. Il cammino si dice rettificabile se L() < +. l Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 8/24

9 Lunghezza di una curva parametrizzata di classe 1 Teorema Ogni curva [a, b] R 3 di classe 1 su un intervallo compatto [a, b] è rettificabile e la sua lunghezza è data da: L() = b a (t) dt ( b ) = x (t) 2 + y (t) 2 + z (t) 2 dt a (Non dimostriamo questo teorema. Per la dimostrazione, si veda: Giovanni Prodi, Analisi Matematica, Bollati Boringhieri.) Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 9/24

10 Esempio: Lunghezza della circonferenza Esercizio alcolare la lunghezza della circonferenza di raggio R. Una parametrizzazione della circonferenza di raggio R è (t) = (x(t), y(t)) = (R cos t, R sin t), t [0, 2π] Il vettore tangente è (t) = ( R sin t, R cos t), il cui modulo è (t) = R 2 sin 2 t + R 2 cos 2 t = R Quindi la lunghezza della circonferenza è data da: 2π 0 (t) dt = 2π 0 R dt = 2πR Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 10/24

11 Esempio: Lunghezza dell elica cilindrica Esercizio alcolare la lunghezza dell elica cilindrica (t) = (a cos t, a sin t, bt), t [0, 2π] (1) Il vettore tangente è (t) = ( a sin t, a cos t, b) e il suo modulo è (t) = a 2 sin 2 t + a 2 cos 2 t + b 2 = a 2 + b 2 Allora la lunghezza dell elica è 2π 0 (t) dt = 2π 0 a 2 + b 2 dt = 2π a 2 + b 2 Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 11/24

12 Lunghezza di un elica: interpretazione geometrica z x a 0 y 2π a 2 + b 2 2πb 2πa Figura : Sviluppando su un piano il cilindro sul quale l elica è avvolta, l arco di elica si sviluppa lungo una diagonale di un rettangolo i cui lati sono 2πa e 2πb. Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 12/24

13 Lunghezza di un grafico Esercizio alcolare la lunghezza del grafico della funzione (di classe 1 ) y = f (x), x [a, b]. Il grafico di f è il sostegno della curva parametrizzata x(t) = t, y(t) = f (t), t [a, b]. La lunghezza del grafico è allora data da: b 1 + f (t) 2 dt (2) Esempio a alcolare la lunghezza del grafico di f (x) = x 2 ln(x), x [1, 4]. 8 Soluzione. 4 ( x ) 2 4 (x dx = x ) 2 15 dx = x 8 + ln Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 13/24

14 Esempio: Lunghezza della cicloide Esercizio alcolare la lunghezza della cicloide: (t) = (r(t sin t), r(1 cos t)), t [0, 2π] (3) (t) = r 2 (1 cos t) 2 + r 2 sin 2 t = r 2 1 cos t 1 cos t Per la formula di bisezione: = sin t (t [0, 2π]) si ha: 2 2 Lunghezza = 2π 0 r 2 1 cos t dt = 2r 2π 0 sin t dt = 8r 2 Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 14/24

15 Esempio guida di f ds: massa totale di un filo. Il sostegno della curva è il modello matematico di un filo; La funzione f rappresenta una densità lineare di massa. Questo significa che la massa m i di un piccolo archetto di lunghezza s i è data da m i = f (P i ) s i Allora l integrale f ds = lim 0 N f (P i ) s i (= i=1 ) N f (P i ) s i, s i piccoli i=1 si interpreta come la massa totale del filo la cui densità lineare di massa è f. Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 15/24

16 1) Definizione rigorosa di Sono assegnati: Una curva parametrizzata di classe 1 [a, b] R 3 f ds. Integrale di densità. t (t) = (x(t), y(t), z(t)) Una funzione continua D f R, dove D contiene il sostegno della curva : Im D. Definizione L integrale di f lungo è: f (x, y, z) ds = = b a b a f ((t)) (t) dt f (x(t), y(t), z(t)) x (t) 2 + y (t) 2 + z (t) 2 dt Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 16/24

17 Esempio di calcolo di Esempio f ds Sia l arco di curva (elica cilindrica) di equazioni parametriche x = cos t (t) = y = sin t 0 t 2π z = t alcolare Soluzione Dunque z ds. Qui f (x, y, z) = z e ds = x (t) 2 + y (t) 2 + z (t) 2 dt = 2 dt z ds = 2π t 2 dt = 2 2 π 2 Federico Lastaria. Analisi e Geometria 0 1. Integrale di una funzione lungo una curva 17/24

18 Osservazione: la lunghezza è un caso particolare di f ds Osservazione La lunghezza di una curva [a, b] R 3 di classe 1 b ( b ) L() = (t) dt = x (t) 2 + y (t) 2 + z (t) 2 dt a a è un esempio di integrale (di densità) curvilineo del tipo f ds, dove f = 1. Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 18/24

19 2) Definizione diretta (intuitiva) di f ds Dividiamo il sostegno di in N archi consecutivi 1,..., N ; onsideriamo le somme (di Riemann) N f (P i ) s i (4) i=1 dove s i (> 0) è la lunghezza di i e P i è un qualunque punto scelto in i. Definizione (L integrale curvilineo come limite di somme) L integrale di f lungo la curva è il limite (se esiste) delle somme di Riemann (4) quando il massimo delle lunghezze s i tende a zero: N f (x, y, z) ds = f (P i ) s i (5) lim 0 Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 19/24 i=1

20 Equivalenza delle due definizioni precedenti (enno) (a = t 0 < < t N = b è una partizione di [a, b]; ti [t i 1, t i ] è scelto a piacere; P i = (ti ); t i = t i t i 1 ; i = [t i 1, t i ] è l archetto di curva di estremi (t i 1 ) e (t i ).) Per definizione, l integrale (di Riemann) delle somme di Riemann b N f ((ti )) (ti ) t i i=1 perché s i = lunghezza di i (t i ) t i. a f ((t)) (t) dt è limite N f (P i ) s i Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 20/24 i=1

21 Osservazione importante Dalla interpretazione di f ds segue che: L integrale f ds non è orientato: Se si inverte l orientazione della curva (in breve, si percorre la curva da (b) a (a)), l integrale di f ds non cambia. L integrale f ds non dipende dalla parametrizzazione: Dato un cambio di parametro [a, b] R 3 ϕ γ = ϕ [α, β] si ha f ds = f ds. γ Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 21/24

22 Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 22/24

23 Seconda applicazione fisica: carica totale su un filo. Il sostegno della curva è il modello matematico di un filo; Sul filo sono presenti cariche elettriche e λ è la densità lineare di carica sul filo. Allora la quantità di carica Q presente su un piccolo tratto di filo di lunghezza (positiva) s è Q = λ(p) s dove P è un qualunque punto sul tratto di filo. Allora l integrale λ ds si interpreta come la quantità totale di carica elettrica sul filo. Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 22/24

24 Terza applicazione fisica: baricentri di linee Sia λ ds (λ = λ(x, y, z)) la densità lineare di massa di un filo [a, b] R 3. Definizione Il baricentro, o centro di massa, G della linea è il punto le cui coordinate sono date da x λ ds y λ ds z λ ds x G = λ ds, y G = λ ds, z G = (6) λ ds Se la densità di massa λ è costante, il baricentro si chiama anche centroide. In questo caso, posto L = ds la lunghezza di, si ha: x G = 1 L x ds y G = 1 L Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 23/24 y ds z G = 1 z ds (7) L

25 Esercizio Esercizio Trovare le coordinate del baricentro della semicirconferenza γ di equazioni parametriche: x(t) = R cos t, y(t) = R sin t, t [0, π] (8) Per motivi di simmetria, il baricentro si deve trovare sull asse y. Le sue coordinate (x, y) sono date, per definizione, da: x = 1 x ds, y = 1 y ds L L γ dove L è la lunghezza della curva. Nel nostro caso L = πr e ds = R dt. Quindi: x = 1 π R cos t R dt = R π cos t dt = 0 πr 0 π 0 y = 1 π R sin t R dt = R π sin t dt = 2 πr π π R 0 Federico Lastaria. Analisi e Geometria 1. Integrale di una funzione lungo una curva 24/24 0 γ

Il sostegno di una curva C è l immagine Im C della funzione C, cioè l insieme di tutti i punti C(t), al variare di t in [a, b]: R 2

Il sostegno di una curva C è l immagine Im C della funzione C, cioè l insieme di tutti i punti C(t), al variare di t in [a, b]: R 2 urve parametrizzate Definizione Una curva parametrizzata nello spazio R 3 è una funzione [a, b] R 3 t (t) = (x(t), (t), z(t)) t [a, b] Il sostegno di una curva è l immagine Im della funzione, cioè l insieme

Dettagli

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29 Analisi Matematica 2 Curve e integrali curvilinei Curve e integrali curvilinei 1 / 29 Curve in R 2 e R 3 Intuitivamente: una curva é un insieme di punti nello spazio in cui una particella puó muoversi

Dettagli

Curve. Hynek Kovarik. Analisi Matematica 2. Università di Brescia. Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28

Curve. Hynek Kovarik. Analisi Matematica 2. Università di Brescia. Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28 Curve Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28 Curve Definizione (Curva in R n ) Chiamiamo curva a valori in R n

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Curve. Riccarda Rossi. Analisi Matematica B. Università di Brescia. Riccarda Rossi (Università di Brescia) Curve Analisi Matematica B 1 / 66

Curve. Riccarda Rossi. Analisi Matematica B. Università di Brescia. Riccarda Rossi (Università di Brescia) Curve Analisi Matematica B 1 / 66 Curve Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Curve Analisi Matematica B 1 / 66 Introduzione Le curve sono particolari campi vettoriali Le vedremo

Dettagli

POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 2. Giugno Docenti: F. Lastaria, M. Citterio, M.

POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 2. Giugno Docenti: F. Lastaria, M. Citterio, M. POLITECNICO I MILANO. FACOLTÀ I INGEGNERIA INUTRIALE. Analisi e Geometria 2. Giugno 2. ocenti: F. Lastaria, M. Citterio, M. aita Indice Integrali di superficie. Parte prima. Integrali di superficie. Parte

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei 6 Curve e integrali curvilinei 6.1. Esempi ed esercizi svolti e/o proposti Esempio 6.1.1. Si consideri la curva parametrica ϕ: t [0,2π] ϕ(t) = (acos(t),asin(t),bt) R 3 dove a e b sono due costanti positive.

Dettagli

Omeomorfismi. Definizione

Omeomorfismi. Definizione Curve Definizione Si definisce curva di classe C k in R n l applicazione continua γ: I R R n, dove I è un intervallo della retta reale. Le curve possono essere classificate in curve chiuse e curve aperte.

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio Gennaio Lunghezza d arco

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio Gennaio Lunghezza d arco Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria Curve nello spazio Gennaio 013 Indice 1 Lunghezza d arco 1 1.1 Parametrizzazione alla lunghezza d arco..................... 1. Ogni

Dettagli

Curve e lunghezza di una curva

Curve e lunghezza di una curva Curve e lunghezza di una curva Definizione 1 Si chiama curva il luogo geometrico dello spazio di equazioni parametriche descritto da punto p, chiuso e limitato. Definizione 2 Si dice che il luogo C è una

Dettagli

Omeomorfismi. Definizione

Omeomorfismi. Definizione Curve Definizione Si definisce curva di classe C k in R n l applicazione continua γ: I R R n, dove I è un intervallo della retta reale. Le curve possono essere classificate in curve chiuse e curve aperte.

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Esercizio 1 Sia f : [a, b] IR 2 una funzione di classe C 1 su [a, b]. consideri

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Esercitazioni del 11 marzo Ricerca della parametrizzazione di una curva γ in R 3

Esercitazioni del 11 marzo Ricerca della parametrizzazione di una curva γ in R 3 Esercizio 1 Esercitazioni del 11 marzo 213 Ricerca della parametrizzazione di una curva γ in R 3 Fornire una parametrizzazione per l arco di curva γ appartenente alla superficie di equazione z = 2y 2 x

Dettagli

Curve nel piano ane euclideo e nello spazio ane euclideo

Curve nel piano ane euclideo e nello spazio ane euclideo Curve nel piano ane euclideo e nello spazio ane euclideo 13 Dicembre 2018 Federico Lastaria. Analisi e Geometria 1. Curve nel piano e nello spazio. 1/29 Curve parametrizzate regolari e biregolari. Denizione

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di derivata di una funzione in un punto. Sia A R N ; sia a A; sia f : A R M ; sia f differenziabile in a; allora la derivata di f in a è...

Dettagli

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n.

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. Analisi Matematica II, Anno Accademico 17-18. Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. CAMMINI ESERCIZIO 1 Un cammino soddisfa le relazioni y = x z, z = y + x 3, essendo

Dettagli

Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali

Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali 1 Definizione (Parametrizzazione di T): T R n, una sua parametrizzazione è una coppia φ, con = a, b intervallo di R e

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Esercizi 17.XI.2017 1. Verificare che le curve definite dalle seguenti parametrizzazioni sono regolari, o regolari

Dettagli

Esercizi I : curve piane

Esercizi I : curve piane Esercizi I : curve piane. Esercizio Si consideri la curva parametrizzata sin t, t [, 2π]. cos(2t) a) Stabilire per quali valori di t la parametrizzazione è regolare. b) Sia Γ la traccia di α. Descrivere

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 016/017. Prof. M. Bramanti 1 Tema n 1 4 5 6 Tot. Cognome e nome in stampatello) codice persona

Dettagli

Teoria Es. 1 Es. 2 Totale Analisi e Geometria 1 Seconda Prova. Compito F. 14 Gennaio Cognome: Nome: Matricola:

Teoria Es. 1 Es. 2 Totale Analisi e Geometria 1 Seconda Prova. Compito F. 14 Gennaio Cognome: Nome: Matricola: Teoria Es. 1 Es. Totale Analisi e Geometria 1 Seconda Prova. Compito F. 14 Gennaio 019. Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Istruzioni: Tutte le risposte devono essere

Dettagli

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione Curve parametrizzate. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 014. 1 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione Qui di seguito si riporta

Dettagli

Es. 1 Es. 2 Es. 3 Totale Teoria. Punteggi degli esercizi: Es.1: 12= punti; Es.2: 12=5+5+2 punti; Es.3: 8 punti.

Es. 1 Es. 2 Es. 3 Totale Teoria. Punteggi degli esercizi: Es.1: 12= punti; Es.2: 12=5+5+2 punti; Es.3: 8 punti. Es. 1 Es. Es. 3 Totale Teoria Analisi e Geometria 1 Seconda prova in itinere Febbraio 15 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi:

Dettagli

Geometria analitica - Testo pagina 1 di 5 67

Geometria analitica - Testo pagina 1 di 5 67 Geometria analitica - Testo pagina di 5 67 5. GEOMETRI NLITI: Geometria lineare nel piano È fissato nel piano un sistema di coordinate cartesiane ortogonali monometriche Oxy. 50. 502. 503. 504. Scrivere

Dettagli

Flusso, divergenza e rotore. Mauro Saita. Versione provvisoria. Giugno

Flusso, divergenza e rotore. Mauro Saita. Versione provvisoria. Giugno Flusso, divergenza e rotore. Esercizi maurosaita@tiscalinet.it ersione provvisoria. Giugno 216. 1 Indice 1 Teorema della divergenza (di Gauss). 2 1.1 Flusso di un campo di forze attraverso un cubo di dimensioni

Dettagli

Analisi Matematica 2. Forme differenziali lineari. Forme differenziali lineari 1 / 26

Analisi Matematica 2. Forme differenziali lineari. Forme differenziali lineari 1 / 26 Analisi Matematica 2 Forme differenziali lineari Forme differenziali lineari 1 / 26 Forme differenziali lineari Sia F(x, y, z) = F 1 (x, y, z)i + F 2 (x, y, z)j + F 3 (x, y, z)k un campo vettoriale di

Dettagli

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t ANALISI VETTORIALE Soluzione esercizi 1 gennaio 211 6.1. Esercizio. Sia Γ la curva regolare a tratti di rappresentazione parametrica x = t 2, y = t, t [, 1] e x = t, y = t 2, t [1, 2] calcolare la lunghezza,

Dettagli

Istituzioni di Matematica II 3 luglio 2014

Istituzioni di Matematica II 3 luglio 2014 Istituzioni di Matematica II 3 luglio 14 1. i Si dica se la matrice é diagonalizzabile. A = 1 1 1 ii Si studi il carattere della forma quadratica q(, y, z = + y + z Soluzioni. i La matrice é simmetrica

Dettagli

Omeomorfismi. Definizione

Omeomorfismi. Definizione Curve Definizione Si definisce curva di classe C k in R n l applicazione continua γ: I R R n, dove I è un intervallo della retta reale. Le curve possono essere classificate in curve chiuse e curve aperte.

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 22/23 Baricentri Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a. 22/23

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Domande Vero/Falso (seconda parte) 1. (a) Se f è una funzione derivabile, allora (b) Se un vettore x R n ha norma nulla, allora x = 0.

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio 18 Gennaio 2016

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio 18 Gennaio 2016 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria Curve nello spazio 18 Gennaio 016 Indice 1 Introduzione euristica alla curvatura di una curva piana Lunghezza d arco 3.1 Parametrizzazione

Dettagli

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27 Analisi Matematica 2 Superfici e integrali superficiali Superfici e integrali superficiali 1 / 27 Superficie Sia D un dominio connesso di R 2 (per def. un dominio connesso é la chiusura di un aperto connesso).

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di forma differenziale chiusa. Sia A R N ; sia A aperto; sia ω = N i=1 ω i dx i una forma differenziale su A; sia ω di classe C 1 ; si dice

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica 2 Differenziabilità per funzioni di due variabili Differenziabilità per funzioni di due variabili CCS Ingegneria Meccanica e Ingegneria Chimica 1 / 26 Differenziabilitá Data la funzione

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli

Analisi e Geometria 1 Anno accademico 2018 / Federico Lastaria. Homepage:

Analisi e Geometria 1 Anno accademico 2018 / Federico Lastaria. Homepage: Analisi e Geometria 1 Anno accademico 2018 / 2019 Federico Lastaria federico.lastaria@polimi.it Homepage: https://home.aero.polimi.it/lastaria/ Dipartimento di Scienze e Tecnologie Aerospaziali (DAER)

Dettagli

Curve nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Curve nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Introduzione alla geometria 16 Gennaio 2017 Indice 1 Introduzione euristica alla curvatura di una curva

Dettagli

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati:

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: ANALISI Soluzione esercizi 2 gennaio 212 12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: (x, y) R 2 : x < y} (x, y) R 2 : 2 x 3} (x, y) R 2 : x 2 +

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a

Vi prego di segnalare ogni inesattezza o errore tipografico a ESERCIZI DI GEOMETRIA 4 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Geometria proiettiva Esercizio 1. Dire quali tra le seguenti coordinate omogenee dei punti in P 2 rappresentano

Dettagli

ARGOMENTI MATEMATICA PER L INGEGNERIA

ARGOMENTI MATEMATICA PER L INGEGNERIA ARGOMENTI DI MATEMATICA PER L INGEGNERIA VOLUME 2 Esercizi proposti Quando non diversamente precisato, nel seguito si intenderà( sempre che nel piano sia stato introdotto un sistema cartesiano ortogonale

Dettagli

Registro delle lezioni

Registro delle lezioni 2 Registro delle lezioni Lezione 1 17 gennaio 2006, 2 ore Notazione dell o piccolo. Polinomio di Taylor di ordine n con resto in forma di Peano per funzioni di classe C n. Polinomio di Taylor di ordine

Dettagli

Curve e superfici parametrizzate. R. Notari

Curve e superfici parametrizzate. R. Notari Curve e superfici parametrizzate R. Notari 17 Aprile 2006 1 1. Cambi di parametro. Proposizione 1 Sia L : t (a, b) P (t) = (x(t), y(t), z(t)) R 3 una curva regolare, e sia ϕ : s (c, d) ϕ(s) (a, b) una

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Esercizi su curvatura e torsione.

Esercizi su curvatura e torsione. Esercizi su curvatura e torsione. e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 016. 1 Indice 1 Curvatura e torsione 1.1 Curve parametrizzate alla lunghezza d arco................... 1.

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16 PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16 Simboli: I= introduzione intuitiva, D = definizione, T = teorema C = criterio deduttivo, d

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di sistema fondamentale di soluzioni di un equazione differenziale lineare d ordine n omogenea. Sia I un intervallo non banale di R; siano

Dettagli

; y x su {(x, y) : x 2 + y 2 4, 1 x}.

; y x su {(x, y) : x 2 + y 2 4, 1 x}. Analisi Matematica II, Anno Accademico 07-08. Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. CAMBI DI VARIABILE NEGLI INTEGRALI: CALCOLO DI INTEGRALI IN COORDINATE CURVILINEE

Dettagli

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009)

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) 1. Sia S = { } (x, y, z) : x 2 + y 2 = 4, 0 z 3 + x. Scrivere le equazioni parametriche di una superficie regolare che abbia S come sostegno. 2. Enunciare

Dettagli

Integrali di superficie

Integrali di superficie Integrali di superficie Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Integrali curvilinei Analisi Matematica 2 1 / 27 Superfici in forma parametrica Procediamo

Dettagli

Prova scritta di Geometria differenziale - 27/2/2012

Prova scritta di Geometria differenziale - 27/2/2012 Prova scritta di Geometria differenziale - 27/2/2012 Tempo disponibile: 3 ore Non sono ammesse calcolatrici, appunti o libri di testo. Una copia degli appunti è disponibile per libera consultazione alla

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 29 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

Ingegneria Tessile, Biella Analisi II

Ingegneria Tessile, Biella Analisi II Ingegneria Tessile, Biella Analisi II Esercizi svolti In questo file sono contenute le soluzioni degli esercizi sui campi vettoriali (cf foglio 5 di esercizi) Attenzione: in alcuni esercizi il calcolo

Dettagli

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste.

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste. Campi vettoriali. Sia F (x, y = ye x i + (e x cos y j un campo vettoriale. Determinare un potenziale per F, se esiste.. Sia F (x, y = xy i + x j un campo vettoriale. Determinare un potenziale per F, se

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 17.XI.17 1. Le curve hanno tutte parametrizzazioni di classe C. Per studiare

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi dell 1.XII.18 1. Le curve hanno tutte parametrizzazioni di classe C. Per studiare

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz Data

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale

Es. 1 Es. 2 Es. 3 Es. 4 Totale Es. Es. Es. Es. 4 Totale Analisi e Geometria Seconda prova in itinere Docente: luglio Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2016/17 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso?

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso? A. Languasco - Esercizi Matematica B - 4. Geometria 1 A: Vettori geometrici Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Siano u, v, w vettori. Quali tra le seguenti operazioni

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

ANALISI MATEMATICA 2 A.A. 2015/16

ANALISI MATEMATICA 2 A.A. 2015/16 ANALISI MATEMATICA 2 SCHEMA PROVVISORIO DELLE LEZIONI A.A. 2015/16 1 Distribuzione degli argomenti Argomento lezioni tot Calcolo differenziale 12 12 Forme differenziali lineari 4 16 Funzioni implicite

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

Curve e superfici in R 3 1 / 16

Curve e superfici in R 3 1 / 16 Curve e superfici in R 3 1 / 16 Curve in R 3 2 / 16 Definizione: γ(t)=[x(t),y(t),z(t)], t (a,b), (1) è una curva regolare in R 3 se le funzioni in (1) hanno derivate continue almeno fino al secondo ordine

Dettagli

Geometria analitica pagina 1 di 5

Geometria analitica pagina 1 di 5 Geometria analitica pagina 1 di 5 GEOMETRIA LINEARE NEL PIANO È fissato nel piano un sistema di coordinate cartesiane ortogonali monometriche Oxy. 01. Scrivere due diverse rappresentazioni parametriche

Dettagli

LEZIONE 37. x 2 a 2 + y2. b 2 = 2z, x 2. a 2 y2. b 2 = 2z. Esempio Sia S il cilindro luogo dei punti P = (x, y, z) soddisfacenti l equazione

LEZIONE 37. x 2 a 2 + y2. b 2 = 2z, x 2. a 2 y2. b 2 = 2z. Esempio Sia S il cilindro luogo dei punti P = (x, y, z) soddisfacenti l equazione LEZIONE 37 37.1. Altri esempi di superfici. In questo paragrafo daremo altri esempi di superfici. Esempio 37.1.1. Sia D R 2 un aperto. Allora il grafico Γ ϕ di una funzione ϕ: D R 3 di classe C 1 è una

Dettagli

PARTE 4: Equazioni differenziali

PARTE 4: Equazioni differenziali PROGRAMMA di Fond. di Analisi Mat. 2 - sett. 1-11 A.A. 2011-2012, canali 1 e 2, proff.: Francesca Albertini e Monica Motta Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi

Dettagli

Esercizi sull integrazione

Esercizi sull integrazione ANALII MAMAICA -B (L-Z) (C.d.L. Ing. Gestionale) Università di Bologna - A.A.8-9 - Prof. G.Cupini sercizi sull integrazione (Grazie agli studenti del corso che comunicheranno eventuali errori) sercizio.

Dettagli

Esercizi su potenziale di un campo vettoriale

Esercizi su potenziale di un campo vettoriale Esercizi su potenziale di un campo vettoriale 0. Sia (, y, z) :=(2y,, ) e la circonferenza unitaria nel piano di equazione z = y (centrata nell origine). alcolare il lavoro compiuto da lungo orientata

Dettagli

Geometria Differenziale 2017/18 Esercizi 3

Geometria Differenziale 2017/18 Esercizi 3 Geometria Differenziale 217/18 Esercizi 3 1 Superfici I 1.1 Esercizio a) Verificare che l ellissoide Σ : x2 a 2 + y2 b 2 + z2 c 2 = 1 è una superficie regolare in tutti i suoi punti. b) Dare una parametrizzazione

Dettagli

2.9 Esercizi e prove d esame

2.9 Esercizi e prove d esame 65 R. Tauraso - Analisi Matematica II.9 Esercizi e prove d esame Esercizio.. Calcolare la lunghezza dell arco di catenaria data dal grafico della funzione f e + e, con, ]. L arco si parametrizza ponendo

Dettagli

Indirizzo: Tema di Il candidato risolva uno dei due problemi e 4 quesiti del questionario. PROBLEMA 1 PROBLEMA 2

Indirizzo: Tema di Il candidato risolva uno dei due problemi e 4 quesiti del questionario. PROBLEMA 1 PROBLEMA 2 Sessione ordinaria all estero (EUROPA) 8-9 ESAMI DI STATO DI LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO: EUROPA CORSO DI ORDINAMENTO Indirizzo: SCIENTIFICO Tema di: MATEMATICA Il candidato risolva uno

Dettagli

Istituzioni di Matematica II 5 Luglio 2010

Istituzioni di Matematica II 5 Luglio 2010 Istituzioni di Matematica II 5 Luglio 010 1. Classificare, al variare del parametro α R, la forma quadratica (1 + α )x + 4xy + αy.. i) Si determinino tutti i punti critici della seguente funzione f(x,

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Terzo appello 8 Settembre 4 Compito B Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi: Es.:

Dettagli

Geometria 3 A.A Esercizi

Geometria 3 A.A Esercizi Geometria 3 A.A. 2014 2015 Esercizi Equivalenza omo- Omotopia di applicazioni contiue. topica. Si dimostri che lo spazio X = {x R 2 : x 1} è connesso. Si dimostri che lo spazio topologico è connesso. X

Dettagli

6. Integrali curvilinei

6. Integrali curvilinei 6. Integrali curvilinei Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 2 A.A. 2016/17 Integrali curvilinei di campi scalari Integrali curvilinei di campi vettoriali Campi vettoriali

Dettagli

Esercizi di Analisi Matematica 3. Prima parte

Esercizi di Analisi Matematica 3. Prima parte Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve

Dettagli

Forme differenziali lineari e loro integrazione

Forme differenziali lineari e loro integrazione Forme differenziali lineari e loro integrazione Integrazione di una forma differenziale in due variabili Siano L(, ) e ( ) consideriamo l espressione M, due funzioni definite e continue in un insieme connesso

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

di una grandezza con densità

di una grandezza con densità Integrali curvilinei Problema: se una grandezza è distribuita su una curva oppure su una superficie ed ha densità f (P ), come misurare la quantità totale di tale grandezza su osu? Gli strumenti sono l

Dettagli

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A)

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A) Politecnico di Milano, Scuola di Ingegneria Industriale e dell Informazione Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 216 Terza parte (Compito A) Sia data, per ogni valore del parametro reale

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Docente: Politecnico di Milano Ingegneria Industriale 5 Settembre Compito A Cognome: Nome: Matricola: Punteggi degli esercizi: Es.: 6 punti; Es.: punti;

Dettagli

1. Mar. 17/1/06 2 ore Presentazione del corso. Libro di testo e altri testi consigliati. Alcune informazioni

1. Mar. 17/1/06 2 ore Presentazione del corso. Libro di testo e altri testi consigliati. Alcune informazioni Università degli Studi di Firenze Anno Accademico 2005/2006 Ingegneria per l Ambiente e il Territorio Corso di Analisi Matematica 2 (IAT) Docente: Francesca Bucci Periodo: II periodo (16 gennaio 2006 17

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2016 2017 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Si dimostri che il polinomio f(x, y) = x 2 y +x 5 +1 è irriducibile in C[x, y]. Sia K un campo.

Dettagli

Terzo esonero. 21 marzo Esercizio

Terzo esonero. 21 marzo Esercizio Terzo esonero 2 marzo 27. Esercizio Disegnare l insieme D : x, y) : x y 2 x, 2x 2 y 2x} e calcolarne l area. Determinare una trasformazione lineare che mandi D in un rettangolo. Calcolare l integale doppio

Dettagli

Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 2010

Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 2010 Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 1 1.Si calcoli la lunghezza della curva di equazione g y = 1 x 1 log x x [1, e].. Sia f(x, y, ) = x + y e sia il sostegno della curva

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 11/1 FM1 - Fisica Matematica I Soluzioni al tutorato del 9-1-1 1. Due particelle di massa m e coordinate x, y R si muovono sotto l effetto di una forza centrale

Dettagli

Lezione 13 (7 dicembre) Polinomio di Taylor Integrale definito: significato geometrico Primitiva di una funzione

Lezione 13 (7 dicembre) Polinomio di Taylor Integrale definito: significato geometrico Primitiva di una funzione Lezione 13 (7 dicembre) Polinomio di Taylor Integrale definito: significato geometrico Primitiva di una funzione Polinomio di Taylor e approssimazioni Approssimazione di una funzione nell intorno di un

Dettagli

Capitolo 18 ELEMENTI DI GEOMETRIA DIFFERENZIALE Funzioni a valori vettoriali

Capitolo 18 ELEMENTI DI GEOMETRIA DIFFERENZIALE Funzioni a valori vettoriali Capitolo 18 ELEMENTI DI GEOMETRIA DIFFERENZIALE 18.1 Funzioni a valori vettoriali Siano a e b due numeri reali con a < b. Sono allora individuati i seguenti sottoinsiemi dell asse reale: (a, b) = { x R

Dettagli