ESAME DI QUALIFICA TRIENNALE (II LIVELLO EUROPEO)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESAME DI QUALIFICA TRIENNALE (II LIVELLO EUROPEO)"

Transcript

1 Nome e ognome Id Azione Data.. Tipo prova MATEMATIA - III anno - sessione 1 a.f. 008/009 ESAME DI QUALIFIA TRIENNALE (II LIVELLO EUROPEO) 1 M0 Data l equazione x + 3 = 3x + b quale valore si deve dare a b perché la soluzione sia x = - 8? A b = 5 B b = -5 b = 11 D b = -11 Quale tra le seguenti uguaglianze è vera per ogni coppia di numeri a e b? A 3 a + a + a = a B ( a + b) = (a + b) M0184 (3a b) (9a b 3a + b D = 3a b (3a + b) ) = 3 M03 Per quale valore di x l espressione x 3x + 1 perde significato? A B D Pagina 1 di 6

2 4 Quale delle seguenti equazioni di secondo grado ammette come soluzioni x = - x = 5 A x 3x + 10 = 0 B x + 10x + 3 = 0 M04 x + 3x - 10 = 0 D x 3x - 10 = 0 5 M05 In una pizzeria, puoi prendere la pizza normale con due ingredienti base: formaggio e pomodoro. Puoi chiedere anche una pizza a tua scelta con l aggiunta di altri ingredienti scegliendo tra quattro diversi ingredienti: olive, prosciutto, funghi e salame. Riccardo vuole ordinare una pizza con altri due ingredienti diversi. Tra quante diverse combinazioni può scegliere Riccardo? RISPOSTA: combinazioni 6 M06 Una fattoria ha il tetto a forma di piramide. A fianco è riportato un modello matematico del tetto della fattoria con alcune misure. Il pavimento della soffitta, ABD nel modello, è un quadrato. alcola l area del pavimento. RISPOSTA: 7 M07 Le travi che sostengono il tetto della fattoria sono gli spigoli di un blocco (prisma rettangolare) EFGHKLMN (vedi figura precedente). E è il punto medio di AT, F è il punto medio di BT, G è il punto medio di T H è il punto medio di DT. Tutti gli spigoli della piramide nel modello hanno la stessa lunghezza. alcola la lunghezza di EF, uno degli spigoli orizzontali del blocco. RISPOSTA: Pagina di 6

3 8 M08 In un triangolo le misure dei lati sono a, b, c, con a = b < c. α, β, γ sono gli angoli interni del triangolo, opposti rispettivamente ai lati a, b, c. Quali delle seguenti affermazioni è vera? A α = γ B β = γ γ > α D α > β 9 M09 Nella figura seguente O è il centro della circonferenza, B un punto su di essa e A un suo diametro. A 5 B Sapendo che AÔB = 80, quanto vale ÂB AĈB? D 0 10 M0183 Un lato di un triangolo equilatero e un lato di un quadrato, di uguale perimetro, hanno lunghezze la cui differenza è 1 m. Quanto misurano rispettivamente il lato del triangolo e quello del quadrato? A 50 m e 38 m B 48 m e 36 m 5 m e 37m D 36 m e 48 m 11 Un padre di tre figli morì lasciando in eredità 1600 monete d'oro. Il testamento precisava che il maggiore dei tre doveva avere 00 monete più del secondo e che al secondo a sua volta spettavano 100 monete più dell'ultimo. Qual è la quota di ciascuno? SENZA effettuare i calcoli, imposta l equazione o il sistema di equazioni che permette di risolvere il problema. M030 Pagina 3 di 6

4 1 M031 La mia età è 11/16 di quella di mia madre e quattro anni fa ne era i /3. Quanti anni ha mia madre? A 64 B D M0039 Il supermercato omprabene offre le seguenti bevande ai prezzi riportati nella tabella: AQUA MINERALE (OSTO DI UNA BOTTIGLIA) SUHI DI FRUTTA (OSTO DI 1 LITRO) BIRRA (OSTO DI UNABOTTIGLIA DA 33 L) 0,75 1,0 1,70 Indicando con x il numero bottiglie di acqua minerale, con y il numero di succhi di frutta, con z il numero di bottiglie di birra, esprimere, utilizzando x, y, z, la spesa se si fanno le compere al supermercato omprabene. RISPOSTA: 14 La lunghezza P del passo è la distanza tra la parte posteriore di due orme consecutive. Per gli uomini, la formula: n/p =140 fornisce una relazione approssimativa tra n e P dove: n = numero di passi al minuto, e P = lunghezza del passo in metri. Se la formula si applica all andatura di Enrico ed Enrico fa 70 passi al minuto, qual è la lunghezza del passo di Enrico? Scrivi qui sotto i passaggi che fai per arrivare alla risposta. M03 Pagina 4 di 6

5 15 M0186 Velocità (m/s) Tempo (s) Il grafico rappresenta la velocità di un auto in funzione del tempo. Quale delle seguenti affermazioni è FALSA? A B D La velocità massima è 16 m/s. La velocità minima è 4 m/s. In tre istanti di tempo la velocità è 1 m/s. In due istanti di tempo la velocità è 4 m/s. 16 In una classe composta da 5 studenti è stata condotta un indagine per sapere quanti libri sono stati letti da ogni studente nel mese di dicembre. Il grafico illustrai dati raccolti. A 1 B M033,5 Qual è il numero medio di libri letti da ogni studente nel mese di dicembre? D 5 17 M034 È stato trasmesso un documentario sui terremoti e sulla frequenza con cui si verificano. Tale documentario comprendeva un dibattito sulla prevedibilità dei terremoti. Un geologo ha dichiarato: «Nei prossimi venti anni, la probabilità che si verifichi un terremoto è due su tre». Quale delle seguenti affermazioni esprime meglio il significato di ciò che ha detto il geologo? A B D Dato che /3 x 0 = 13,3, tra il 13 e il 14 anno da oggi ci sarà un terremoto. /3 è maggiore di 1/ (50%), pertanto ci sarà senza dubbio un terremoto durante i prossimi 0 anni. La probabilità che vi sia un terremoto durante i prossimi 0 anni è maggiore della probabilità che non vi siano terremoti. È impossibile dire che cosa accadrà, perché nessuno può essere certo di quando si verificherà un terremoto. Pagina 5 di 6

6 18 M0198 Quattro amici sostengono l Esame di Stato conseguendo punteggi la cui media aritmetica è 77,5/100. Se tre di essi hanno conseguito un punteggio, in centesimi, rispettivamente di 70, 76, 80, quale punteggio ha conseguito il quarto studente? A 88/100 B 84/100 78/100 D 7/100 IL TEST È TERMINATO Pagina 6 di 6

ANDATURA. La figura mostra le orme di un uomo che cammina. La lunghezza P del passo è la distanza tra la parte posteriore di due orme consecutive.

ANDATURA. La figura mostra le orme di un uomo che cammina. La lunghezza P del passo è la distanza tra la parte posteriore di due orme consecutive. ANDATURA La figura mostra le orme di un uomo che cammina. La lunghezza P del passo è la distanza tra la parte posteriore di due orme consecutive. n Per gli uomini, la formula = 140 fornisce una relazione

Dettagli

INdAM QUESITI A RISPOSTA MULTIPLA

INdAM QUESITI A RISPOSTA MULTIPLA INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova

Dettagli

Svizzera Italiana PISA. Esempi di unità di test da PISA 2000 a PISA 2006. Unità liberate PISA MATEMATICA

Svizzera Italiana PISA. Esempi di unità di test da PISA 2000 a PISA 2006. Unità liberate PISA MATEMATICA Svizzera Italiana PISA Esempi di unità di test da PISA 2000 a PISA 2006 Unità liberate PISA MATEMATICA Indice Fattorie...3 Andatura...5 Meli...6 Dadi...8 Area di un continente...9 La crescita...11 Velocità

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Matematica - Sessione 1 / Servizi Esame di Diploma (IV Livello Europeo) Quarto Anno

Matematica - Sessione 1 / Servizi Esame di Diploma (IV Livello Europeo) Quarto Anno Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Servizi Esame di iploma (IV Livello Europeo) Quarto Anno a.f. 2014/2015 omanda 1 M9074-00 Investi un capitale di 15.000 euro in regime di

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore. Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico

Dettagli

PISA. Matematica. Esempi di unità di test da PISA 2000 e PISA 2003. Svizzera Italiano

PISA. Matematica. Esempi di unità di test da PISA 2000 e PISA 2003. Svizzera Italiano Svizzera Italiano OECD Programme for International Student Assessment Monitoring Knowledge and Skills in the New Millenium PISA Matematica Esempi di unità di test da PISA 2000 e PISA 2003 OFS BFS UST EDK

Dettagli

Matematica - Sessione 1 / Produzione Esame di Qualifica (III Livello Europeo) Terzo Anno

Matematica - Sessione 1 / Produzione Esame di Qualifica (III Livello Europeo) Terzo Anno Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Produzione Esame di Qualifica (III Livello Europeo) Terzo Anno a.f. 2014/2015 omanda 1 M9063-00 Un aeroplano ha p posti di prima classe

Dettagli

Matematica - Sessione 1 / Servizi Esame di Diploma (IV Livello Europeo) Quarto Anno

Matematica - Sessione 1 / Servizi Esame di Diploma (IV Livello Europeo) Quarto Anno Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Servizi Esame di iploma (IV Livello Europeo) Quarto Anno a.f. 2012/2013 omanda 1 M9003-00 Nel grafico (Fonte INIRE) sono riportati i dati

Dettagli

Simulazione della Prova Nazionale. Matematica

Simulazione della Prova Nazionale. Matematica VERSO LA PROVA nazionale scuola secondaria di primo grado Simulazione della Prova Nazionale Invalsi di Matematica 8 marzo 011 Scuola..................................................................................................................................................

Dettagli

5 10 17 26 37 2,,,,,,... 2 3 4 5 6

5 10 17 26 37 2,,,,,,... 2 3 4 5 6 MATEMATICA GENERALE 2014 - CTF Funzioni e successioni - Esercizi Docente: ALESSANDRO GAMBINI 1. a) Rappresenta mediante espressione analitica la seguente successione numerica. Motiva la tua risposta. 5

Dettagli

Matematica - Sessione 1 / Produzione a.f. 2012/2013 Esame di Diploma (IV Livello Europeo) Quarto Anno

Matematica - Sessione 1 / Produzione a.f. 2012/2013 Esame di Diploma (IV Livello Europeo) Quarto Anno Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Produzione a.f. 2012/2013 Esame di iploma (IV Livello Europeo) Quarto nno omanda 1 M010651 omanda 2 M010643 Quanti sono i punti di intersezione

Dettagli

ESAME DI STATO PROVA NAZIONALE

ESAME DI STATO PROVA NAZIONALE Ministero della Pubblica Istruzione ESAME DI STATO Anno Scolastico 2007 2008 PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza Classe:.. Studente:. Fascicolo 1 Istituto Nazionale per la Valutazione

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore Kangourou Italia Gara del 1 marzo 001 Categoria Student Per studenti di quarta e quinta superiore Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta

Dettagli

Matematica - Sessione 1 / Produzione a.f. 2013/2014 Esame di Qualifica (III Livello Europeo) Terzo Anno

Matematica - Sessione 1 / Produzione a.f. 2013/2014 Esame di Qualifica (III Livello Europeo) Terzo Anno Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Produzione a.f. 2013/2014 Esame di Qualifica (III Livello Europeo) Terzo Anno omanda 1 M9037-00 Il grafico rappresenta le variazioni della

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2004 2005 PROVA DI MATEMATICA. Scuola Secondaria di I grado. Classe Prima. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2004 2005 PROVA DI MATEMATICA. Scuola Secondaria di I grado. Classe Prima. Codici. Scuola:... Ministero dell Istruzione dell Università e della Ricerca Istituto Nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 2004

Dettagli

SIMULAZIONE QUARTA PROVA: MATEMATICA

SIMULAZIONE QUARTA PROVA: MATEMATICA SIMULAZIONE QUARTA PROVA: MATEMATICA COGNOME: NOME: TEMPO IMPIEGATO: VOTO: TEMPO DELLA PROVA = 44 (a fianco di ogni quesito si trova il tempo consigliato per lo svolgimento dell esercizio). PUNTEGGIO TOTALE

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2003 2004 PROVA DI MATEMATICA. Scuola Elementare. Classe Quarta. Codici.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2003 2004 PROVA DI MATEMATICA. Scuola Elementare. Classe Quarta. Codici. Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado

Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Il numero 200013 2013

Dettagli

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica UNIONE MATEMATICA ITALIANA C. I. I. M. Commissione Italiana per l'insegnamento della Matematica ESEMPI DI TERZE PROVE per il NUOVO ESAME DI STATO LA COMPONENTE MATEMATICA ISTITUTO MAGISTRALE Tipologia

Dettagli

Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche

Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche Il tempo a disposizione per la risoluzione dei quesiti è di 90 minuti. Il test si ritiene superato

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno Kangourou Italia Gara del 19 marzo 2015 Categoria Cadet Per studenti di terza della scuola secondaria di primo grado e prima della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti

Dettagli

Test n. 7 Problemi matematici

Test n. 7 Problemi matematici Test n. 7 Problemi matematici ) Determinare il numero il cui doppio, aumentato di 0, è uguale a 44. A) 6 C) 7 B) 5 D) 8 ) Determinare due numeri tenendo presente che la loro somma è uguale a 8 e la loro

Dettagli

Blocco_A_2014 pag. 1

Blocco_A_2014 pag. 1 Blocco_A_2014 pag. 1 D1. Quattro amiche devono eseguire la seguente moltiplicazione: 25 (-30) Per trovare il risultato ognuna svolge il calcolo in modo diverso. Chi ha svolto il calcolo in modo NON corretto?

Dettagli

Proporzionalità diretta k = 60 kcal

Proporzionalità diretta k = 60 kcal Domanda D1. Paola, quando corre, consuma 60 kcal per ogni chilometro percorso. a. Completa la seguente tabella che indica le kcal consumate da Paola al variare dei chilometri percorsi. Chilometri percorsi

Dettagli

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado. Risposta A). Il triangolo ABC ha la stessa altezza del triangolo AOB ma base di lunghezza doppia (il diametro

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

1. Su una confezione di succo di frutta da 250 ml trovi le informazioni nutrizionali

1. Su una confezione di succo di frutta da 250 ml trovi le informazioni nutrizionali Verifica IVPROVA_MAT_INV_10 nome: classe: data: 1. Su una confezione di succo di frutta da 250 ml trovi le informazioni nutrizionali riportate in tabella. Quante kcal assumi se bevi tutto il succo di frutta

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

Syllabus delle conoscenze per il modulo: linguaggio matematico di base, modellizzazione e ragionamento. Esempi di domande

Syllabus delle conoscenze per il modulo: linguaggio matematico di base, modellizzazione e ragionamento. Esempi di domande Syllabus delle conoscenze per il modulo: linguaggio matematico di base, modellizzazione e ragionamento Esempi di domande Nelle pagine che seguono sono riportati, come esempio, i venticinque quesiti già

Dettagli

Syllabus delle conoscenze per il modulo: matematica. Esempi di domande

Syllabus delle conoscenze per il modulo: matematica. Esempi di domande Syllabus delle conoscenze per il modulo: matematica Esempi di domande Nelle pagine che seguono sono riportati, come esempio, quindici quesiti proposti nel 2008/09. Le risposte corrette (che si consiglia

Dettagli

Sapienza, Università di Roma. Ingegneria, Scienze M. F.N., Scienze Statistiche 11 settembre 2009

Sapienza, Università di Roma. Ingegneria, Scienze M. F.N., Scienze Statistiche 11 settembre 2009 Sapienza, Università di Roma Facoltà di Ingegneria, Scienze M. F.N., Scienze Statistiche 11 settembre 009 1. È data una sequenza di n numeri dispari consecutivi. etto M il maggiore della sequenza ed m

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore

Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore Regole:! La prova è individuale. E' vietato l'uso di calcolatrici di qualunque tipo.! Vi è una sola

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA. Scuola... Classe... Alunno...

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA. Scuola... Classe... Alunno... VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA Scuola..........................................................................................................................................

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2004 2005 PROVA DI MATEMATICA. Scuola Primaria. Classe Quarta. Codici. Scuola:... Classe:...

Rilevazione degli apprendimenti. Anno Scolastico 2004 2005 PROVA DI MATEMATICA. Scuola Primaria. Classe Quarta. Codici. Scuola:... Classe:... Ministero dell Istruzione dell Università e della Ricerca Istituto Nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 2004

Dettagli

La sezione di Matematica della prova nazionale

La sezione di Matematica della prova nazionale La sezione di Matematica della prova nazionale Giorgio Bolondi Roma, 18 aprile 2008 Presentazione Prova Nazionale 1 Cosa può valutare? I diversi processi valutativi messi in atto dall insegnante accompagnano

Dettagli

Matematica - Sessione 1 / Servizi. a.f. 2014/2015 Esame di Qualifica (III Livello Europeo) Terzo Anno

Matematica - Sessione 1 / Servizi. a.f. 2014/2015 Esame di Qualifica (III Livello Europeo) Terzo Anno Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Servizi a.f. 2014/2015 Esame di Qualifica (III Livello Europeo) Terzo Anno omanda 1 M010747 Per svolgere un lavoro all'interno di un padiglione

Dettagli

ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010

ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010 ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010 1 Fisica 1. Un ciclista percorre 14.4km in mezz ora. La sua velocità media è a. 3.6

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 120 statistica 6.5 esercizi hi non risolve esercizi non impara la matematica. 1 a un indagine sulla distribuzione delle altezze in un gruppo di studenti sono stati rilevati i seguenti valori grezzi (espressi

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

5A un multiplo di 3 5B una potenza di 5 5C divisibile per 7 e per 11 5D. D. 6 Le soluzioni dell equazione 1 + 3x 2x 2 = 0 sono 3 ± 17 6D 3 ± 17

5A un multiplo di 3 5B una potenza di 5 5C divisibile per 7 e per 11 5D. D. 6 Le soluzioni dell equazione 1 + 3x 2x 2 = 0 sono 3 ± 17 6D 3 ± 17 UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA 0 Settembre 008 Spnz0000 Ingegneria - Scienze Matematiche Fisiche Naturali - Scienze Statistiche Test di Matematica D. Il numero è uguale a A 5 B 5 C D 0 0 D.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

Elenco Ordinato per Materia Chimica

Elenco Ordinato per Materia Chimica ( [B,25404] Perché le ossa degli uccelli sono pneumatiche, cioè ripiene di aria? C (A) per consentire i movimenti angolari (B) per immagazzinare come riserva di ossigeno X(C) per essere più leggere onde

Dettagli

Gli automobilisti che precedono l autoambulanza vedono riflessa nello specchietto retrovisore la scritta:

Gli automobilisti che precedono l autoambulanza vedono riflessa nello specchietto retrovisore la scritta: PROVA INVALSI 2012-2013 Soluzioni D1 - A Osserva la seguente fotografia: Gli automobilisti che precedono l autoambulanza vedono riflessa nello specchietto retrovisore la scritta: Se la parola "AMBULANZA"

Dettagli

Kangourou Italia Gara del 15 marzo 2012 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado

Kangourou Italia Gara del 15 marzo 2012 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado Testi_12Mat_5-8-Ecolier.qxd 24/06/12 17:29 Pagina 27 Kangourou Italia Gara del 15 marzo 2012 Categoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono

Dettagli

I Giochi di Archimede-- Soluzioni triennio

I Giochi di Archimede-- Soluzioni triennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE I Giochi di Archimede-- Soluzioni triennio 17 novembre 2010 Griglia delle

Dettagli

Maths Challenge 2014

Maths Challenge 2014 UNIVERSITA DEGLI STUDI DI FOGGIA Dipartimento di Economia Largo Papa Giovanni Paolo II, 1-71100 Foggia - ITALY tel. 0881-781778 fax 0881-781752 Maths Challenge 2014 15 aprile 2014 1. La prova consiste

Dettagli

PER GLI STUDENTI DELLE CLASSI PRIME DEL LICEO MURATORI ESERCIZI DI MATEMATICA

PER GLI STUDENTI DELLE CLASSI PRIME DEL LICEO MURATORI ESERCIZI DI MATEMATICA LICEO CLASSICO STATALE L. A. MURATORI con sezioni di Liceo Linguistico Via Cittadella, 50-411 MODENA - Tel. 059-4007 - FAX 059-497186 e-mail: mopc00008@pec.istruzione.it - mopc00008@istruzione.it Codice

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

SIMULAZIONI TEST INVALSI

SIMULAZIONI TEST INVALSI SIMULAZIONI TEST INVALSI FRAZIONI In figura è rappresentato il gioco del Tangram con i pezzi che lo compongono. A quale frazione dell area del Tangram corrisponde il pezzo colorato in grigio? A. Un settimo

Dettagli

Prova di Matematica. www.matematicamente.it Prove Invalsi Secondaria di primo grado classe III 2009-2010

Prova di Matematica. www.matematicamente.it Prove Invalsi Secondaria di primo grado classe III 2009-2010 Prova di Matematica D. Su una confezione di succo di frutta da 250 ml trovi le seguenti informazioni nutrizionali: INFORMAZIONI NUTRIZIONALI Valori medi per 00 ml Valore energetico 54 Kcal 228 kj Proteine

Dettagli

cm, (C) cm, (D) cm, (B) cm, (E) (A) 262 6) Per quanti valori distinti del numero reale b l equazione x 2 + bx 16 = 0,

cm, (C) cm, (D) cm, (B) cm, (E) (A) 262 6) Per quanti valori distinti del numero reale b l equazione x 2 + bx 16 = 0, PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede-GaraTriennio 19 novembre 2008 1) La prova consiste di

Dettagli

Cenni di problem solving

Cenni di problem solving Cenni di problem solving 1. Assi e bilance 1. Un asta di metallo lunga 1 metro è sospesa per il suo centro. A 40 cm dall estremità sinistra è agganciato un peso di 45 kg, mentre all estremità opposta è

Dettagli

allora la retta di equazione x=c è asintoto (verticale) della funzione

allora la retta di equazione x=c è asintoto (verticale) della funzione 1)Cosa rappresenta il seguente limite e quale ne è il valore? E il limite del rapporto incrementale della funzione f(x)= con punto iniziale, al tendere a 0 dell incremento h. Il valore del limite può essere

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Sessione suppletiva Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Nel piano riferito

Dettagli

PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda

PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Seconda Spazio per

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

Matematica - Sessione 1 / Servizi Esame di Qualifica (III Livello Europeo) Terzo Anno

Matematica - Sessione 1 / Servizi Esame di Qualifica (III Livello Europeo) Terzo Anno Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Servizi Esame di Qualifica (III Livello Europeo) Terzo Anno Matteo ha un sacchetto contenente gettoni colorati: 4 gialli, 5 verdi, 8 rossi

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Esercizi di programmazione

Esercizi di programmazione Esercizi di programmazione SEQUENZA 1. Scrivere un algoritmo che calcoli il doppio di un numero fornito in input. 2. Scrivere un algoritmo che, dati tre numeri reali X, Y e Z calcoli il risultato di (X

Dettagli

LA PROVA PER LE BORSE DI STUDIO INDAM DEL 2002 4000 EURO PER I MIGLIORI STUDENTI DI MATEMATICA

LA PROVA PER LE BORSE DI STUDIO INDAM DEL 2002 4000 EURO PER I MIGLIORI STUDENTI DI MATEMATICA 00 rchimede L PROV PER LE BORSE DI STUDIO INDM DEL 00 RTICOLI 4000 EURO PER I MIGLIORI STUDENTI DI MTEMTIC Per il terzo anno consecutivo, l INdM ha bandito il concorso per assegnare 50 borse di studio

Dettagli

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest anno scolastico. Ti servono quale ripasso!!!se qualcosa non fosse chiaro batti

Dettagli

MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI ESERCIZI PER LA PRIMA PROVA IN ITINERE DI RECUPERO

MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI ESERCIZI PER LA PRIMA PROVA IN ITINERE DI RECUPERO MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI ESERCIZI PER LA PRIMA PROVA IN ITINERE DI RECUPERO ARGOMENTO: PERCENTUALI 1-Se in un anno in una popolazione i nuovi nati sono l 1,2% della

Dettagli

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione

Dettagli

TEST DI AUTOVALUTAZIONE PER STUDENTI CHE INTENDONO ISCRIVERSI ALLA LAUREA TRIENNALE IN ASTRONOMIA

TEST DI AUTOVALUTAZIONE PER STUDENTI CHE INTENDONO ISCRIVERSI ALLA LAUREA TRIENNALE IN ASTRONOMIA I TEST DI AUTOVALUTAZIONE PER STUDENTI CHE INTENDONO ISCRIVERSI ALLA LAUREA TRIENNALE IN ASTRONOMIA 1. Date le due frazioni 3/7 e 4/7, trovare una frazione compresa fra esse 2. Risolvere l equazione: (x

Dettagli

La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante

La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante Riflettiamo sulla pista Guida per l insegnante Obiettivi educativi generali Compito di specificazione - possiede capacità progettuale - è in grado di organizzare il proprio tempo e di costruire piani per

Dettagli

Esercizi sul moto rettilineo uniformemente accelerato

Esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 010 Esercizi sul moto rettilineo uniformemente accelerato Esercizio 1. Un corpo parte da fermo con accelerazione pari a

Dettagli

VERIFICA A ALUNNO. CLASSE I^. DATA...

VERIFICA A ALUNNO. CLASSE I^. DATA... VERIFICA A ALUNNO. CLASSE I^. DATA... N.B. SCHEMATIZZARE LA SITUAZIONE CON UN DISEGNO IN TUTTI GLI ESERCIZI INDICARE TUTTE LE FORMULE E TUTTE LE UNITA DI MISURA NEI CALCOLI 1-Quando spingi un libro di

Dettagli

IGiochidiArchimede--Soluzionitriennio

IGiochidiArchimede--Soluzionitriennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionitriennio 18 novembre 2009 Griglia delle risposte

Dettagli

Esame scritto di Matematica per la Formazione di Base 14 giugno 2013. 1. Siano a e b due numeri naturali che si scrivono nel modo seguente

Esame scritto di Matematica per la Formazione di Base 14 giugno 2013. 1. Siano a e b due numeri naturali che si scrivono nel modo seguente Esame scritto di Matematica per la Formazione di Base 14 giugno 2013 1. Siano a e b due numeri naturali che si scrivono nel modo seguente a =1012 3 b= 124 5 a) si scrivano a e b in base dieci; b) si scriva

Dettagli

Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado

Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Una grande nave cargo

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande.

Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande. I poligoni Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande. 6 7 8 9 Figura Nome Numero Numero Numero lati angoli diagonali triangolo

Dettagli

Matematica - Sessione 1 / Servizi a.f. 2011/2012 Esame di Diploma (III Livello Europeo) Quarto Anno

Matematica - Sessione 1 / Servizi a.f. 2011/2012 Esame di Diploma (III Livello Europeo) Quarto Anno Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Servizi a.f. 2011/2012 Esame di iploma (III Livello Europeo) Quarto nno omanda 1 Un portone di legno ha la forma mostrata in figura. M010527

Dettagli

REGIONE PIEMONTE. Asse MATEMATICO (prova 1) Codice corso: Allievo: Cod. fiscale: ASSE CULTURALE MATEMATICO. Questionario

REGIONE PIEMONTE. Asse MATEMATICO (prova 1) Codice corso: Allievo: Cod. fiscale: ASSE CULTURALE MATEMATICO. Questionario Pagina 1 di 15 REGIONE PIEMONTE ASSE CULTURALE MATEMATICO Questionario Asse MATEMATICO (prova 1) Codice corso: Allievo: Cod. fiscale: Pagina 2 di 15 Modalità di erogazione Se la somministrazione della

Dettagli

I Giochi di Archimede -- Soluzioni triennio 21 novembre 2007

I Giochi di Archimede -- Soluzioni triennio 21 novembre 2007 PROGETTO OLIMPIDI DI MTEMTI U.M.I. UNIONE MTEMTI ITLIN MINISTERO DELL PULI ISTRUZIONE SUOL NORMLE SUPERIORE I Giochi di rchimede -- Soluzioni triennio 1 novembre 007 Griglia delle risposte corrette Problema

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011)

TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) D1. Nella tabella che vedi sono riportati i dati relativi alla distribuzione di alunni e insegnanti nella scuola secondaria di primo grado

Dettagli

MATEMATICA 5 PERIODI

MATEMATICA 5 PERIODI BAC EUROPEO 2008 MATEMATICA 5 PERIODI DATA 5 giugno 2008 DURATA DELL ESAME : 4 ore (240 minuti) MATERIALE AUTORIZZATO Formulario delle scuole europee Calcolatrice non grafica e non programmabile AVVERTENZE

Dettagli

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore 15-20-.qxd 29/03/2003 8.22 Pagina 16 Kangourou Italia Gara del 20 marzo 2003 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale dei seguenti

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

In un museo il biglietto intero costa 9 euro, il biglietto ridotto 6 euro. Sono entrati 150 visitatori e l'incasso totale è stato di 1260 euro.

In un museo il biglietto intero costa 9 euro, il biglietto ridotto 6 euro. Sono entrati 150 visitatori e l'incasso totale è stato di 1260 euro. a) Se un numero è pari, allora è multiplo di 4. [] Vera [] Falsa b) Se un numero è multiplo di 9, allora è multiplo di 3. [] Vera [] Falsa c) Se un numero è multiplo di 6, allora è pari. [] Vera [] Falsa

Dettagli

Mate-Invalsi. MATEMATICA Aggiornamento INVALSI 2014. Copia gratuita allegata al volume Mate-Invalsi - 3. Terza Classe Scuola Secondaria di 1 Grado

Mate-Invalsi. MATEMATICA Aggiornamento INVALSI 2014. Copia gratuita allegata al volume Mate-Invalsi - 3. Terza Classe Scuola Secondaria di 1 Grado Fabio Semprini Mate-Invalsi 3 MATEMATICA Aggiornamento INVALSI 2014 Copia gratuita allegata al volume Mate-Invalsi - 3 Terza Classe Scuola Secondaria di 1 Grado mista Testo conforme alla legge 30.10.2008

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

La trigonometria prima della trigonometria. Maurizio Berni

La trigonometria prima della trigonometria. Maurizio Berni La trigonometria prima della trigonometria Maurizio Berni 9 maggio 2010 Negli istituti tecnici agrari la trigonometria viene affrontata: nella seconda classe in Disegno e Topografia (risoluzione di triangoli

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

LE PERCENTUALI 20% = 75% = 25% = ESERCIZIO 1. Completa la seguente tabella, accoppiando ad ogni percentuale la corrispondente frazione:

LE PERCENTUALI 20% = 75% = 25% = ESERCIZIO 1. Completa la seguente tabella, accoppiando ad ogni percentuale la corrispondente frazione: LE PERCENTUALI Le percentuali sono delle particolari frazioni che hanno 100 come denominatore. Ad esempio la percentuale 20% (si legge: venti per cento) corrisponde alla frazione 20 100. Quindi: 20% =

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

era applicato uno sconto del 35%, quale era il prezzo iniziale del vestito?

era applicato uno sconto del 35%, quale era il prezzo iniziale del vestito? QA00001 Un contadino vende 450 Kg di mele per un totale di a) 2,5 b) 2 c) 3 d) 1,60 b 630. Il commerciante che ha acquistato le mele le rivende con un guadagno di 60 centesimi al Kg. A quanto le ha vendute?

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Seconda Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE

PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede-GaraTriennio 18 novembre 2009 1) La prova consiste di

Dettagli

Quale numero riportato sulla piantina identifica il Partenone? A. 19 B. 17 C. 14 D. 1

Quale numero riportato sulla piantina identifica il Partenone? A. 19 B. 17 C. 14 D. 1 E1. L immagine qui sotto è una ricostruzione dell Acropoli di Atene. L edificio indicato con P è il Partenone, tempio dedicato alla dea Atena. Osserva ora questa piantina dell Acropoli: Quale numero riportato

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli