LA LUCE CHE PROVIENE DAL SOLE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA LUCE CHE PROVIENE DAL SOLE"

Transcript

1 LA LUCE CHE PROVIENE DAL SOLE Forma del fascio di luce e distanza

2 Quesiti per un indagine sulle idee spontanee 1. Quale forma attribuiresti al fascio di luce solare che illumina un area circolare a livello locale? 2. Quale forma attribuiresti al fascio di luce solare che illumina l intera l Terra? Sole Terra A) B) C)

3 Risposte ai quesiti per un indagine sulle idee spontanee Facendo un indagine preliminare si rileva che le idee spontanee dei ragazzi sono piuttosto diversificate e che generalmente è preferita la risposta A) sia al primo che al secondo quesito. Poiché le risposte si escludono a vicenda, occorre fare un percorso didattico che consenta, a partire dall analisi analisi di una sorgente di luce vicina, di individuare analogie/differenze fra tale sorgente e il Sole.

4 Divergenza di fasci di luce da una lampada angolo diedro che rappresenta la divergenza di due fasci di luce che passano attraverso due fessure parallele La lampada, pur essendo una sorgente di luce estesa, può essere con buona approssimazione considerata puntiforme.

5 Gnomoni e ombre Uno gnomone portatile può essere costituito dallo spigolo verticale di una squadretta, sorretta da due squadrette metalliche a loro volta tenute su con una molletta. Uno studio delle ombre può essere fatto sulle tracce registrate sul pavimento delle ombre di gnomoni diversi per controllarne il parallelismo o le divergenze.

6 Divergenza di fasci di luce da una lampada

7 Angoli di divergenza e distanza La figura che permette previsioni sulla divergenza dei fasci di luce che illuminano 2 punti diversi è un triangolo isoscele, in cui la base rappresenta la distanza fra i 2 punti e l altezza l la distanza dalla sorgente del segmento che li congiunge. All aumentare della distanza dalla sorgente la divergenza diminuisce e per conoscerne il valore basta saper costruire un triangolo simile a quello individuabile nella realtà e misurare l angolo l al vertice.

8 Forma conica di un fascio di luce da una lampada Sullo schermo la superficie illuminata è rappresentata da un cerchio di raggio tanto maggiore quanto maggiore è la distanza schermo sorgente, il che porta ad attribuire al fascio la forma di un cono con vertice sulla lampada. La lampada, pur essendo una sorgente di luce estesa, può essere con buona approssimazione consider ata puntifor me.

9 Dischetto di plastica trasparente da applicare all esterno Due strati di negativo di diapositiva annerito per sovraesposizione Nastro adesivo per fissare il dischetto di plastica Tubi puntatori I tubi, sia quelli aperti alle due estremità per mirare un punto vicino che quelli provvisti di filtro per mirare il Sole, consentono di evidenziare agli occhi degli osservatori le direzioni delle linee di mira dei ragazzi che fanno da sperimentatori e di riconoscerne già visualmente l eventuale convergenza o parallelismo. Tubo per mirare il Sole

10 Linee di mira verso un punto vicino La foto è inquadrata correttamente perché le linee che delimitano l angolo sono contenute in un piano perpendicolare rispetto alla linea di mira di chi scatta la foto.

11 Effetti della prospettiva Su queste foto non è possibile fare misure perché le linee che delimitano gli angoli non sono contenute in un piano perpendicolare rispetto alla linea a di mira di chi scatta la foto.

12 Linee di mira verso un punto vicino

13 Divergenza massima dei raggi solari che incidono sulla Terra Considerando solo la luce che proviene dal centro del disco solare (si pensi al fatto che due osservatori puntano le loro linee di mira proprio verso il suo centro), il problema può essere affrontato considerando una sezione longitudinale del fascio di luce che illumina la Terra: si ottiene così un triangolo isoscele che ha come base il diametro della Terra e come altezza la distanza Terra Sole. L angolo acuto al vertice rappresenterà la divergenza massima massima del fascio che illumina la Terra.

14 Modello geometrico per determinare la divergenza massima dei raggi solari che incidono sulla Terra T S base del triangolo = ø Terra altezza del triangolo = distanza Terra Sole angolo al vertice = angolo di divergenza massima

15 Le dimensioni della Terra secondo Eratostene ( a.c) Eratostene era venuto a conoscenza che un giorno all anno anno (solstizio d estate) d il Sole a Siene illuminava il fondo dei pozzi. Sapendo che il fenomeno non si verificava mai ad Alessandria, sfruttò la situazione per mettere a punto un metodo al fine di stimare le dimensioni della Terra, nelle seguenti ipotesi: che i raggi del Sole arrivassero paralleli alle 2 città; che Alessandria e Siene fossero sullo stesso meridiano; che la Terra fosse sferica. Nonostante gli errori nelle misure (ad es. fece misurare a passi la distanza Alessandria Siene Siene), la stima fu straordinariamente vicina ai valori attualmente ottenuti.

16 Modello geometrico adottato da Eratostene O α A α S verso verso lo lo Zenit Zenit verso il Sole verso il Sole verso lo Zenit A = Alessandria S = Siene O = centro della Terra α = distanza zenitale del Sole ad Alessandria α = = distanza angolare fra A e S lungo il meridiano α: : 360 = AS : C C = lunghezza del meridiano

17 Le dimensioni della Terra secondo le stime attuali C max m = 4,0 10 m r Terra m = 6,4 10 m ø Terra m = 1, m

18 La distanza Terra Luna secondo Aristarco (III secolo a. C.) Per la vicinanza della Luna, Aristarco ritenne di poter approssimare il tratto di cono in ombra compreso tra la Terra e la Luna durante un eclisse di Luna ad un cilindro e quindi di considerare la lunghezza dell arco in ombra percorso dalla Luna uguale al diametro terrestre. Si accorse poi che il diametro della Luna poteva essere riportato circa 3 volte nel tratto in ombra e quindi era circa 1/3 del diametro della Terra. Lo stesso diametro risultava essere visto sotto l ampiezza l di 0,5 (era contenuto circa 720 volte lungo l orbita). l Pertanto il raggio dell orbita (= distanza Terra Luna) poteva stimarsi maggiore di circa 37 volte rispetto al diametro terrestre (oggi lo stimiamo maggiore di circa 30 volte).

19 Determinazione della distanza Terra Luna da parte di Aristarco Luna Sole Terra l arco in ombra ø Terra ø Luna 1/3 ø Terra ampiezza del ø Luna 0,5 0,5 : 360 = ø Luna : C C orbita C orbita r orbita r orbita r orbita 720 ø Luna 240 ø Terra = C/2π = d Terra Luna 37 ø Terra

20 L La distanza Terra Sole secondo Aristarco 1 87 ~19 T Quando la Luna era nella fase di quarto di Luna Aristarco pensò di costruire un triangolo rettangolo ai cui vertici si trovavano i 3 corpi Terra Luna Luna Sole Sole. Misurando l angolo l acuto delimitato dalle 2 linee di mira Terra Luna e Terra Sole, poté costruire un triangolo simile in scala e stimare la lunghezza dell ipotenusa (= distanza Terra Sole) in rapporto al cateto minore (= distanza Terra Luna), considerato unitario. L errore commesso nella misura dell angolo, che considerò di soli 87,, lo portò a stimare la distanza Terra Sole solo 19 volte maggiore di quella Terra Luna, piuttosto che 370 volte. Va notato tuttavia che il metodo concettualmente non fa una piega. S

21 Metodi adottati attualmente per determinare le distanze Terra Luna e Terra Sole Il metodo più recentemente utilizzato per determinare la distanza Terra Luna si basa sul tempo impiegato da onde radio, (delle quali è nota la velocità,, costante nel vuoto di circa m/s), per fare il viaggio di andata e ritorno dalla Terra alla Luna (si consideri la superficie della Luna riflettente perché solida). Nel caso del Sole, la cui fotosfera gassosa non può riflettere le onde radio si sceglie un pianeta nel momento in cui transita davanti al Sole (ad esempio Venere), e si controlla la distanza Terra pianeta col metodo già illustrato per la Luna mentre la distanza pianeta Sole viene calcolata attraverso le leggi del moto del pianeta.

22 Determinazione sperimentale del diametro del Sole forellino immagine del disco solare verso il Sole verso il Sole forellino immagine del disco solare ø Sole distanza Terra Sole 2 TRIANGOLI SIMILI (figure non in scala) lunghezza tubo ø immagine del disco solare l tubo : d Terra Sole = ø immagine Sole : ø Sole

23 Dimensioni secondo le stime attuali nel sistematerra Luna Luna Sole Dimensione ø Luna ø Terra ø Sole d Terra Luna d Terra Sole Valore della misura 3, m 1, m 1, m 4, m 1, m

24 Angoli al vertice di alcuni triangoli isosceli base (in m) altezza (in m) angolo al vertice L ultimo caso in tabella è con buona approssimazione rappresentativo della geometria del sistema ai fini del calcolo della divergenza massima nel fascio di luce solar e che illumina la Ter r a.

25 Gnomoni e ombre Le tracce delle ombre di gnomoni diversi registrate alla stessa ora risultano parallele. Un modo per controllarne il parallelismo è quello di collocare lo 0 di un goniometro su ogni traccia e poi leggere il valore degli angoli corrispondenti staccati su questo fascio di rette da una cordicella tesa che le intersechi tutte: se gli angoli sono congruenti, si potrà affermare che le rette sono parallele.

26 Parallelismo di fasci di luce dal Sole

27 Forma cilindrica di un fascio di luce dal Sole

28 Linee di mira verso il Sole

29 Linee di mira verso il Sole

30 Il Sole come sorgente di luce Tutti i dati sperimentali porterebbero a pensare che il Sole ha un comportamento diverso rispetto ad altre sorgenti di luce. Ci si può chiedere come mettere d accordo d tali dati con un modello di sorgente che emette in tutte le direzioni.

31 I raggi del Sole sono paralleli? La divergenza massima dei raggi solari è di circa 21 d arco per 2 osservatori in posizioni diametralmente opposte (a 180 l uno dall altro). altro). La divergenza per 2 osservatori a sempre minore distanza sarà sempre più piccola, al punto da non essere rivelabile con gli strumenti. Si fa minore errore a dire che la divergenza è nulla, o, il che è lo stesso, che i raggi sono paralleli, o, ancora, che la Terra,, vista dal Sole è da considerarsi puntiforme.

32 Modello in scala Terra Sole Può essere utile realizzare un modello in scala del sistema Terra Sole, rappresentando innanzi tutto il Sole con una sfera (una lampada di forma sferica o una palla di diametro ad es. di 5 cm) ) e di conseguenza porre la Terra, che dovrà avere il diametro di circa 1/100 di quello del Sole (nel caso considerato 0,5 mm), a una distanza di circa 100 volte il diametro del Sole (cioè 5 m). Ci si può collocare dal punto di vista del Sole e cercare di rispondere (almeno qualitativamente) alla domanda: Sotto quale angolo verrebbe visto dal Sole il diametro della Terra?. Si fa un errore minore a dire che quest angolo è trascurabile trascurabile!

33 Modello in scala Terra Sole Un ulteriore considerazione da fare è che nei disegni in scala, se rappresentiamo la Terra con dimensioni apprezzabili su un foglio, non possiamo rappresentare sullo stesso foglio il Sole, in quanto il disegno non sarebbe più in scala, ma dobbiamo limitarci a rappresentare le direzioni verso verso il Sole. Ancora minore sarebbe l angolo l di divergenza se la base del triangolo diventasse ancora più piccola, nel caso cioè di due osservatori in due punti della Terra più vicini. Possiamo pertanto apprezzare l intuizione l di Eratostene riguardo alla direzione dei raggi solari ad Alessandria e a Siene,, e ritenere infine che a a livello locale la divergenza non può essere apprezzata con nessuno strumento!

Il transito di Venere (i transiti planetari)

Il transito di Venere (i transiti planetari) La scuola adotta un esperimento per Esperienza InSegna 2012 Il transito di Venere (i transiti planetari) Luigi Scelsi & Antonio Maggio Gli aspetti principali del transito di Venere e dei transiti planetari

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

OROLOGIO SOLARE Una meridiana equatoriale

OROLOGIO SOLARE Una meridiana equatoriale L Osservatorio di Melquiades Presenta OROLOGIO SOLARE Una meridiana equatoriale Il Sole, le ombre e il tempo Domande guida: 1. E possibile l osservazione diretta del Sole? 2. Come è possibile determinare

Dettagli

28/05/2009. La luce e le sue illusioni ottiche

28/05/2009. La luce e le sue illusioni ottiche La luce e le sue illusioni ottiche Cosa si intende per raggio luminoso? Immagina di osservare ad una distanza abbastanza elevata una sorgente di luce... il fronte d onda potrà esser approssimato ad un

Dettagli

L IMMAGINE DELLA TERRA

L IMMAGINE DELLA TERRA L IMMAGINE DELLA TERRA 1 Capitolo 1 L orientamento e la misura del tempo Paralleli e meridiani La Terra ha, grossomodo, la forma di una sfera e dunque ha un centro dove si incontrano gli infiniti diametri.

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

Sommario Ottica geometrica... 2 Principio di Huygens-Fresnel... 4 Oggetto e immagine... 6 Immagine reale... 7 Immagine virtuale...

Sommario Ottica geometrica... 2 Principio di Huygens-Fresnel... 4 Oggetto e immagine... 6 Immagine reale... 7 Immagine virtuale... IMMAGINI Sommario Ottica geometrica... 2 Principio di Huygens-Fresnel... 4 Oggetto e immagine... 6 Immagine reale... 7 Immagine virtuale... 9 Immagini - 1/11 Ottica geometrica È la branca dell ottica che

Dettagli

Università degli studi di Messina facoltà di Scienze mm ff nn. Progetto Lauree Scientifiche (FISICA) Prisma ottico

Università degli studi di Messina facoltà di Scienze mm ff nn. Progetto Lauree Scientifiche (FISICA) Prisma ottico Università degli studi di Messina facoltà di Scienze mm ff nn Progetto Lauree Scientifiche (FISICA) Prisma ottico Parte teorica Fenomenologia di base La luce che attraversa una finestra, un foro, una fenditura,

Dettagli

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica UNIONE MATEMATICA ITALIANA C. I. I. M. Commissione Italiana per l'insegnamento della Matematica ESEMPI DI TERZE PROVE per il NUOVO ESAME DI STATO LA COMPONENTE MATEMATICA ISTITUTO MAGISTRALE Tipologia

Dettagli

COM È FATTA UNA MERIDIANA

COM È FATTA UNA MERIDIANA COM È FATTA UNA MERIDIANA L orologio solare a cui noi comunemente diamo il nome di meridiana, in realtà dovrebbe essere chiamato quadrante; infatti è così che si definisce il piano su cui si disegnano

Dettagli

OTTICA TORNA ALL'INDICE

OTTICA TORNA ALL'INDICE OTTICA TORNA ALL'INDICE La luce è energia che si propaga in linea retta da un corpo, sorgente, in tutto lo spazio ad esso circostante. Le direzioni di propagazione sono dei raggi che partono dal corpo

Dettagli

Strumenti e tecniche di misura per grandezze fotometriche e caratteristiche delle superfici. prof. ing. Luigi Maffei

Strumenti e tecniche di misura per grandezze fotometriche e caratteristiche delle superfici. prof. ing. Luigi Maffei Strumenti e tecniche di misura per grandezze fotometriche e caratteristiche delle superfici prof. ing. Luigi Maffei Le grandezze fotometriche Sono definite per valutare in termini quantitativi le caratteristiche

Dettagli

Relazione attività in classe sul Teorema di Pitagora

Relazione attività in classe sul Teorema di Pitagora Relazione attività in classe sul Teorema di Pitagora Lez. 2/04. Prima Lezione A.S. 2011/2012 Insegnante: Siamo nel VI secolo a.c. in Grecia. In questo periodo visse Pitagora che nacque a Samo e vi restò

Dettagli

PERCORSO DIDATTICO DI OTTICA GEOMETRICA

PERCORSO DIDATTICO DI OTTICA GEOMETRICA PERCORSO DIDATTICO DI OTTICA GEOMETRICA Tipo di scuola e classe: Liceo Scientifico, classe II Nodi concettuali: riflessione della luce; rifrazione della luce, riflessione totale, rifrazione attraverso

Dettagli

SULLE ORME DI GALILEO LA LUCE DELLA LUNA

SULLE ORME DI GALILEO LA LUCE DELLA LUNA SULLE ORME DI GALILEO LA LUCE DELLA LUNA L ottica nei Massimi Sistemi Nella prima giornata del Dialogo sui massimi sistemi c è una lunga discussione dedicata al confronto tra l aspetto apparente della

Dettagli

Dalle tecniche di misurazione di Delambre e Méchain alla attuale definizione di metro

Dalle tecniche di misurazione di Delambre e Méchain alla attuale definizione di metro Dalle tecniche di misurazione di Delambre e Méchain alla attuale definizione di metro INDICE Dalle tecniche di misurazione di Delambre e Méchain alla attuale definizione di metro...1 LA TRIANGOLAZIONE...1

Dettagli

Andrea Pagano, Laura Tedeschini Lalli

Andrea Pagano, Laura Tedeschini Lalli 3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.

Dettagli

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi Tra i molteplici interessi scientifici di Leonardo non dobbiamo dimenticare la matematica.

Dettagli

PICCOLI EINSTEIN. Il liceo Einstein apre le porte dei propri laboratori per le classi delle scuole medie

PICCOLI EINSTEIN. Il liceo Einstein apre le porte dei propri laboratori per le classi delle scuole medie PICCOLI EINSTEIN Il liceo Einstein apre le porte dei propri laboratori per le classi delle scuole medie DESCRIZIONE DEL PROGETTO: Il liceo scientifico Einstein, sito in via Pacini 28, propone alle singole

Dettagli

Geogebra. Numero lati: Numero angoli: Numero diagonali:

Geogebra. Numero lati: Numero angoli: Numero diagonali: TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare

Dettagli

Laboratorio per il corso Scienza dei Materiali II

Laboratorio per il corso Scienza dei Materiali II UNIVERSITÀ DI CAMERINO Corso di Laurea Triennale in Fisica Indirizzo Tecnologie per l Innovazione Laboratorio per il corso Scienza dei Materiali II a.a. 2009-2010 Docente: E-mail: Euro Sampaolesi eurosampaoesi@alice.it

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora,

Dettagli

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora.

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora. TEOREMA DI PITAGORA Contenuti 1. Particolari terne numeriche e teorema di PITAGORA. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora Competenze 1. Sapere il significato di terna pitagorica

Dettagli

1. Ottica nel mondo reale

1. Ottica nel mondo reale 1. Ottica nel mondo reale L alba vinceva l ora mattutina che fuggia innanzi, sì che di lontano conobbi il tremolar della marina. Purgatorio, canto I Introduzione Insegnare ottica è più difficile di altri

Dettagli

allora la retta di equazione x=c è asintoto (verticale) della funzione

allora la retta di equazione x=c è asintoto (verticale) della funzione 1)Cosa rappresenta il seguente limite e quale ne è il valore? E il limite del rapporto incrementale della funzione f(x)= con punto iniziale, al tendere a 0 dell incremento h. Il valore del limite può essere

Dettagli

Inserimento di distanze e di angoli nella carta di Gauss

Inserimento di distanze e di angoli nella carta di Gauss Inserimento di distanze e di angoli nella carta di Gauss Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a. 2006-2007 Inserimento della distanza reale misurata nella carta di Gauss (passaggio

Dettagli

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015 1 Giochi d ombra [Punti 10] Una sorgente di luce rettangolare, di lati b e c con b > c, è fissata al soffitto di una stanza di altezza L = 3.00 m. Uno schermo opaco quadrato di lato a = 10cm, disposto

Dettagli

ESPERIENZA 5 OTTICA FISICA INTERFERENZA E DIFFRAZIONE

ESPERIENZA 5 OTTICA FISICA INTERFERENZA E DIFFRAZIONE ESPERIENZA 5 OTTICA FISICA INTERFERENZA E DIFFRAZIONE Lo scopo di quest esperimento è osservare la natura ondulatoria della luce, nei fenomeni della diffrazione e dell interferenza propri delle onde. In

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

LA LUCE, I COLORI, LA VISIONE

LA LUCE, I COLORI, LA VISIONE LA LUCE, I COLORI, LA VISIONE Si è elaborato un percorso sia per la scuola primaria sia per la scuola secondaria di primo grado. I moduli sono indipendenti gli uni dagli altri ma sono presentati secondo

Dettagli

LA FORMA DELLA TERRA

LA FORMA DELLA TERRA LA FORMA DELLA TERRA La forma approssimativamente sferica della Terra può essere dimostrata con alcune prove fisiche, valide prima che l Uomo osservasse la Terra dallo Spazio: 1 - Avvicinamento di una

Dettagli

3.1 CAPITOLO 3 FORMAZIONE DELLE IMMAGINI

3.1 CAPITOLO 3 FORMAZIONE DELLE IMMAGINI 3.1 CAPITOLO 3 FORMAZIONE DELLE IMMAGINI Il processo di formazione di una immagine da parte di un sistema ottico è facilmente descrivibile in termini di raggi. In figura la scatola rappresenta un generico

Dettagli

PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013)

PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) Linguaggio matematico di base 1. Qual è l area del triangolo avente i vertici nei punti di coordinate (0,2), (4,0) e (7,6)? A 10 B 30

Dettagli

Alla ricerca del rettangolo più bello

Alla ricerca del rettangolo più bello Alla ricerca del rettangolo più bello Livello scolare: biennio Abilità interessate Individuare nel mondo reale situazioni riconducibili alla similitudine e descrivere le figure con la terminologia specifica.

Dettagli

ORIGAMI E GEOMETRIA. Breve storia degli origami. Tetraedro. Modello1. Modello2. Conclusioni geometriche. analitica

ORIGAMI E GEOMETRIA. Breve storia degli origami. Tetraedro. Modello1. Modello2. Conclusioni geometriche. analitica ORIGAMI E GEOMETRIA Breve storia degli origami Tetraedro Modello1 1) Istruzioni origami 2) Analisi geometrica 3) Interpretazione analitica Modello2 Conclusioni geometriche 1) Istruzioni origami 2) Analisi

Dettagli

CONTROLLO DELLA RADIAZIONE SOLARE

CONTROLLO DELLA RADIAZIONE SOLARE CAPITL 4 CTRLL DLLA RADIAZI LAR 4.1 Generalità La localizzazione e l orientamento di un edificio per ridurre l esposizione solare estiva e valorizzare quella invernale, sono obiettivi fondamentali per

Dettagli

Illuminazione naturale (3)

Illuminazione naturale (3) PROGETTAZIONE ENERGETICA Illuminazione naturale (3) Luce dall alto (toplighting) Fig. 1 - Illuminazione attraverso una cupola Gli ambienti di elevata dimensione (capannoni, atri, ecc.) sono spesso illuminati

Dettagli

L elemento fondamentale è l obiettivo, ovvero la lente o lo specchio che forniscono l immagine dell oggetto.

L elemento fondamentale è l obiettivo, ovvero la lente o lo specchio che forniscono l immagine dell oggetto. Il telescopio, è lo strumento ottico impiegato in astronomia, per osservare e studiare gli oggetti celesti. È generalmente separato in due componenti principali: una parte ottica (costituita dal tubo delle

Dettagli

Qual è la distanza tra Roma e New York?

Qual è la distanza tra Roma e New York? Qual è la distanza tra Roma e New York? Abilità Conoscenze Nuclei coinvolti Utilizzare i vettori e il prodotto Elementi di geometria Spazio e figure scalare nello studio di problemi della sfera: del piano

Dettagli

La teoria delle ombre nelle proiezioni ortogonali

La teoria delle ombre nelle proiezioni ortogonali La teoria delle ombre nelle proiezioni ortogonali Nello studio della storia dell'arte è facilmente verificabile come la luce sia sempre stata considerata un importante mezzo espressivo. Artisti di ogni

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

OSSERVARE UNA ECLISSI DI SOLE

OSSERVARE UNA ECLISSI DI SOLE Gruppo M1 - Astrofili Castiglionesi Castiglione dei Pepoli (Bologna) email: info@gruppo.it web: www.gruppom1.it OSSERVARE UNA ECLISSI DI SOLE Immagine artistica della geometria di una eclissi di Sole.

Dettagli

LA MACCHINA FOTOGRAFICA

LA MACCHINA FOTOGRAFICA D LA MACCHINA FOTOGRAFICA Parti essenziali Per poter usare la macchina fotografica, è bene vedere quali sono le sue parti essenziali e capire le loro principali funzioni. a) OBIETTIVO: è quella lente,

Dettagli

Ma cosa si pensava della forma della terra prima delle fotografie?

Ma cosa si pensava della forma della terra prima delle fotografie? Ma cosa si pensava della forma della terra prima delle fotografie? Anassimandro (IV sec. a.c.) Omero (VIII sec. a.c.?) Aristotele (384-322 a.c.) riportava due osservazioni a riprova della sfericità della

Dettagli

GRUPPO DI LAVORO DI PARMA

GRUPPO DI LAVORO DI PARMA ATTIVITÀ DI ANALISI QUESITI INVALSI GRUPPO DI LAVORO DI PARMA Coordinamento prof. P. VIGHI ANALISI QUESITI RELATIVI A: FASCICOLO somministrato nella 2^ classe PRIMARIA a.s. 2013-2014 FASCICOLO somministrato

Dettagli

I Solidi Regolari??-??- 2001

I Solidi Regolari??-??- 2001 I Solidi Regolari??-??- 2001 Cosa sono i Solidi Platonici 1 I Solidi Platonici sono solidi convessi delimitati da facce costitute da poligoni regolari tutti uguali tra loro. Un Solido di questo genere

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

la luce 14.1 La propagazione della luce n La propagazione della luce

la luce 14.1 La propagazione della luce n La propagazione della luce online.zanichelli.it/ruffo_fisica, pagina Prerequisiti 4unità 4 la luce 4. La propagazione della luce IDE-CHIVE In un mezzo omogeneo, la luce si propaga in linea retta con velocità costante; il valore

Dettagli

LA LUCE E IL FUOCO. Scuola dell Infanzia di Ciconicco Anno scolastico 2011/2012 Istituto Comprensivo di Fagagna SCHEDA SINTETICA

LA LUCE E IL FUOCO. Scuola dell Infanzia di Ciconicco Anno scolastico 2011/2012 Istituto Comprensivo di Fagagna SCHEDA SINTETICA SCHEDA SINTETICA LA LUCE E IL FUOCO Scuola dell Infanzia di Ciconicco Anno scolastico 2011/2012 Istituto Comprensivo di Fagagna Sede: 33034 Fagagna (UD) - Via del Castello 1 Tel. 0432 800258 Fax. 0432

Dettagli

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. CLASSE III C RECUPERO GEOMETRIA AREA PERIMETRO POLIGONI Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. ES: se ho fatto questo disegno e so che 1 quadretto vale

Dettagli

Elenco Ordinato per Materia Chimica

Elenco Ordinato per Materia Chimica ( [B,25404] Perché le ossa degli uccelli sono pneumatiche, cioè ripiene di aria? C (A) per consentire i movimenti angolari (B) per immagazzinare come riserva di ossigeno X(C) per essere più leggere onde

Dettagli

Corso di Laurea in Ottica e Optometria Laboratorio di Ottica Geometrica

Corso di Laurea in Ottica e Optometria Laboratorio di Ottica Geometrica Corso di Laurea in Ottica e Optometria Laboratorio di Ottica Geometrica Richiami teorici Equazione della lente sottile in approssimazione parassiale: p + q = () f dove: p = distanza oggetto-lente q = distanza

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

la squadratura del foglio Copia.notebook September 21, 2012

la squadratura del foglio Copia.notebook September 21, 2012 la squadratura del foglio cancellare il cerchio di costruzione e lasciare tutti i punti individuati per ricavare la squadratura del foglio e la sua divisione in 4 parti uguali 1 la squadratura del foglio

Dettagli

Giochi di rifrazione. Atri, 29 maggio 2014 Sezione AIF Teramo Aprutium Physics in action. Prof.ssa Carmelita Cipollone

Giochi di rifrazione. Atri, 29 maggio 2014 Sezione AIF Teramo Aprutium Physics in action. Prof.ssa Carmelita Cipollone Giochi di rifrazione Atri, 29 maggio 2014 Sezione AIF Teramo Aprutium Physics in action Giochi di rifrazione Physics Snack : Water Sphere Lens Trasparenze Physics Snack : Water Sphere Lens Exploratorium

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

SCIENTIA MAGISTRA VITAE

SCIENTIA MAGISTRA VITAE 1 -Argomento Lenti fatte in casa Esperimenti usando lenti realizzate con materiali a costo nullo o basso o di riciclo. Cosa serve: acqua, bottiglie di plastica trasparente (es. quelle dell acqua minerale

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

Campo elettrico per una carica puntiforme

Campo elettrico per una carica puntiforme Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici

Dettagli

Esperienze del primo semestre del Laboratorio di Fisica I

Esperienze del primo semestre del Laboratorio di Fisica I Esperienze del primo semestre del Laboratorio di Fisica I 25 settembre 2003 Meccanica Pendolo semplice Il pendolo semplice, che trovate montato a fianco del tavolo, è costituito da una piccola massa (intercambiabile)

Dettagli

Prof. Luigi Puccinelli IMPIANTI E SISTEMI AEROSPAZIALI SPAZIO

Prof. Luigi Puccinelli IMPIANTI E SISTEMI AEROSPAZIALI SPAZIO Prof. Luigi Puccinelli IMPIANTI E SISTEMI AEROSPAZIALI SPAZIO CONTROLLO TERMICO Equilibrio termico 2 Al di fuori dell atmosfera la temperatura esterna non ha praticamente significato Scambi termici solo

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

Assonometrie per l angolo di incidenza dei raggi disposizione del pian0 di proiezione

Assonometrie per l angolo di incidenza dei raggi disposizione del pian0 di proiezione Assonometria La proieione assonometrica (detta anche assonometria)è la proieione di una figura sopra un piano di rappresentaione (quadro) ottenuta colpendo l oggetto con un raggio di rette parallele (centro

Dettagli

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa

Dettagli

ATTIVITA LABORATORIALI SVOLTE CON ROSANNA PETITI novembre 2011 / gennaio 2012

ATTIVITA LABORATORIALI SVOLTE CON ROSANNA PETITI novembre 2011 / gennaio 2012 ATTIVITA LABORATORIALI SVOLTE CON ROSANNA PETITI novembre 2011 / gennaio 2012 Scuola primaria «Calvino» - Moncalieri - Laboratorio "LUCE E VISIONE" con Rosanna Petiti 1 1^ incontro Scoprire quali sono

Dettagli

Unità Didattica N 32 Propagazione e riflessione della luce

Unità Didattica N 32 Propagazione e riflessione della luce Unità Didattica N 32 Propagazione e riflessione della luce 1 Unità Didattica N 32 Propagazione e riflessione della luce 01) La natura duale della luce Parodi Pag. 121 02) I primi elementi di ottica geometrica

Dettagli

la restituzione prospettica da singolo fotogramma

la restituzione prospettica da singolo fotogramma la restituzione prospettica da singolo fotogramma arch. francesco guerini francesco.guerini@gmail.com politecnico di Milano, Facoltà di Architettura e Società Laboratorio di Rappresentazione 1 Prof. Andrea

Dettagli

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. I triangoli e i criteri di congruenza Diapositive riassemblate e rielaborate da prof. ntonio Manca da materiali offerti dalla rete. ontributi di: tlas editore, matematicamente, Prof.ssa. nnamaria Iuppa,

Dettagli

Scheda I. 3 La non possibilità di duplicare il cubo con riga e compasso.

Scheda I. 3 La non possibilità di duplicare il cubo con riga e compasso. Scheda I. La non possibilità di duplicare il cubo con riga e compasso. Dopo Menecmo, Archita, Eratostene molti altri, sfidando gli dei hanno trovato interessante dedicare il loro tempo per trovare una

Dettagli

2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ

2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ 2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ 2.2 Riflettendo sulla sensazione di calore che proviamo quando siamo esposti ad un intensa sorgente luminosa, ad esempio il Sole, è naturale pensare alla luce

Dettagli

Ottica geometrica. L ottica geometrica tratta i. propagazione in linea retta e dei. rifrazione della luce.

Ottica geometrica. L ottica geometrica tratta i. propagazione in linea retta e dei. rifrazione della luce. Ottica geometrica L ottica geometrica tratta i fenomeni che si possono descrivere per mezzo della propagazione in linea retta e dei fenomeni di riflessione e la rifrazione della luce. L ottica geometrica

Dettagli

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. In ogni triangolo un lato è sempre minore della somma degli altri due e sempre maggiore della loro differenza. Relazione fra i lati di

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

Urano il Dobsnon dell' AAAV

Urano il Dobsnon dell' AAAV La base di partenza per il telescopio che ho costruito, in gran parte in economia, e che ho chiamato telescopio URANO, è da ricercare nella probabile sorte che, qualche tempo fa, sarebbe toccata al vecchio

Dettagli

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

LAVORO. L= F x S L= F. S L= F. S cos ϑ. L= F. S Se F ed S hanno stessa direzione e verso. L= -F. S Se F ed S hanno stessa direzione e verso opposto

LAVORO. L= F x S L= F. S L= F. S cos ϑ. L= F. S Se F ed S hanno stessa direzione e verso. L= -F. S Se F ed S hanno stessa direzione e verso opposto LAVORO L= F x S L= F. S L= F. S cos ϑ CASI PARTICOLARI L= F. S Se F ed S hanno stessa direzione e verso L= -F. S Se F ed S hanno stessa direzione e verso opposto L= 0 Se F ed S sono perpendicolari L >0

Dettagli

Relatività INTRODUZIONE

Relatività INTRODUZIONE Relatività INTRODUZIONE Un po di ordine Einstein, nel 1905, dopo aver inviato alcuni articoli alla rivista scientifica «Annalen der physik» diventa subito famoso, uno dei quali riguardava la relatività

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Scuola/Classe Cognome Nome Data

Scuola/Classe Cognome Nome Data Università di Udine Unità di Ricerca in Didattica della Fisica Scuola/Classe Cognome Nome Data Scheda PotRot Mezzi otticamente attivi Attività A. Riconoscere i mezzi otticamente attivi. Si dispone un puntatore

Dettagli

La Luna appena formata era molto più vicina alla Terra dalla quale si è in seguito allontanata (tendenza che continua attualmente).

La Luna appena formata era molto più vicina alla Terra dalla quale si è in seguito allontanata (tendenza che continua attualmente). LA LUNA Si è formata agli inizi del sistema solare dallo scontro tra la PROTOTERRA e un corpo celeste delle dimensioni di Marte chiamato THEIA: il nucleo di Theia si fuse col nucleo della Terra ma il resto

Dettagli

Conoscere la sfera. Ines Marazzani N.R.D. Bologna

Conoscere la sfera. Ines Marazzani N.R.D. Bologna Conoscere la sfera Ines Marazzani N.R.D. Bologna Questo articolo è stato oggetto di pubblicazione in Marazzani I. (2003). Costruire e conoscere la sfera. La Vita Scolastica. 11, 42-45. Introduzione I bambini

Dettagli

PROVA INVALSI Scuola Secondaria di I grado Classe Prima

PROVA INVALSI Scuola Secondaria di I grado Classe Prima SNV 2010-2011; SNV 2011-2012; SNV 2012-2013 SPAZIO E FIGURE SNV 2011 10 quesiti su 29 (12 item di cui 6 a risposta aperta) SNV 2012 11 quesiti su 30 (13 item di cui 2 a risposta aperta) SNV 2013 9 quesiti

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

Misura di e/m. Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4)

Misura di e/m. Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4) Misura di e/m Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4) 1 Introduzione 1.1 Introduzione ai fenomeni in esame Un elettrone all interno di un campo elettrico risente della forza elettrica

Dettagli

Misurare il giro della Terra

Misurare il giro della Terra Mireille Hartmann Traduzione Angela Turricchia Misurare il giro della Terra Un esperienza semplicissima, un progetto dalle milteplici sfacettature Per quanto complicata possa sembrare, la misura della

Dettagli

Cenni di problem solving

Cenni di problem solving Cenni di problem solving 1. Assi e bilance 1. Un asta di metallo lunga 1 metro è sospesa per il suo centro. A 40 cm dall estremità sinistra è agganciato un peso di 45 kg, mentre all estremità opposta è

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Gli oggetti di plastica. Abilità interessate Conoscenze Nuclei coinvolti Collegamenti esterni Decodificare informazioni di tipo grafico.

Gli oggetti di plastica. Abilità interessate Conoscenze Nuclei coinvolti Collegamenti esterni Decodificare informazioni di tipo grafico. Gli oggetti di plastica Livello scolare: 1 biennio Abilità interessate Conoscenze Nuclei coinvolti Collegamenti esterni Decodificare informazioni di tipo grafico. Funzioni lineari. Pendenza di una retta.

Dettagli