Interazioni Elettrodeboli. Lezione n. 13

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Interazioni Elettrodeboli. Lezione n. 13"

Transcript

1 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n Violazione della parità Polarizzazione nel decadimento β Esperimento di Frauenfelder Hamiltoniana del decadimento β anno accademico

2 La violazione della parità La scoperta che la parità è violata nei decadimenti β impone una revisione dell Hamiltoniana In particolare la richiesta che i singoli termini debbano essere scalari non ha più una motivazione fisica L Hamiltoniana più generale non deve necessariamente conservare la parità Ogni termine può avere sia una parte scalare sia una parte pseudoscalare Pertanto l Hamiltoniana risulta composta da due termini La parte PV dell Hamiltoniana contiene termini pseudoscalari Interazioni Elettrodeboli Francesco Ragusa 374

3 La violazione della parità Il termine PC (Parity Conserving) è quello che abbiamo studiato fino ad ora ed è pari per trasformazioni di inversione Il nuovo termine PV (Parity Violating) contiene prodotti di grandezze dispari per trasformazioni di inversione Ricordiamo che l ampiezza di transizione è costruita con una serie perturbativa in funzione di H In particolare al primo ordine Pertanto se l elemento di matrice di H' fosse nullo allora la transizione sarebbe proibita Consideriamo due autostati di P a> e b> con parità diversa Dimostriamo che Interazioni Elettrodeboli Francesco Ragusa 375

4 La violazione della parità Cominciamo con l elemento di matrice del termine PC fra due autostati di P con parità diversa Quindi Calcoliamo adesso l elemento di matrice del termine PV fra due autostati di P con parità diversa Quindi è possibile che Analogamente si può dimostrare che per due autostati di P con la stessa parità, ad esempio Interazioni Elettrodeboli Francesco Ragusa 376

5 Conseguenze Fenomenologiche Le modifiche introdotte non alterano la parte nucleare e pertanto Si mantiene la classificazione dei vari termini di interazione Transizioni di Fermi e transizioni di Gamov-Teller con le regole di selezione sugli spin nucleari dedotte precentemente Fino a quando non si studiano processi con polarizzazione del nucleone iniziale non si hanno termini di interferenza SA, ST, VA, VT Gli elementi di matrice si calcolano sempre utilizzando la tecnica delle tracce In particolare ricordiamo il calcolo dell elemento di matrice di Fermi Assumendo m ν = 0 diventa (ipotesi non essenziale) Interazioni Elettrodeboli Francesco Ragusa 377

6 Conseguenze Fenomenologiche Fare attenzione al segno del secondo operatore di vertice Ricordiamo infatti che la somma sugli stati di polarizzazione dava Abbiamo allora E anche Interazioni Elettrodeboli Francesco Ragusa 378

7 Gli elementi di matrice Le tracce possono essere semplicemente sviluppate ricordando le proprietà Per gli elementi di matrice si ottiene Interazioni Elettrodeboli Francesco Ragusa 379

8 Conseguenze Fenomenologiche Consideriamo ad esempio l elemento di matrice di Fermi L assenza del termine di interferenza, dedotta dallo studio della forma dello spettro, ha conseguenze meno dirette C S C V ( 1 α S α V ) = 0 Questo può succedere per una delle 3 condizioni Pertanto risulta più complicato trarre conclusioni dagli esperimenti già visti Per le correlazioni angolari non ci sono sostanziali differenze Infatti cambia solo il valore numerico delle due costanti di accoppiamento Occorre inventare nuovi esperimenti per determinare le nuove costanti L esperimento di Wu et al. fornisce le nuove informazioni necessarie I calcoli per interpretare gli esperimenti sono però un po più lunghi I nuclei sono polarizzati Non si annullano i termini di interferenza Fermi/Gamov-Teller Interazioni Elettrodeboli Francesco Ragusa 380

9 Elettroni polarizzati L osservazione della direzione privilegiata di emissione degli elettroni nell esperimento di Wu et al. ha una implicazione molto importante sulla direzione dello spin (polarizzazione) dell elettrone J i f = Ni* 60 Co S = 1 Per conservare il momento angolare l elettrone e il neutrino devono portare via una quantità S = 1 di momento angolare Il neutrino e l elettrone devono avere gli spin paralleli Dall esperimento di Wu gli elettroni sono emessi preferibilmente in basso Più precisamente in direzione opposta allo spin del nucleo L elettrone deve quindi essere polarizzato in direzione opposta alla sua direzione di moto: elettrone left-handed Verifichiamo se l Hamiltoniana che abbiamo scritto prevede questo fenomeno Calcoliamo la polarizzazione degli elettroni nel decadimento β Interazioni Elettrodeboli Francesco Ragusa 381

10 Polarizzazione nel decadimento β La polarizzazione degli elettroni è definita come Il numero degli elettroni Right-Handed è N R Il numero degli elettroni Left-Handed è N L I numeri N R e N L sono proporzionali alle larghezze di decadimento Come in precedenza l elemento di matrice contiene interazioni S,V,A,T Interazioni Elettrodeboli Francesco Ragusa 382

11 Polarizzazione nel decadimento β Rivediamo i singoli termini Osserviamo in particolare la polarizzazione degli spinori dell elettrone Scalare Vettoriale Vettoriale assiale Tensoriale Interazioni Elettrodeboli Francesco Ragusa 383

12 Polarizzazione nel decadimento β Il calcolo del quadrato del modulo procede in maniera analoga a quanto fatto precedentemente sommando su tutti gli stati di polarizzazione non osservati ( n, p, ν ) Dato che sommiamo sulla polarizzazione iniziale (del neutrone) non ci sono termini di interferenza SA, ST, VA, VT Di nuovo abbiamo i due elementi di matrice di Fermi e di Gamov-Teller Le somme sugli stati di polarizzazione si fanno con la tecnica delle tracce La polarizzazione degli elettroni si introduce tramite i proiettori di spin L elemento di matrice di Fermi è pertanto n p ν e k k' Interazioni Elettrodeboli Francesco Ragusa 384

13 Polarizzazione nel decadimento β Occorre definire i vettori di polarizzazione Il vettore s R definisce una polarizzazione parallela alla direzione di moto: polarizzazione Right-Handed Il vettore polarizzazione ξ (nel sistema di riposo) è parallelo a p ( ξ = 1) Il vettore s L si ottiene semplicemente cambiando ξ ξe quindi Interazioni Elettrodeboli Francesco Ragusa 385

14 Polarizzazione nel decadimento β Ricordiamo la definizione di polarizzazione Il numero di elettroni per le due polarizzazioni è dato da Pertanto la polarizzazione è data da L integrale sullo spazio delle fasi è su tutte le variabili cinematiche escluso E e Vedremo che dipende dall energia Calcoliamo il numeratore Ricordiamo che Interazioni Elettrodeboli Francesco Ragusa 386

15 Polarizzazione nel decadimento β Esaminiamo adesso un generico termine Ad es. il termine scalare commuta con anticommuta con Possiamo trasportare ( 1 α S γ 5 ) a sinistra trasformandolo in ( 1 + α S γ 5 ) Ricordiamo che ( γ 5 ) 2 = I Otteniamo pertanto Introduciamo questi risultati nel calcolo Possiamo ancora anticommutare γ 5 con Interazioni Elettrodeboli Francesco Ragusa 387

16 Polarizzazione nel decadimento β Per il terzo termine Introducendo nell espressione E finalmente Interazioni Elettrodeboli Francesco Ragusa 388

17 Polarizzazione nel decadimento β Siamo quasi alla fine!!! Ricordiamo la proprietà del vettore s μ : s R k = 0 Per finire, ricordiamo che s R, k, k sono Introduciamoli nel calcolo Interazioni Elettrodeboli Francesco Ragusa 389

18 Polarizzazione nel decadimento β Ricordiamo che L integrale sulle direzioni dell elettrone e del neutrino elimina i pezzi dipendenti da cosθ eν Il numeratore Diventa Per quel che riguarda il denominatore notiamo che i termini M R e M L contengono rispettivamente La somma di questi due termini è pertanto 1 Il denominatore (integrato sulle direzioni) risulta uguale al risultato trovato per la distribuzione dell energia Abbiamo usato il risultato sperimentale che l interferenza di Fierz è 0 Interazioni Elettrodeboli Francesco Ragusa 390

19 Polarizzazione nel decadimento β La polarizzazione degli elettroni è pertanto Vedremo fra poco che gli studi sperimentali della polarizzazione degli elettroni che hanno mostrato che Pertanto le misure sperimentali richiedono che Interazioni Elettrodeboli Francesco Ragusa 391

20 Polarizzazione nel decadimento β Ricordiamo che dalla misura della distribuzione dell energia si conclude che il termine di interferenza di Fierz è assente L implicazione di questo risultato sulle costanti di accoppiamento è Abbiamo già notato non possiamo trarre conclusioni solo da questo risultato D altro canto, dalla misura delle correlazioni angolari Questo risultato implica Da cui, come prima dell introduzione della violazione della parità C S = 0 Combinando questo risultato con la misura della polarizzazione Interazioni Elettrodeboli Francesco Ragusa 392

21 Misura della Polarizzazione Per misurare la polarizzazione di un elettrone occorre chiedersi se ci sono effetti misurabili dipendenti dalla polarizzazione nella interazione di un elettrone o con un campo coulombiano o con un elettrone atomico Fra i metodi principali Mott scattering Scattering con il campo Coulombiano del nucleo di un atomo pesante Sensibile solo polarizzazione trasversale alla direzione di moto Møller scattering Interazione dell elettrone che si vuole analizzare con un elettrone atomico L elettrone atomico deve essere polarizzato Bhabha scattering Come il precedente ma per analizzare la polarizzazione di positroni Analizzeremo solo un esperimento che usa il primo metodo Purtroppo lo scattering Coulombiano dipende dalla polarizzazione solo al secondo ordine dell approssimazione di Born L effetto è piccolo: si usano nuclei pesanti Inoltre, come già osservato, è sensibile solo ad una polarizzazione trasversale Interazioni Elettrodeboli Francesco Ragusa 393

22 Rotazione del Vettore di Polarizzazione Come trasformare la polarizzazione longitudinale in trasversale? Ovviamente con un campo elettromagnetico Per descrivere l effetto di un campo elettromagnetico classico sullo spin di una particella si può utilizzare l equazione semiclassica ( Bargman,Michel,Telegdi ) momento magnetico momento magnetico anomalo L equazione descrive il moto del vettore di polarizzazione s μ sotto l effetto di un campo elettromagnetico Il campo non deve essere troppo intenso Vale per qualunque campo macroscopico Solo per campi a livello microscopico potrebbe essere non valida Ė più intuitivo utilizzare una equazione che descriva il moto del vettore ξ nel sistema di riposo istantaneo della particella In questo sistema l equazione diventa (per l elettrone si può assumere m'= 0) Landau, Lifshitz Quantum Electrodynamics 41p,151 Pergamon Press 1982 Interazioni Elettrodeboli Francesco Ragusa 394

23 Rotazione del Vettore di Polarizzazione Il sistema utilizzato per ruotare la polarizzazione fu inventato nel 1951 da Tolhoek e de Groot Una guida circolare realizza un campo elettrico radiale (B = 0) Gli elettroni di energia opportuna seguono una traiettoria circolare Il campo elettrico fornisce una forza centripeta Se l energia dell elettrone non è elevata ( γ 1) Il moto è praticamente non relativistico Vedremo che la polarizzazione non risente del campo elettrico La direzione dello spin rimane invariata Se l energia dell elettrone è elevata (γ 1) Lo spin sente l effetto del campo elettrico e precessa Calcoliamo adesso la rotazione del vettore polarizzazione senza assunzioni sulla velocità dell elettrone Interazioni Elettrodeboli Francesco Ragusa 395

24 Rotazione del Vettore di Polarizzazione Iniziamo calcolando il raggio dell orbita in funzione del campo elettrico E e della velocità La legge di Newton La variazione di quantità di moto dell elettrone quando ha percorso una lunghezza Rdθ è dp = pdθ Pertanto La velocità angolare è R θ Il periodo A questo punto calcoliamo il raggio dell orbita Interazioni Elettrodeboli Francesco Ragusa 396

25 Rotazione del Vettore di Polarizzazione Studiamo adesso la precessione dello spin Ricordiamo l equazione Bargman, Michel, Telegdi Per B = 0 diventa Il vettore E β è perpendicolare al piano individuato da E e β Il vettore ξ (E β) è sul piano ed è perpendicolare a ξ Riscriviamo l equazione di BGT E Descrive una precessione Lo spin quindi precessa La variazione dello spin dξ è sul piano β Interazioni Elettrodeboli Francesco Ragusa 397

26 Rotazione del Vettore di Polarizzazione Supponiamo adesso che l elettrone abbia percorso un tratto Δ dell arco Vogliamo calcolare l angolo fra La quantità di moto p Il vettore di polarizzazione ξ Per percorrere la distanza Δ l elettrone impiega un tempo α Ricordiamo la velocità della precessione dello spin Pertanto il vettore di polarizzazione ξ e il vettore p ruotano rispettivamente Eliminiamo β Concludendo Interazioni Elettrodeboli Francesco Ragusa 398

27 Rotazione del Vettore di Polarizzazione Pertanto dopo aver percorso uno spazio Δ = RΔα l angolo fra i due vettori è Pertanto, affinché la quantità di moto e lo spin siano perpendicolari deve essere α Dato un elettrone di energia mc 2 γ la guida deve avere una lunghezza RΔα L angolo Δα è dato da Interazioni Elettrodeboli Francesco Ragusa 399

28 Sezione d urto Mott La sezione d urto Mott è relativa all interazione di un elettrone con il campo Coulombiano p i Il bersaglio ha massa infinita Si tiene conto dello spin dell elettrone con la teoria di Dirac Abbiamo fatto questo calcolo al primo ordine della teoria perturbativa A questo ordine non appaiono effetti legati alla polarizzazione Una dipendenza dalla polarizzazione compare al secondo ordine Diamo solo il risultato del calcolo p f Per le funzioni I(θ) e D(θ) vedi Landau vedi Landau Lifshitz Quantum Electrodynamics 12.1 pag 534 Interazioni Elettrodeboli Francesco Ragusa 400

29 Esperimento di Frauenfelder La figura mostra schematicamente l apparato dell esperimento di Frauenfelder per la misura della polarizzazione degli elettroni di un decadimento β Notiamo che se l angolo di deflessione θ va a sinistra il prodotto vettoriale cambia segno (cambia il segno della componente 1 di p 2 ) Interazioni Elettrodeboli Francesco Ragusa 401

30 Esperimento di Frauenfelder Supponiamo adesso che gli elettroni siano completamente polarizzati In un caso paralleli alla quantità di moto (RH) Nell altro caso antiparalleli (LH) Dopo la rotazione gli elettroni sono ancora completamente polarizzati Nel primo caso verso l alto Nel secondo verso il basso Ricordiamo la formula della sezione d urto Le misure da fare sono La sezione d urto per un angolo θ R Spin up R Spin down La sezione d urto per un angolo θ L opposto a θ R Spin up Spin down L Interazioni Elettrodeboli Francesco Ragusa 402

31 Esperimento di Frauenfelder Nell esperimento gli elettroni non sono completamente polarizzati La misura della polarizzazione è l obbiettivo dell esperimento La polarizzazione degli elettroni è data da N + polarizzati up (probabilità ) N polarizzati down (probabilità ) La sezione d urto osservata per un angolo θ R è Analogamente, per un angolo θ L si osserva Definiamo l asimmetria δ Ci mettiamo nella condizione Si può verificare che Interazioni Elettrodeboli Francesco Ragusa 403

32 Esperimento di Frauenfelder S(θ) è noto: la misura di δ permette di misurare Osservazioni S(θ) dipende anche dall energia dell elettrone È necessario che gli angoli θ R e θ L siano perfettamente simmetrici L esperimento è sensibile solo alla polarizzazione trasversale Un errore nella rotazione dello spin porta ad un errore sistematico su L effetto aumenta al crescere di Z Si usano metalli pesanti come l oro Per ottimizzare l esperimento si può cercare l angolo al quale l effetto è più grande Occorre però tenere presente che al crescere dell angolo la sezione d urto diminuisce Occorre pertanto trovare un compromesso tra la dimensione dell effetto misurato e l errore statistico con cui esso viene determinato Il risultato dell esperimento è e e S( ) Interazioni Elettrodeboli Francesco Ragusa 404

33 Determinazione di C A e C V Abbiamo già visto che la misura della vita media di nuclei permette di determinare la costante di accoppiamento G β Tuttavia, il parametro ξ contiene una dipendenza dal rapporto C A /C V I decadimenti di Fermi contengono solo il termine <1> e permettono pertanto la determinazione di G β senza ulteriori informazioni C A /C V Ulteriori misure di su transizioni di Gamov-Teller o miste permettono la determinazione di C A /C V Blucher, Marciano PDG 2006 J. Phys. G 33 pag. 677 Ceccucci, Ligeti, Sakai PDG 2006 J. Phys. G 33 pag. 138 Interazioni Elettrodeboli Francesco Ragusa 405

34 Determinazione di C A e C V Il segno relativo delle due costanti si può determinare con la misura di un osservabile che dipenda dal prodotto C A C V e quindi dall interferenza fra termini di Fermi e Gamov-Teller Occorre pertanto studiare transizioni di nuclei polarizzati Per nuclei non polarizzati l elemento di matrice contiene il termine 1 + a β e β ν Osservabili che dipendono dal vettore di polarizzazione del nucleo σ contengono termini del tipo Per neutroni polarizzati si trova Misure di correlazione angolare fra la direzione dell elettrone (o del neutrino) e lo spin nucleare mostrano che il segno relativo è positivo Interazioni Elettrodeboli Francesco Ragusa 406

35 L Hamiltoniana del Decadimento β Gli esperimenti descritti hanno permesso la determinazione della forma dell Hamiltoniana del decadimento β Sono stati esclusi i termini Scalare e Tensoriale Sono state determinate le costanti degli accoppiamenti Vettoriale e Assiale L Hamiltoniana pertanto contiene solo i termini V e A Il termine assiale può essere semplificato utilizzando (γ 5 ) 2 = I Infine raccogliamo la parte leptonica Interazioni Elettrodeboli Francesco Ragusa 407

36 L Hamiltoniana del Decadimento β Possiamo ulteriormente semplificare E ancora Come abbiamo già detto κ = 1.27 e GC V G β Il valore di κ diverso da 1 dipende dal fatto che il nucleone non è una particella puntiforme Il protone ha una struttura Ritorneremo su questo punto in seguito Per il momento trascuriamo questo aspetto e assumiamo κ = 1 In una notazione più moderna è diventato abituale spostare la matrice γ μ a sinistra Interazioni Elettrodeboli Francesco Ragusa 408

37 L Hamiltoniana del Decadimento β Definiamo due generiche correnti ( sia adronica che leptonica) Una corrente Vettoriale Una corrente Assiale Le due correnti (adronica e leptonica) compaiono nell Hamiltoniana nella combinazione Ė questa la famosa forma V A delle correnti deboli ( cariche ) Infine, per uniformarci alle notazioni maggiormente utilizzate ridefiniamo la costante di Fermi La costante G è stata definita da Fermi prima della scoperta della violazione della parità La generalizzazione dell interazione di Fermi e l introduzione della violazione della parità hanno condotto ad una Hamiltoniana che contiene due correnti (V A) Per mantenere la stessa definizione di Fermi è necessario dividere G per Interazioni Elettrodeboli Francesco Ragusa 409

Interazioni Elettrodeboli. Lezione n. 14. Hamiltoniana del decadimento β Chiralità e proiezioni chirali Correnti chirali.

Interazioni Elettrodeboli. Lezione n. 14. Hamiltoniana del decadimento β Chiralità e proiezioni chirali Correnti chirali. Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 14 23.11.2017 Hamiltoniana del decadimento β Chiralità e proiezioni chirali Correnti chirali. Universalità anno accademico

Dettagli

Interazioni Elettrodeboli. Lezione n. 13. Esperimenti allo specchio Violazione della parità Polarizzazione nel decadimento β

Interazioni Elettrodeboli. Lezione n. 13. Esperimenti allo specchio Violazione della parità Polarizzazione nel decadimento β Interazioni Elettrodeboli prof. Francesco agusa Università di Milano Lezione n. 13 1.11.017 Esperimenti allo specchio Violazione della parità Polarizzazione nel decadimento β anno accademico 017-018 Esperimenti

Dettagli

Interazioni Elettrodeboli. Lezione n. 11. Decadimento β. Generalizzazione della teoria di Fermi Distribuzione dell'energia Studi sperimentali

Interazioni Elettrodeboli. Lezione n. 11. Decadimento β. Generalizzazione della teoria di Fermi Distribuzione dell'energia Studi sperimentali Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 11 9.11.2017 Decadimento β. Generalizzazione della teoria di Fermi Distribuzione dell'energia Studi sperimentali anno accademico

Dettagli

Interazioni Elettrodeboli. Lezione n. 15

Interazioni Elettrodeboli. Lezione n. 15 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 15 22.11.2018 Polarizzazione nel decadimento del mesone π Decadimento del leptone τ: τ π ν τ Proprietà isotopiche della

Dettagli

Interazioni Elettrodeboli. Lezione n. 15

Interazioni Elettrodeboli. Lezione n. 15 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 15 28.11.2017 Corrente adronica debole Decadimento del mesone π Decadimento del leptone τ: τ π ν τ Proprietà isotopiche

Dettagli

Interazioni Elettrodeboli. Lezione n. 11. Decadimento β. Generalizzazione della teoria di Fermi Distribuzione dell'energia Studi sperimentali

Interazioni Elettrodeboli. Lezione n. 11. Decadimento β. Generalizzazione della teoria di Fermi Distribuzione dell'energia Studi sperimentali Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 11 8.11.2018 Decadimento β. Generalizzazione della teoria di Fermi Distribuzione dell'energia Studi sperimentali anno accademico

Dettagli

Interazioni Elettrodeboli. Lezione n. 4. Equazione di Dirac 3 Interazione E.M. Scattering di Coulomb

Interazioni Elettrodeboli. Lezione n. 4. Equazione di Dirac 3 Interazione E.M. Scattering di Coulomb Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 4 12.10.2017 Equazione di Dirac 3 Interazione E.M. Scattering di Coulomb anno accademico 2017-2018 Scattering Coulombiano:

Dettagli

Interazioni Elettrodeboli. Lezione n. 12. Studi sperimentali: Correlazioni angolari Forme bilineari covarianti θ τ puzzle e violazione della parità

Interazioni Elettrodeboli. Lezione n. 12. Studi sperimentali: Correlazioni angolari Forme bilineari covarianti θ τ puzzle e violazione della parità Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 12 13.11.2018 Studi sperimentali: Correlazioni angolari Forme bilineari covarianti θ τ puzzle e violazione della parità

Dettagli

Interazioni Elettrodeboli. Lezione n. 4. Equazione di Dirac 3 Scattering di Coulomb. Effetti polarizzatori Tecniche di tracce di matrici γ

Interazioni Elettrodeboli. Lezione n. 4. Equazione di Dirac 3 Scattering di Coulomb. Effetti polarizzatori Tecniche di tracce di matrici γ Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 4 11.10.2018 Equazione di Dirac 3 Scattering di Coulomb. Effetti polarizzatori Tecniche di tracce di matrici γ anno accademico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 37 28.05.2019 Dipolo oscillante Radiazione di una carica in moto Casi dell'accelerazione parallela e perpendicolare

Dettagli

Interazioni Elettrodeboli. Lezione n. 14

Interazioni Elettrodeboli. Lezione n. 14 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 14 20.11.2018 Hamiltoniana del decadimento β Chiralità e proiezioni chirali Correnti chirali. Universalità Decadimento π

Dettagli

Interazioni Elettrodeboli. Lezione n. 16. Proprietà isotopiche della corrente adronica Corrente Adronica: Fattori di Forma

Interazioni Elettrodeboli. Lezione n. 16. Proprietà isotopiche della corrente adronica Corrente Adronica: Fattori di Forma Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 16 30.11.2017 Proprietà isotopiche della corrente adronica Corrente Adronica: Fattori di Forma anno accademico 2017-2018

Dettagli

Interazioni Elettrodeboli. Lezione n. 5

Interazioni Elettrodeboli. Lezione n. 5 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 5 16.10.2018 Proiettori di spin. Effetti polarizzatori nello scattering Coulombiano. Analisi di Fourier del campo di Klein

Dettagli

ed infine le interazioni nucleari forte e debole? dove E rappresenta l energia cinetica della particella α, e K è: K = e2 2Z

ed infine le interazioni nucleari forte e debole? dove E rappresenta l energia cinetica della particella α, e K è: K = e2 2Z Introduzione 1. Stima il valore delle energie dei fotoni necessarie per risolvere distanze atomiche, e poi nucleari. 2. Per quali ragioni fisiche le interazioni fondamentali sono state storicamente identificate

Dettagli

Interazioni Elettrodeboli. Lezione n. 3. Equazione di Dirac 2 Descrizione relativistica dello spin

Interazioni Elettrodeboli. Lezione n. 3. Equazione di Dirac 2 Descrizione relativistica dello spin Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 3 10.10.2017 Equazione di Dirac 2 Descrizione relativistica dello spin anno accademico 2017-2018 Operatore di spin L operatore

Dettagli

20 giugno La sezione d urto invariante impolarizzata per il processo (1) è

20 giugno La sezione d urto invariante impolarizzata per il processo (1) è 20 giugno 2002 e (p 1 ) + e + (p 2 ) γ(k) + Z 0 (q) (1) (i tetra-impulsi delle particelle sono indicati in parentesi). 1. Si scrivano i diagrammi di Feynman rilevanti per il processo, e si scriva l espressione

Dettagli

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2)

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2) Effetto Zeeman Effetto Zeeman normale La hamiltoniana di una particella in presenza di un campo elettromagnetico, descritto dal potenziale vettore A e dal potenziale scalare Φ é H = 2M e l euazione di

Dettagli

Interazioni Elettrodeboli. Lezione n. 10

Interazioni Elettrodeboli. Lezione n. 10 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 10 6.11.2018 Sezione d'urto e μ e μ Propagatore e invarianza di gauge Teoria di Fermi del decadimento β Cinematica; spazio

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 25 6.04.2018 Campo elettrico di una carica accelerata Quadrivettori e trasformazioni di Lorentz Cinematica e dinamica

Dettagli

Interazioni Elettrodeboli. Lezione n. 3. Equazione di Dirac 2 Descrizione relativistica dello spin Interazione elettromagnetica

Interazioni Elettrodeboli. Lezione n. 3. Equazione di Dirac 2 Descrizione relativistica dello spin Interazione elettromagnetica Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 3 10.10.2017 Equazione di Dirac 2 Descrizione relativistica dello spin Interazione elettromagnetica anno accademico 2018-2019

Dettagli

Violazione della Parità

Violazione della Parità Violazione della Parità Raffaele Pontrandolfi Corso di Astrosica e Particelle Elementari Motivazione Per spiegare l asimmetria nell universo tra particelle e antiparticelle bisogna trovare dei processi

Dettagli

Beta decay. max e ) -5 Legge di Sargent

Beta decay. max e ) -5 Legge di Sargent Beta decay Nuclei emettono elettroni con una distribuzione continua di energia Il valore massimo dell energia energia cinetica dell elettrone elettrone e circa uguale alla differenza di massa tra i nuclei

Dettagli

Problemi per il corso di teoria delle interazioni fondamentali giugno 2005

Problemi per il corso di teoria delle interazioni fondamentali giugno 2005 Problemi per il corso di teoria delle interazioni fondamentali giugno 2005 Primo Modulo 1. Urto Bhabha Determinare la sezione d urto differenziale per l urto e + e e + e, nel limite di alta energia in

Dettagli

PARITA. Parità Parità intrinseca Conservazione della Parità

PARITA. Parità Parità intrinseca Conservazione della Parità PARITA Parità Parità intrinseca Conservazione della Parità PARITÀ L operatore di inversione spaziale è una trasformazione discreta che inverte il segno delle tre coordinate spaziali: P x, y, z -x, -y,

Dettagli

Interazioni Elettrodeboli. Lezione n. 20. Correnti neutre Unificazione elettrodebole

Interazioni Elettrodeboli. Lezione n. 20. Correnti neutre Unificazione elettrodebole Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 20 9.01.2018 Correnti neutre Unificazione elettrodebole anno accademico 2017-2018 Interazioni di corrente neutra Vogliamo

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 1.04.2019 Quadrivettori e trasformazioni di Lorentz Cinematica e dinamica relativistiche Forza magnetica e relatività

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 18.10.2017 Divergenza e teorema della divergenza Forma differenziale della Legge di Gauss Energia del campo elettrostatico

Dettagli

Interazioni Elettrodeboli. Lezione n. 17

Interazioni Elettrodeboli. Lezione n. 17 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 17 29.11.2018 Interazioni di neutrini Difficoltà dell'interazione di Fermi Particelle di spin 1 Propagatore del fotone e

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 10 2.11.2016 Equazione di Poisson Metodo delle cariche immagine Anno Accademico 2016/2017 Equazione di Poisson Tramite

Dettagli

Effetto Compton. Nicola Cabibbo 27 Novembre 2000

Effetto Compton. Nicola Cabibbo 27 Novembre 2000 Effetto Compton Nicola Cabibbo 27 Novembre 2000 In questa nota consideriano il processo Compton di diffusione di un fotone su un elettrone,γ + e γ + e. La nota integra la trattazione che si trova in Mandl

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 38 5.06.2018 Potenziali per una carica puntiforme Quantità di moto elettromagnetica Radiazione. Dipolo oscillante Anno

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 09 27.10.2017 Soluzioni dell'equazione di Laplace Metodo separazione delle variabili Anno Accademico 2017/2018 Separazione

Dettagli

Interazioni Elettrodeboli. Lezione n. 10. Propagatore e invarianza di gauge Teoria di Fermi del decadimento β Cinematica; spazio delle fasi

Interazioni Elettrodeboli. Lezione n. 10. Propagatore e invarianza di gauge Teoria di Fermi del decadimento β Cinematica; spazio delle fasi Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 10 7.11.2017 Propagatore e invarianza di gauge Teoria di Fermi del decadimento β Cinematica; spazio delle fasi anno accademico

Dettagli

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017 Fisica Moderna: Corso di aurea Scienze dei Materiali Prova scritta: 16/6/17 Problema 1 Una particella di spin 1/ è soggetta ad un campo magnetico uniforme B = B ẑ diretto lungo l asse delle z. operatore

Dettagli

1 Interazioni tra campi, teorie di Fermi e di Yukawa

1 Interazioni tra campi, teorie di Fermi e di Yukawa 1 Interazioni tra campi, teorie di Fermi e di Yukawa Costanti d accoppiamento Le teorie di campo libere che abbiamo analizzato fin qui descrivono la propagazione di particelle ed antiparticelle relativistiche

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 14 30.11.2018 Sfera di dielettrico polarizzata Carica puntiforme e semispazio dielettrico Energia elettrostatica Anno

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

Eccitazioni nucleari. Capitolo Spettro rotazionale

Eccitazioni nucleari. Capitolo Spettro rotazionale Capitolo 1 Eccitazioni nucleari 1.1 Spettro rotazionale Consideriamo un nucleo pari pari, con spin zero, che abbia però una deformazione permanente. Supponiamo inoltre che il nucleo goda di una simmetria

Dettagli

Eccitazioni nucleari

Eccitazioni nucleari 1 Spettro rotazionale Lezione 28 Eccitazioni nucleari Consideriamo un nucleo pari pari, con spin zero, che abbia però una deformazione permanente. Supponiamo inoltre che il nucleo goda di una simmetria

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 22 22.3.2019 Forze sui dipoli magnetici Invarianza relativistica della carica Trasformazione di Lorentz del campo E

Dettagli

Interazioni Elettrodeboli. Lezione n. 7

Interazioni Elettrodeboli. Lezione n. 7 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 7 24.10.2017 Tensore energia impulso Invarianza di gauge globale Quantizzazione del campo di Dirac Invarianza di gauge locale

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 27.03.2018 Forse sui circuiti percorsi da corrente Invarianza relativistica della carica Trasformazioni di Lorentz

Dettagli

Programma del corso di Particelle Elementari

Programma del corso di Particelle Elementari Programma del corso di Particelle Elementari 1. Le interazioni fondamentali 1.1 Costituenti elementari 1.2 Quark e colore 1.3 Il colore come carica dell interazione nucleare 1.4 Unità naturali 1.5 Interazione

Dettagli

FAM. = 5 4 Mc2 = E C = 5 2 Mc2 1 v2. c 2. 2 M 2M) = 1 2 Mc2

FAM. = 5 4 Mc2 = E C = 5 2 Mc2 1 v2. c 2. 2 M 2M) = 1 2 Mc2 Serie 19: Soluzioni FAM C. Ferrari Esercizio 1 Collisione completamente anelastica Utilizziamo la conservazione dell energia e della quantità di moto (sistema isolato) in cui trattiamo A e B all inizio

Dettagli

Interazioni Elettrodeboli. Lezione n. 6. Operatore Numero Formalismo Lagrangiano e Hamiltoniano Quantizzazione canonica. Teorema di Noether

Interazioni Elettrodeboli. Lezione n. 6. Operatore Numero Formalismo Lagrangiano e Hamiltoniano Quantizzazione canonica. Teorema di Noether Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 6 23.10.2017 Operatore Numero Formalismo Lagrangiano e Hamiltoniano Quantizzazione canonica. Teorema di Noether anno accademico

Dettagli

Problemi per il corso di teoria delle interazioni fondamentali gennaio 2013

Problemi per il corso di teoria delle interazioni fondamentali gennaio 2013 Problemi per il corso di teoria delle interazioni fondamentali gennaio 203 Primo Modulo. Urto Bhabha in QED Considerare il processo e + e e + e nella regione di energia per cui la massa degli elettroni

Dettagli

PROBLEMA A DUE CORPI: STATI DEL CONTINUO

PROBLEMA A DUE CORPI: STATI DEL CONTINUO Capitolo 10 PROBLEMA A DUE CORPI: STATI DEL CONTINUO Riprendiamo l equazione di Schrödinger per il sistema di due particelle interagenti con l intento di cercare la classe di soluzioni che descrivono stati

Dettagli

Figura 7.1: Ipotesi di Heisenberg

Figura 7.1: Ipotesi di Heisenberg Capitolo 7 Isospin nei nuclei Nel 9 Heisenberg scrisse tre articoli sulla forza nucleare, trattando neutrone e protone come due stati della stessa particella, il nucleone, distinti dal valore assunto da

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

Effetto Zeeman anomalo

Effetto Zeeman anomalo Effetto Zeeman anomalo Direzione del campo B esempio: : j=3/2 Direzione del campo B j=1+1/2 = 3/2 s m j =+3/2 m j =+1/2 l m j =-1/2 m j =-3/2 La separazione tra i livelli é diversa l e µ l antiparalleli

Dettagli

Metodo variazionale e applicazione all atomo di elio

Metodo variazionale e applicazione all atomo di elio Metodo variazionale e applicazione all atomo di elio Descrizione del metodo Il metodo detto variazionale è un metodo approssimato che si usa per ottenere una stima dell energia dello stato fondamentale

Dettagli

Interazioni Elettrodeboli. Lezione n. 9

Interazioni Elettrodeboli. Lezione n. 9 Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 9 30.10.2018 Campi interagenti. Scattering. Matrice S Scattering di Coulomb spin 0 Interazione di particelle di spin ½ Regole

Dettagli

Theory Italiano (Italy)

Theory Italiano (Italy) Q3-1 Large Hadron Collider (10 punti) Prima di iniziare questo problema, leggi le istruzioni generali nella busta a parte. In questo problema è discussa la fisica dell acceleratore di particelle del CERN

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 2016-17 18/12/2017 Nome Cognome Matricola: 1) Si consideri il sistema dinamico nonlineare ẋ = y x 2, ẏ = x + y 2, Si determinino i punti di equilibrio, si caratterizzi

Dettagli

La radiazione elettromagnetica nucleare deve avere una lunghezza d onda dell ordine delle dimensioni del nucleo, e pertanto: c A 1/ 3

La radiazione elettromagnetica nucleare deve avere una lunghezza d onda dell ordine delle dimensioni del nucleo, e pertanto: c A 1/ 3 Emissione gamma La radiazione γ è l emissione spontanea di quanti da parte del nucleo. Emettendo fotoni il nucleo passa da uno stato eccitato ed uno stato meno eccitato. Vi possono essere transizioni radiative

Dettagli

Sezione d urto classica

Sezione d urto classica Capitolo Sezione d urto classica In meccanica classica, ogni particella del fascio incidente segue una traiettoria ben definita sotto l azione del potenziale. Se V (r) è centrale, il momento angolare è

Dettagli

Campi e Particelle. Prima Parte: Campi. Esercizi e Soluzioni

Campi e Particelle. Prima Parte: Campi. Esercizi e Soluzioni Campi e Particelle. Prima Parte: Campi. Esercizi e Soluzioni Alexandre Kamenchtchik Problema No 1 Trovare una soluzione statica (cioè indipendente dal tempo) dell equazione di Klein-Gordon per un campo

Dettagli

Notiamo che, per una massa che rotorivoluisca sull orbita senza scorrimento, per la componente giroscopica, con V n. v p

Notiamo che, per una massa che rotorivoluisca sull orbita senza scorrimento, per la componente giroscopica, con V n. v p Natura fisica ed espressione della forza di Lorentz, calcolo del campo magnetico nucleare Abbiamo visto che, se applichiamo il principio di conservazione del momento angolare nello spazio, se la massa

Dettagli

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1 Effetto Stark Studiamo l equazione di Schrödinger per l atomo di idrogeno in presenza di un campo elettrico costante e diretto lungo l asse z, E = E k. La hamiltoniana di Schrödinger per l atomo di idrogeno

Dettagli

la forma esplicita delle correzioni

la forma esplicita delle correzioni la forma esplicita delle correzioni al leading order (ma nei programmi di fit le correzioni si spingono, a seconda dei casi, ad ordini superiori) e per m H >m W le correzioni dipendenti dal flavour sono

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA. REGISTRO DELLE LEZIONI (di cui all art. 39 del Regio Decreto 6 aprile 1924, n. 674)

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA. REGISTRO DELLE LEZIONI (di cui all art. 39 del Regio Decreto 6 aprile 1924, n. 674) Mod. 1/147 UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA Facoltà di Scienze M.F.N. REGISTRO DELLE LEZIONI (di cui all art. 39 del Regio Decreto 6 aprile 1924, n. 674) di Fisica delle particelle elementari

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 10 3.11.2017 Equazione di Poisson Funzione δ(x) di Dirac Metodo delle cariche immagine Anno Accademico 2017/2018 Equazione

Dettagli

Esercitazioni di Meccanica Quantistica I

Esercitazioni di Meccanica Quantistica I Esercitazioni di Meccanica Quantistica I Sistema a due stati Consideriamo come esempio di sistema a due stati l ammoniaca. La struttura del composto è tetraedrico : alla sommità di una piramide con base

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 14 29.11.2017 Campo elettrico di materia polarizzata Densità di carica superficiali e di volume Sfera di dielettrico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 23 23.3.2018 Potenziale di una spira. Dipolo magnetico. Forze su circuiti magnetici Anno Accademico 2017/2018 Il momento

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Corso di Fenomenologia delle Interazioni Fondamentali LM in Fisica, AA Silvia Arcelli

Corso di Fenomenologia delle Interazioni Fondamentali LM in Fisica, AA Silvia Arcelli Corso di Fenomenologia delle Interazioni Fondamentali LM in Fisica, AA 214-15 Silvia Arcelli Le Interazioni Deboli 24 Febbraio 215 1 Le Interazioni Deboli L interazione Debole nel Modello Standard Teoria

Dettagli

Riassunto della lezione precedente

Riassunto della lezione precedente Riassunto della lezione precedente Linee generali della teoria dello scattering con sonde elettromagnetiche: - sezione d urto inclusiva - sezione d urto inclusiva elastica - caso della particella scalare

Dettagli

Misura del momento magnetico dell elettrone

Misura del momento magnetico dell elettrone FACOLTÀ Università degli Studi di Roma Tre DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Fisica Misura del momento magnetico dell elettrone Candidato: Andrea Sciandra Matricola 4480 Relatore:

Dettagli

Struttura fine dei livelli dell idrogeno

Struttura fine dei livelli dell idrogeno Struttura fine dei livelli dell idrogeno. Introduzione Consideriamo un atomo idrogenoide di massa m N e carica atomica Z. Dall equazione di Schrödinger si ottengono per gli stati legati i seguenti autovalori

Dettagli

MECCANICA QUANTISTICA. Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME. Anno accademico 2011/2012

MECCANICA QUANTISTICA. Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME. Anno accademico 2011/2012 MECCANICA QUANTISTICA Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME Anno accademico 2011/2012 Argomenti facenti parte del programma d esame. Argomenti facenti parte del programma d

Dettagli

Gli accoppiamenti di spin. e i sistemi di spin nucleari

Gli accoppiamenti di spin. e i sistemi di spin nucleari Gli accoppiamenti di spin e i sistemi di spin nucleari l momento magnetico di un nucleo interagisce con i momenti magnetici dei nuclei vicini. sistono due tipi di interazioni: nterazione diretta, anisotropa

Dettagli

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda.

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda. 1. Problema della corda vibrante Si consideri una corda monodimensionale, di sezione nulla avente densità per unità di lunghezza ρ e modulo elastico lineare E. Una corda reale approssima quella ideale

Dettagli

Come esempio consideriamo i nuclei 1 3 H e 2 3 He che differiscono nelle loro proprietà

Come esempio consideriamo i nuclei 1 3 H e 2 3 He che differiscono nelle loro proprietà Il formalismo dello spin isotopico Le proprietà dei nuclei isobari sono estremamente diverse a seconda del diverso numero atomico Z e di conseguenza del numero di neutroni N = A Z. Questi nuclei hanno

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 8. I decadimenti γ

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 8. I decadimenti γ Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 8 I decadimenti γ Decadimenti γ (Cenni da cap. 9 del Krane) I decadimenti γ consistono nel passaggio di un nucleo da uno stato eccitato

Dettagli

Interazioni tra campi, teorie di Fermi e di Yukawa

Interazioni tra campi, teorie di Fermi e di Yukawa Interazioni tra campi, teorie di Fermi e di Yukawa Appunti per il corso di Teoria dei Campi 1-010/11) Fiorenzo Bastianelli 1 Costanti d accoppiamento Le teorie di campo libere che abbiamo analizzato fin

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

CAPITOLO 1 ELETTROSTATICA

CAPITOLO 1 ELETTROSTATICA CAPITOLO 1 1.1 Introduzione Nell elettromagnetismo studieremo fenomeni elettrici e magnetici che rappresentano un altra interazione fondamentale della natura (dopo quella gravitazionale che abbiamo visto

Dettagli

La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno:

La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno: La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno: Vedi documento Atomo di Bohr.pdf sul materiale didattico per la derivazione di queste equazioni Livelli Energetici dell Atomo di Idrogeno

Dettagli

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B =

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B = Corso di Laurea in Fisica. Geometria. a.a. 26-7. Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 7//6 Soluzione esercizio. Sia B {e, e 2 } e sia B {v, v 2 }. La matrice B del cambiamento di base

Dettagli

La struttura del nucleone

La struttura del nucleone La struttura del nucleone 90% del materiale dai proff. Ragusa e Mandelli Scattering elettrone-nucleone Capitolo 8: The Structure of the Nucleon Negli anni 50 con la formulazione del modello a quark (statico)

Dettagli

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) 2 L elettromagnetismo INTERAZIONE ELETTROMAGNETICA = INTERAZIONE FONDAMENTALE Fenomeni elettrici e fenomeni

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 37 1.06.2016 Riflessione e rifrazione Incidenza obliqua Potenziali elettrodinamici Anno Accademico 2016/2017 Quantità

Dettagli

Lezione 20. Violazione di parità

Lezione 20. Violazione di parità 1 Lezione 2 Violazione di parità 2.1 Violazione di parità.1.1 Introduzione Il problema della conservazione della parità nacque a metà anni 5 del secolo scorso in relazione al decadimento del mesoni K.

Dettagli

Modellistica dei Manipolatori Industriali 01BTT Esame del 18/02/2002 Soluzione

Modellistica dei Manipolatori Industriali 01BTT Esame del 18/02/2002 Soluzione Modellistica dei Manipolatori Industriali BTT Esame del 8/2/22 Soluzione Sistemi di riferimento e cinematica di posizione In Figura a) il manipolatore è stato ridisegnato per mettere in evidenza variabili

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

Bosone. Particella a spin intero, che obbedisce alla statistica di Bose-Einstein, che è opposta a quella di Fermi-Dirac.

Bosone. Particella a spin intero, che obbedisce alla statistica di Bose-Einstein, che è opposta a quella di Fermi-Dirac. Particelle ed Interazioni fondamentali Fermione. Particella a spin semintero, che obbedisce alla statistica di Fermi-Dirac, cioè due fermioni con gli stessi numeri quantici non possono coesistere in uno

Dettagli

Interazioni Elettrodeboli. Lezione n. 5. Analisi di Fourier. Onde elettromagnetiche Radiazione del corpo nero Oscillatore quantistico

Interazioni Elettrodeboli. Lezione n. 5. Analisi di Fourier. Onde elettromagnetiche Radiazione del corpo nero Oscillatore quantistico Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 5 17.10.2017 Analisi di Fourier. Onde elettromagnetiche Radiazione del corpo nero Oscillatore quantistico anno accademico

Dettagli

Riassunto della lezione precedente

Riassunto della lezione precedente Riassunto della lezione precedente Linee generali della teoria dello scattering con sonde elettromagnetiche: - sezione d urto inclusiva - sezione d urto inclusiva elastica: caso della particella scalare

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 16 luglio 2001 Teoria 1. La posizione del centro di massa di un sistema di N particelle puntiformi è data da Ni r i m i

Dettagli

Fisica dei mesoni. Mesoni sono particelle con spin intero e interagisce coi barioni (nucleoni) attraverso le forze forti, elettromagnetiche e deboli

Fisica dei mesoni. Mesoni sono particelle con spin intero e interagisce coi barioni (nucleoni) attraverso le forze forti, elettromagnetiche e deboli Fisica dei mesoni Mesone π e quello piu leggero nella famiglia dei mesoni E la particella che viene scambiato nell interazione forte nucleone-nucleone ed e quindi responsabile della maggiore componente

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C.

FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C. Serie 19: Relatività VIII FAM C. Ferrari Esercizio 1 Collisione completamente anelastica Considera la collisione frontale di due particelle A e B di massa M A = M B = M e v A = v B = 3/5c, tale che alla

Dettagli

Diffusione dei raggi X da parte di un elettrone

Diffusione dei raggi X da parte di un elettrone Diffusione dei raggi X da parte di un elettrone Consideriamo un onda elettro-magnetica piana polarizzata lungo x che si propaga lungo z L onda interagisce con un singolo elettrone (libero) inducendo un

Dettagli

Elettricità e Magnetismo. M. Cobal, Università di Udine

Elettricità e Magnetismo. M. Cobal, Università di Udine Elettricità e Magnetismo M. Cobal, Università di Udine Forza di Coulomb Principio di Sovrapposizione Lineare Campo Ele8rico Linee di campo Flusso, teorema di Gauss e applicazioni Condu8ori Energia potenziale

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 21 19.3.2019 Campo di una spira circolare Potenziale Vettore Potenziale di una spira Anno Accademico 2018/2019 Campo

Dettagli

C 1 C 3 C F = + = = < V AB. Elettrostatica

C 1 C 3 C F = + = = < V AB. Elettrostatica Elettrostatica Tre condensatori C F, C 6 F, C.5 F, sono disposti come in figura. a) Trovare la capacità equivalente del sistema; b) se le ddp di scarica dei condensatori sono 00, 50, 00, qual è la massima

Dettagli

INTRODUZIONE ALLA RELATIVITÀ SPECIALE: Dalla seconda legge di Newton a E = mc 2. 8 marzo 2017

INTRODUZIONE ALLA RELATIVITÀ SPECIALE: Dalla seconda legge di Newton a E = mc 2. 8 marzo 2017 INTRODUZIONE ALLA RELATIVITÀ SPECIALE: Dalla seconda legge di Newton a E = mc 2 8 marzo 2017 Piano della presentazione Trasformazioni di Lorentz Red Shift Relatività e leggi di Newton Galileo Seconda Legge

Dettagli

Problemi per il corso di teoria delle interazioni fondamentali maggio 2007

Problemi per il corso di teoria delle interazioni fondamentali maggio 2007 Problemi per il corso di teoria delle interazioni fondamentali maggio 27. Urto elettrone-protone. Primo Modulo Considare l urto elastico elettrone-protone in QED, ossia il processo e p e p, nel limite

Dettagli