Lezione 7 Collisioni tra particelle e loro effetti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 7 Collisioni tra particelle e loro effetti"

Transcript

1 Lezione 7 Collisioni tra particelle e loro effetti G. Bosia Universita di Torino 1

2 Processi collisionali Le collisioni tra particelle sono i meccanismi che danno origine ai processi di diffusione e di trasporto di particelle ed energia nel plasma. Sono inoltre responsabili per la resistività macroscopica del plasma. L analisi di questi processi e complessa perché gli effetti macroscopici sono il risultato integrato di diversi tipi di collisione fra particelle di velocità e masse diverse, che incidono a angoli diversi delle collisioni In un plasma coesistono due o più specie di particelle ionizzate (elettroni e vari tipi di ioni che possono interagire con collisioni a lungo range (lunghezza di scala : λ D = (T/n) 1/2 cm -3 ) elastiche, come le collisioni columbiane e-e, e-i, i-i. o anelastiche (scambio di carica, ricombinazione-ionizzazione, (lunghezza di scala: raggio di Bohr : a 0 ~ cm), reazioni nucleari (lunghezza di scala : cm). L incidenza sui fenomeni macroscopici dipende dalle sezioni d urto dei vari processi. I processi collisioni Coulumbiani (scattering Rutherford) sono i meccanismi a piu alta sezione d urto in plasmi termonucleari e saranno pertanto presi in considerazione.in questa lezione. 2

3 Scattering Rutherford Il processo di scattering Rutherford tra una particella di massa m 1 e carica Z 1 e ed una particella di massa m 2 e carica Z 2 e studiata imponendo la conservazione di energia ed impulso durante la collisione. Richiamiamo le formule fondamentali: Il moto nel sistema di riferimento del centro di massa delle due particelle che collidono puo essere rappresentato da quella di una particella fittizia di massa ( ridotta ) (VII-1) µ m 1 m 2 m 1 + m2 v m.1 v.1 + m.2 v.2 m.1 + m.2 Z 1 Z 2 e 2 b 0 µ v 2 in moto nel campo di forze. Se il campo di forza e columbiano F( r) ~ r --2, la traiettoria e iperbolica con direzione asintotica (VII-2) tan θ 2 b 0 ( v ) Dove b e il parametro d urto e b 0 il parametro corrispondente ad un impatto a 90 b con q.1 q.2 b.0 4 π ε.0 1 µ v 2 3

4 Scattering Rutherford Le particelle che incidono con un parametro d urto b - b+db sono deflesse ad un angolo θ θ+dθ, ovvero nell angolo solido dω = 2π sin(θ) dθ. Pertanto la sezione d urto differenziale relativa alla diffusione nell angolo θ, dσ sara : (VII- 3) dσ =2πbdb =2πb(db/dθ) db Se si introduce la sezione d urto di diffusione per unita di angolo solido (VII- 4) σ = (dσ/dω) = (b db/dθ )/sin(θ) Si arriva alla sezione d urto di diffusione (VII- 5) σ b sin θ 2 4 q 1 q 2 8 π ε 0 µ v 2 sin θ Geometria di scattering che Rutherford utilizzò per dimostrare la struttura orbtale dell atomo di H. 4

5 Effetti delle collisioni Note : 1) La forte dipendenza da θ della sezione d urto fa prevedere che, nel nostro caso di collisioni multiple, l effetto dello scattering a piccoli angoli sia molto piu importante di quelli di scattering a grandi angoli. 2) σ cresce come v 4. Dato che le collisioni che avvengono per unita di tempo e proporzionale a <vσ>, e prevedibile che gli effetti collisionali diminuiscano all aumentare della temperatura. A parità di densità in un plasma di alta temperatura ci sono meno collisioni. Questo effetto ha conseguenze pratiche importanti. 3) Se fissiamo v e θ, σ decresce all aumentare del parametro di collisione b. Pertanto dovremo attenderci che per collisioni con b > λ D non vi sia una significativa interazione collisionale tra particelle. 4) Il parametro b 0 e assunto come lunghezza di scala di avvicinamento tra le particelle che collidono e dipende dal tipo di particelle che urtano. Per una collisione elettroneprotone µ ~ m e, b 0 ~ e 2 /m e v 2, e σ 90 ~ π b 0 = π e 2 /m e v 2 Pertanto in un plasma di protoni ed elettroni avvengono tre tipi di collisione con parametri d urto diverse: ione ione, elettrone-elettrone, elettrone-ione, ione-elettrone) 5

6 Effetti delle collisioni 6) In un plasma completamente ionizzato lo scattering a 90 in seguito ad urto singolo e molto meno probabile di una deflessione finale a 90 gradi dovuta ad una successione stocastica di deflessioni a piccoli angoli, perché il raggio di interazione effettivo di una singola carica e ~ λ D e per plasmi a temperature di interesse termo nucleare e λ D >> b 0. La maggior parte degli eventi di diffusione avviene pertanto ad angoli << 90 6

7 Collisioni multiple Valutiamo, sulla base dei risultati ottenuti, gli effetti di collisioni multiple in un plasma completamente ionizzato Dalle 2) per piccoli angoli: 2 b.0 q.1 q.2 θ (VII- 6) b 2 π ε.0 b µ v 2 In un processo stocastico di collisioni multiple, la diffusione delle particelle rispetto la direzione di origine avviene secondo l angolo quadratico medio (VII- 7) < θ 2 > θ max θ min θ 2 F( θ) Dove F(θ) e il numero di collisioni ad angolo θ e θ +d θ compresi tra un valore minimo θ min e un valor massimo θ max Se n e la densita di particelle per unita di volume del plasma con cui una particella in arrivo interagisce, il numero di collisioni all angolo θ e θ +d θ e pari al numero di collisioni che avvengono con parametro d urto compreso tra b e b+db e pertanto, su una distanza L: (VII- 8) ( ) dθ n L F θ σ( θ) dθ dω n L 2 π b db 7

8 Sostituendo la 2) e 4) nella 7) si ottiene : Collisioni multiple (VII- 9) <θ 2 > = n L 2 π b.0 θ.max θ.min θ 2 F( θ) dθ b 2.max n L 8 π b.0 b.min 1 b db 2 n L 8 π b.0 lnλ La quantita ln(λ) = viene spesso indicata come logaritmo di Coulomb Λ > per b max --> (ovvero per q min --> 0). Questo e dovuto al lungo range del potenziale columbiano (~1/r). Nel nostro caso tuttavia e stato dimostrato che il raggio di interazione collisionale di una singola carica con quelle circostanti e λ D ed e quindi naturale assumere: b max = λ D Il valore minimo b min (θ < θ max ) si sceglie tenendo conto che, dato l andamento della sezione d urto, si considerano solo piccoli angoli, che corrispondono a parametri di impatto superiori a un certo valore. Se si assume q 1 q 2 (VII-10) b min = b 0 4 π ε 0 (ovvero si considerano solo angoli θ < π/2), 1 µ v 2 8

9 Si ottiene infine : Collisioni multiple (VII-11) Se si pone < θ 2 > = (π/2) 2 nella 9), utilizzando i valori della 10) si ottiene la distanza che un la carica deve percorrere per essere deflessa di 90 in una successione di piccoli urti π L 90 (VII-12) 2 32 n b o ln( Λ) A cui corrisponde una sezione d urto effettiva : (VII-13) 1 σ 90 n L π b 2 0 ln( Λ) Se ora si confronta con la sezione d urto ad urto singolo che produce una deflessione di 90 σ (VII-15) ln( Λ) σ s.90 π e dato che per un plasma termonucleare quantità ln(λ) 20 e molto più probabile che una carica diffonda a 90 per effetto di collisioni multiple che per effetto di una collisione singola 9

10 Effetti delle collisioni Per una collisione elettrone-protone µ ~ m e, b 0 ~ e 2 /m e v 2, e : con σ 90 ~π b 0 = π e 2 /m e v 2 = /W (cm 2 ) W = ½mv 2 (kev) A temperature normalmente ottenute in un plasma di interesse termonucleare σ 90 e molto più grande della sezione d urto di una reazione di fusione. Per esempio se poniamo W = 30 kev σ 90 = cm 2 contro σ D-T = cm 2 Questo mostra che i fenomeni di diffusione, che sono competitivi con il confinamento ordinato del plasma e pertanto sono responsabili dei fenomeni di trasporto dell energia e delle particelle, influiscono in un modo essenziale sulle condizioni di confinamento di un plasma termonucleare. 10

11 Parametri relativi alle collisioni Associati alla lunghezza caratteristica di scattering multiplo ci sono diversi altri parametri : Libero cammino medio di collisione che, se la carica viaggia a velocita v e percorso in un : Tempo collisionale λ mfp = 1/nσ τ coll = λ mfp /v = 1/nvσ Il parametro inverso e la: Frequenza di collisione ν coll = 1/τ coll = nvσ che e il parametro piu usato. In particolare e significativo, per stabilire la collisionalita di un plasma la quantita Frequenza di collisione media <ν coll > = 1/τ coll = n <v σ(v)> 11

12 Valori numerici dei parametri di collisione Il valore numerico dei tempi di collisione dipende dalle componenti del plasma che interagiscono: Per esempio assumendo per l.c.m. la lunghezza L 90 si ottengono le frequenze di collisione elettrone-elettrone e ione-ione (VII-16) (VII-17) 4 ν e.e 3 n e4 4 ν i.i 3 n ( Z i e ) 4 2 π m e T 3 ( ) ln( Λ e ) n e ln( Λ 1.5 e ) cm 3 ev T e 2 π m i T 3 ln( Λ i ) n i Z i T i 1.5 ( ) ( ) ln Λ i cm 3 ev Con ν e.e ν i.i m i me Per plasmi termonucleari di idrogeno Z i = 1; m i = m p T e = T i =10 kev n=10 14 cm -3 ν e.e 5 khz ν p.p 166Hz 12

13 Valori numerici dei parametri di collisione Le frequenze di collisione danno una misura della velocità degli scambi energetici all interno della stessa specie e t6ra specie diverse. Le collisioni elettrone ione ν e.i hanno frequenze abbastanza vicine a quelle elettroneelettrone (ν e.i ~ ν e.2 ) perché la massa ridotta della collisione e circa uguale a quella elettronica e n e Z i = n e. Le differenze sono dovute a fattori numerici che appaiono nei log(λ). Le collisioni ione-elettrone hanno invece frequenze di collisione diverse, perché l angolo di diffusione nel sistema di riferimento del laboratorio e molto diverso da quello nel centro di massa Si può dimostrare che: (VII-18) ν i.e m e m i ν ei m e ν m i.i i 13

14 Perdite di energia per collisione Nel corso di una singola collisione, l energia cinetica e l impulso della particella sono modificati. La variazione di energia cinetica di una particella di massa m 1 e velocità v 1, deflessa ad un angolo θ da una massa m 2 inizialmente a riposo, si ricava dalla cinematica della collisione alla Rutherford (VII-16) K θ Si e anche visto che l effetto collisionale più importante a provocare la diffusione delle particelle a grande angolo e quello di collisione multipla. Per calcolare le perdite di energia e pertanto necessario sommare le perdite elementari per tutti i parametri d urto. Per piccoli angoli di scattering (b/b 0 = b/ b 90 >>1) si ottiene : (VII-17) ossia: (VII-18) Si definisce una frequenza di collisione per perdita di energia : 14

15 Perdite di impulso per collisione. La variazione di impulso (in direzione x) di una particella di massa m 1 e velocità v 1, deflessa ad un angolo θ da una massa m 2 inizialmente ferma (v 2 = velocità dopo l urto), si ricava dalla cinematica della collisione alla Rutherford (VII-19) θ Per il calcolo delle perdite di impulso e pertanto necessario sommare le perdite elementari per tutti i parametri d urto come fatto per le perdite di energia cinetica. Per piccoli angoli di scattering (b/b 0 = b/ b 90 >>1) si ottiene : (VII-20) Pertanto la frequenza di collisione per perdite di impulso e : 15

16 Rapporti fra frequenze di collisione Si noti che il rapporto : (VII-21) ν K ν p vale: (VII-22) se se se Dalla terza condizione si deduce che lo scattering di elettroni causa prevalentemente con una variazione di angolo 16

17 Sommario di frequenze di collisione Applicando le formule precedenti per il caso di collisioni tra elettroni e ioni, si ottiene: (VII-23) La frequenza di collisione per perdite di energia e un indice di velocità di scambio di energia e di rallentamento delle componenti del plasma. Viene utilizzato per calcolare i tempi di equilibrio delle temperature the specie diverse La frequenza di collisione per perdite di impulso e un indice della perdita di velocità in una direzione. Viene utilizzata per calcolare la mobilità, la viscosità la resistività e la diffusione particelle e di energia. 17

18 Frequenze di collisione per una distribuzione maxwelliana di particelle Nelle pagine precedenti si sono calcolate le frequenze di collisione per urti in cui una delle particelle e a riposo. Il calcolo degli stessi parametri per un plasma in equilibrio termodinamico si ottiene mediando le quantità ottenute su una distribuzione di velocita di tipo maxwelliano : (VII-24) Per esempio la perdita totale di impulso per elettroni che perdono impulso per collisioni con ioni e data da (VII-25) con; (VII-26) come calcolato precedentemente 18

19 Frequenze di collisione per un plasma maxwelliano Si ottiene per le perdite di impulso : (VII-27) E per le perdite di energia: (VII-28) 19

20 Effetti di Run Away Un elettrone veloce che si muove in un plasma perde momento ed energia cinetica per collisioni con elettroni ed ioni con frequenze di collisione : (VII-29) In assenza di altre forze l equazione del moto e (VII-30) ossia si muove sotto l effetto di una forza di attrito (VII-31) : 20

21 Si noti che: Effetti di Runaway Per Z=1 la perdita di velocità e 2/3 sugli elettroni e 1/3 sugli ioni La forza di attrito decresce con la velocità Se il plasma e in un campo elettrico E, gli elettroni sono accelerati da una forza (VII-32) E sono possibili due casi : gli elettroni sono decelerati gli elettroni sono accelerati Pertanto al di sopra di una energia (VII-33) gli elettroni sono continuamente accelerati e la forza di attrito decresce progressivamente 21

22 Resistenza di plasma Un insieme di elettroni in campo elettrico e accelerato dal campo e rallentato dalle collisioni. Dato che il movimento degli elettroni e di insieme essi non perdono impulso per collisioni e-e ma solo per collisioni con gli ioni del plasma.la legge del moto e pertanto: (VII-34) A velocità costante : (VII-35) Il moto genera una corrente: (VII-36) Il plasma si comporta come un mezzo conduttore con conduttività : (VII-37) 22

23 Resistività di plasma Pertanto: (VII-38) Ossia : (VII-39) Che viene chiamata Resistività di plasma Note: η e inversamente proporzionale a T 3/2 η non dipende dalla densità del plasma 23

24 Resistività di Spitzer (VII-39) 24

Valori numerici dei parametri di collisione

Valori numerici dei parametri di collisione Valori numerici dei parametri di collisione Nella Lezione 9 si è mostrato che in un plasma le collisioni a grande angolo sono prevalentemente il risultato di collisioni multiple a piccolo angolo. Dato

Dettagli

Lezione 5 Moti di particelle in un campo magnetico

Lezione 5 Moti di particelle in un campo magnetico Lezione 5 Moti di particelle in un campo magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 5 1 Moto di una particella carica in un campo magnetico Il confinamento del

Dettagli

Lezione 3 Proprieta fisiche elementari di un plasma

Lezione 3 Proprieta fisiche elementari di un plasma Lezione 3 Proprieta fisiche elementari di un plasma G. Bosia Universita di Torino 1 Gas ionizzati e plasmi Si e gia notato che il comportamento dinamico di un plasma e qualitativamente diverso da quello

Dettagli

Lezione 2 Condizioni fisiche per la produzione di energia per mezzo di fusione termonucleare controllata

Lezione 2 Condizioni fisiche per la produzione di energia per mezzo di fusione termonucleare controllata Lezione Condizioni fisiche per la produzione di energia per mezzo di fusione termonucleare controllata G. Bosia Universita di Torino 1 Plasma termo-nucleare Definizione : Un plasma termo nucleare e un

Dettagli

Lezione 14 Moti di particelle in un campo magnetico

Lezione 14 Moti di particelle in un campo magnetico Lezione 14 Moti di particelle in un campo magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 14 1 Confinamento magnetico La difficolta della fisica di un sistema a confinamento

Dettagli

FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C.

FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C. Serie 19: Relatività VIII FAM C. Ferrari Esercizio 1 Collisione completamente anelastica Considera la collisione frontale di due particelle A e B di massa M A = M B = M e v A = v B = 3/5c, tale che alla

Dettagli

Sezione d urto classica

Sezione d urto classica Capitolo Sezione d urto classica In meccanica classica, ogni particella del fascio incidente segue una traiettoria ben definita sotto l azione del potenziale. Se V (r) è centrale, il momento angolare è

Dettagli

p e c = ev Å

p e c = ev Å Corso di Introduzione alla Fisica Quantistica (f) Soluzioni Esercizi: Giugno 006 * Quale la lunghezza d onda di de Broglie di un elettrone che ha energia cinetica E 1 = KeV e massa a riposo m 0 = 9.11

Dettagli

Rivelatori Caratteristiche generale e concetti preliminari

Rivelatori Caratteristiche generale e concetti preliminari Rivelatori Caratteristiche generale e concetti preliminari Stage Residenziale 2012 Indice Caratteristiche generali sensibilità, risposta, spettro d ampiezza, risoluzione energetica, efficienza, tempo morto

Dettagli

S ν = c 4 u ν. S ν dν = c 8π h ν e hν. k B T. S λ = 2π λ 5 c2 h

S ν = c 4 u ν. S ν dν = c 8π h ν e hν. k B T. S λ = 2π λ 5 c2 h Corso di Introduzione alla Fisica Quantistica (f) Esercizi: Maggio 2006 (con soluzione) i) Un filamento emette radiazione che ha una lunghezza d onda massima λ Max = 15000 10 8 cm. Considerando di approssimare

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Cognome Nome Matricola DOCENTE Energetica Biomedica DM 270 Elettronica Informazione Informatica DM509 Problema 1 Nel circuito di figura (a) i resistori hanno valori tali che R 1 / = 2 e i condensatori

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Lezione 4 Proprietà fondamentali di un plasma II

Lezione 4 Proprietà fondamentali di un plasma II Lezione 4 Proprietà fondamentali di un plasma II G. Bosia Universita di Torino 1 Interfaccia elettrico tra plasma e prima parete solida Quando un plasma e in contatto con un corpo solido, (quale la parete

Dettagli

ed infine le interazioni nucleari forte e debole? dove E rappresenta l energia cinetica della particella α, e K è: K = e2 2Z

ed infine le interazioni nucleari forte e debole? dove E rappresenta l energia cinetica della particella α, e K è: K = e2 2Z Introduzione 1. Stima il valore delle energie dei fotoni necessarie per risolvere distanze atomiche, e poi nucleari. 2. Per quali ragioni fisiche le interazioni fondamentali sono state storicamente identificate

Dettagli

Struttura della materia

Struttura della materia Struttura della materia 1. L elettrone 2. Effetto Compton 3. Struttura dell atomo XIV - 0 Rapporto carica/massa dell elettrone Esperimento di Thomson: raggi catodici. Fascio non deflesso: Quando B=0: con

Dettagli

Raccolta di esercizi di fisica moderna

Raccolta di esercizi di fisica moderna Raccolta di esercizi di fisica moderna M. Quaglia IIS Avogadro Torino M. Quaglia (IIS Avogadro Torino) Raccolta di esercizi di fisica moderna Torino, 20/11/2014 1 / 30 Prova AIF e Sillabo http://www.aif.it/archivioa/aif_seconda_prova_di_fisica.pdf

Dettagli

Esame di stato 2014_2 2 M.Vincoli

Esame di stato 2014_2 2 M.Vincoli Esame di stato 0_ M.Vincoli . Per semplificare i calcoli, evitando altresì di introdurre immediatamente grandezze numeriche, è utile adottare una notazione semplificatrice, per cui poniamo:, 0 0,,0 0,60

Dettagli

sezione d urto di interazione neutroni - 12 C

sezione d urto di interazione neutroni - 12 C Interazione dei neutroni con la materia Poiché il neutrone ha carica nulla esso non interagisce elettricamente con gli elettroni dell atomo, ma subisce solo interazioni nucleari con i nuclei della materia

Dettagli

Lezione 15 Geometrie lineari di confinamento magnetico

Lezione 15 Geometrie lineari di confinamento magnetico Lezione 15 Geometrie lineari di confinamento magnetico G. Bosia Universita di Torino G. Bosia Introduzione alla fisica del plasma Lezione 15 1 Disuniformità con gradiente in direzione del campo ( ) Una

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

Fisica dei mesoni. Mesoni sono particelle con spin intero e interagisce coi barioni (nucleoni) attraverso le forze forti, elettromagnetiche e deboli

Fisica dei mesoni. Mesoni sono particelle con spin intero e interagisce coi barioni (nucleoni) attraverso le forze forti, elettromagnetiche e deboli Fisica dei mesoni Mesone π e quello piu leggero nella famiglia dei mesoni E la particella che viene scambiato nell interazione forte nucleone-nucleone ed e quindi responsabile della maggiore componente

Dettagli

Capitolo 14 Interazione radiazione-materia: i neutroni

Capitolo 14 Interazione radiazione-materia: i neutroni Capitolo 14 Interazione radiazione-materia: i neutroni 14.1 Interazione dei neutroni con la materia Poiché il neutrone ha carica nulla esso non interagisce elettricamente con gli elettroni dell atomo,

Dettagli

MISURA DELLA MASSA DELL ELETTRONE

MISURA DELLA MASSA DELL ELETTRONE MISURA DELLA MASSA DELL ELETTRONE di Arianna Carbone, Giorgia Fortuna, Nicolò Spagnolo Liceo Scientifico Farnesina Roma Interazioni tra elettroni e fotoni Per misurare la massa dell elettrone abbiamo sfruttato

Dettagli

Conteggi e sezione d urto

Conteggi e sezione d urto Capitolo 1 Conteggi e sezione d urto Consideriamo la reazione a due corpi: a + X b + Y (1.1) che comprende come caso particolare lo scattering elastico. La sezione d urto differenziale per la reazione

Dettagli

INTERAZIONE DELLA RADIAZIONE CON CON LA LA MATERIA. Dal punto di vista dell interazione con la materia le radiazioni IONIZZANTI si classificano in:

INTERAZIONE DELLA RADIAZIONE CON CON LA LA MATERIA. Dal punto di vista dell interazione con la materia le radiazioni IONIZZANTI si classificano in: INTERAZIONE DELLA RADIAZIONE CON CON LA LA MATERIA Dal punto di vista dell interazione con la materia le radiazioni IONIZZANTI si classificano in: DIRETTAMENTE IONIZZANTI INDIRETTAMENTE IONIZZANTI Le radiazioni

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-09, 15 luglio 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e

Dettagli

I Bonus per lo scritto del corso di Fisica Nucleare e Subnucleare I ( A.A ) 11 Aprile 2012

I Bonus per lo scritto del corso di Fisica Nucleare e Subnucleare I ( A.A ) 11 Aprile 2012 Nome e Cognome: Docente: I Bonus per lo scritto del corso di Fisica Nucleare e Subnucleare I ( A.A. 2011-2012 ) 11 Aprile 2012 Al collisore Hera del laboratorio Desy di Amburgo, un fascio di elettroni

Dettagli

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

Dati utili per vari materiali file tabelle-utili.pdf

Dati utili per vari materiali file tabelle-utili.pdf Dati utili per vari materiali file tabelle-utili.pdf Materiale Z A nuclear interaction length (g/cm2) radiation length g/cm2 cm density (g/cm3) minimum de(coll)/dx (MeV/g/cm2) Alluminio (Al) 13 27,0 106,4

Dettagli

Interazione Radiazione - Materia

Interazione Radiazione - Materia Interazione Radiazione - Materia Dipartimento di Fisica Università di Roma "La Sapienza" Dipartimento di Fisica Università del Salento e INFN Lecce 1 Indice Concetti preliminari grandezze fondamentali

Dettagli

Sistemi di più particelle

Sistemi di più particelle Sistemi di più particelle Finora abbiamo considerato il modo di una singola particella. Che cosa succede in sistemi di molte particelle, o in un sistema non puntiforme? Scomponendo il sistema in N particelle

Dettagli

Radiazioni ionizzanti

Radiazioni ionizzanti Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radiazioni ionizzanti 11/3/2005 Struttura atomica Atomo Nucleo Protone 10 10 m 10 14 m 10 15 m ev MeV GeV 3 3,0 0,3 0 0 0 Atomo Dimensioni lineari

Dettagli

URTI: Collisioni/scontro fra due corpi puntiformi (o particelle).

URTI: Collisioni/scontro fra due corpi puntiformi (o particelle). URTI: Collisioni/scontro fra due corpi puntiformi (o particelle). I fenomeni di collisione avvengono quando due corpi, provenendo da punti lontani l uno dall altro, entrano in interazione reciproca, e

Dettagli

La struttura nucleare dell atomo

La struttura nucleare dell atomo Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 1 La struttura nucleare dell atomo Prequel: la struttura atomica della materia Alla fine dell 800 è ormai completamente assodata

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Per ognuno di questi effetti si definisce una sezione d urto microscopica σ ph, σ C, σ pp.

Per ognuno di questi effetti si definisce una sezione d urto microscopica σ ph, σ C, σ pp. Interazione dei fotoni con la materia I fotoni interagiscono con la materia attraverso tre effetti : fotoelettrico (ph); compton (C); produzione di coppie (pp). Per ognuno di questi effetti si definisce

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli esercizi Compito 1. Formula risolutiva: t = V ρ g h / W con V = volume pozza, ρ = densità assoluta dell'acqua, h = altezza, W = potenza pompa Tempo = 0.1490E+03 s Formula risolutiva: c

Dettagli

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2 1 Problema 1 Un blocchetto di massa m 1 = 5 kg si muove su un piano orizzontale privo di attrito ed urta elasticamente un blocchetto di massa m 2 = 2 kg, inizialmente fermo. Dopo l urto, il blocchetto

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

1.2 Moto di cariche in campo elettrico

1.2 Moto di cariche in campo elettrico 1.2 Moto di cariche in campo elettrico Capitolo 1 Elettrostatica 1.2 Moto di cariche in campo elettrico Esercizio 11 Una carica puntiforme q = 2.0 10 7 C, massa m = 2 10 6 kg, viene attratta da una carica

Dettagli

ESERCIZIO 1. Diagramma delle forze. , da cui si ricava: v 2 1 L. a) T = m

ESERCIZIO 1. Diagramma delle forze. , da cui si ricava: v 2 1 L. a) T = m ESERCIZIO 1 Un corpo di massa m = 100 g è collegato a uno degli estremi di un filo ideale (inestensibile e di massa trascurabile) di lunghezza L = 30 cm. L altro capo del filo è vincolato ad un perno liscio.

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 9 luglio 2015

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 9 luglio 2015 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 9 luglio 05 ) Un corpo si massa M = 300 g poggia su un piano orizzontale liscio lungo l = m, seguito da un piano orizzontale scabro, di lunghezza

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Capitolo 12 Interazione radiazione-materia: le particelle cariche

Capitolo 12 Interazione radiazione-materia: le particelle cariche Capitolo Interazione radiazione-materia: le particelle cariche. Interazione delle particelle cariche con la materia Consideriamo una particella di carica ze che attraversa un materiale di numero atomico

Dettagli

Prova scritta del corso di Fisica con soluzioni

Prova scritta del corso di Fisica con soluzioni Prova scritta del corso di Fisica con soluzioni Prof. F. Ricci-Tersenghi 2/0/203 Quesiti. Una corpo di massa m = 250 g è appoggiato su un piano scabro (µ d = 0.2 e µ s = 0.6) e collegato ad una molla di

Dettagli

4b.Quantità di moto e urti

4b.Quantità di moto e urti 4b.Quantità di moto e urti La quantità di moto di un oggetto che possa essere schematizzato come un punto materiale di massa m e di velocità è definita come il prodotto della massa per la velocità del

Dettagli

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg.

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg. Reazioni nucleari Un nucleo instabile può raggiungere una nuova condizione di stabilità attraverso una serie di decadimenti con emissione di particelle α, β, γ o di frammenti nucleari (fissione). Emissione

Dettagli

Astronomia Lezione 4/11/2011

Astronomia Lezione 4/11/2011 Astronomia Lezione 4/11/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Sezione d urto e coefficienti di interazione Redazione a cura di Margherita Palonca

Sezione d urto e coefficienti di interazione Redazione a cura di Margherita Palonca Sezione d urto e coefficienti di Redazione a cura di Margherita Palonca Sezione d urto Attenuazione di un fascio in condizioni di buona geometria Coefficiente di attenuazione Coefficiente di assorbimento

Dettagli

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) 2 L elettromagnetismo INTERAZIONE ELETTROMAGNETICA = INTERAZIONE FONDAMENTALE Fenomeni elettrici e fenomeni

Dettagli

4πε. h m. Eq. di Schrödinger per un atomo di idrogeno:

4πε. h m. Eq. di Schrödinger per un atomo di idrogeno: Eq. di Schrödinger per un atomo di idrogeno: h m e 1 ψ 4πε r 0 ( r) = Eψ ( r) Questa equazione è esattamente risolubile ed il risultato sono degli orbitali di energia definita E n = m e 1 α 1 1 e mc n

Dettagli

Concorso di ammissione al primo anno, a.a. 2006/07 Prova scritta di fisica

Concorso di ammissione al primo anno, a.a. 2006/07 Prova scritta di fisica Concorso di ammissione al primo anno, a.a. 2006/07 Prova scritta di fisica Corsi di laurea in Fisica, Informatica e Matematica. 1) Si osserva che una stella collassata (pulsar) ruota attorno al suo asse

Dettagli

Il modello a shell fallisce nella predizione dello spin totale del nucleo 6 3

Il modello a shell fallisce nella predizione dello spin totale del nucleo 6 3 Problema 1 Il modello a shell fallisce nella predizione dello spin totale del nucleo 6 3 Li. Tuttavia la misura del suo momento magnetico fornisce il valore µ = 0.82 µ N. I momenti magnetici del protone

Dettagli

20 giugno La sezione d urto invariante impolarizzata per il processo (1) è

20 giugno La sezione d urto invariante impolarizzata per il processo (1) è 20 giugno 2002 e (p 1 ) + e + (p 2 ) γ(k) + Z 0 (q) (1) (i tetra-impulsi delle particelle sono indicati in parentesi). 1. Si scrivano i diagrammi di Feynman rilevanti per il processo, e si scriva l espressione

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA

SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROBLEMA 1. PROVA DI AMMISSIONE A.A.:2007-2008 SOLUZIONE DELLA PROVA SCRITTA DI FISICA a) da g = GM segue: M = gr2 R 2 G b) La forza centripeta che fa descrivere

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010 CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010 1) Due cariche +2q e q sono fissate lungo l asse x, rispettivamente nei punti O = (0,0) ed A=(d,0), con d = 2 m. Determinare:

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito

Dettagli

Esame di Stato 2006 tema n. 2 1 M.Vincoli

Esame di Stato 2006 tema n. 2 1 M.Vincoli Esame di Stato 6 tema n. 1 M.Vincoli 1. L effetto Joule consiste nella dissipazione termica di energia a seguito del passaggio di corrente in un elemento resistivo. Supponiamo di avere un circuito costituito

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 16 luglio 2001 Teoria 1. La posizione del centro di massa di un sistema di N particelle puntiformi è data da Ni r i m i

Dettagli

LA CRISI DELLA FISICA CLASSICA

LA CRISI DELLA FISICA CLASSICA CAPITOLO 44 LA CRISI DELLA FISICA CLASSICA IL CORPO NERO E L IPOTESI DI PLANCK All aumentare della temperatura aumenta la quantità di energia presente nella radiazione del corpo nero ed è quindi plausibile

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. / Sessione ordinaria 014 Seconda prova scritta Ministero dell Istruzione, dell Università e della icerca BST ESAME DI STATO DI LICEO SCIENTIFICO COSI SPEIMENTALI Tema di: FISICA Secondo tema Nel circuito

Dettagli

FNPA1 prova scritta del 22/06/2011

FNPA1 prova scritta del 22/06/2011 FNPA1 prova scritta del 22/06/2011 Problema 1 Il nucleo di deuterio, 1 2 H, ha energia di legame Bd = 2.23 MeV. Il nucleo di trizio, 1 3 H, ha energia di legame Bt = 8.48 MeV. Calcolare lʼenergia che occorre

Dettagli

Il sistema formato dalla particella incidente e dall atomo bersaglio è un sistema isolato e quindi nell urto si conserva la quantità di moto totale.

Il sistema formato dalla particella incidente e dall atomo bersaglio è un sistema isolato e quindi nell urto si conserva la quantità di moto totale. Interazione delle particelle cariche con la materia Consideriamo una particella di carica ze che attraversa un materiale di numero atomico Z; per fissare le idee, un protone che attraversa una lastra di

Dettagli

URTI: Collisioni o scontro fra particelle libere [e vincolate].

URTI: Collisioni o scontro fra particelle libere [e vincolate]. URTI: Collisioni o scontro fra particelle libere [e vincolate]. Due punti materiale (o corpi estesi) collidono quando durante il loro moto si vengono a trovare nello stesso punto (o regione) dello spazio,

Dettagli

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene Serie 42: Soluzioni FAM C. Ferrari Esercizio 1 Corpo nero 1. Abbiamo: Sole λ max = 500nm - spettro visibile (giallo); Sirio B λ max = 290nm - ultravioletto; corpo umano λ max = 9300nm - infrarosso. 2.

Dettagli

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm].

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio9: un fotone gamma sparisce formando una coppia

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 10 Radioattività... 2 L atomo... 3 Emissione di raggi x... 4 Decadimenti nucleari. 6 Il decadimento alfa.... 7 Il decadimento beta... 8 Il decadimento gamma...... 9 Interazione dei fotoni

Dettagli

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia

Dettagli

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =.

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =. Esercizio 1 a) Poiché la carica è interamente contenuta all interno di una cavità circondata da materiale conduttore, si ha il fenomeno dell induzione totale. Quindi sulla superficie interna della sfera

Dettagli

= p! ; u i. = 0 = u i Dove le quantita sono scalari con segno + se il corrispondente vettore e parallelo al vettore v!

= p! ; u i. = 0 = u i Dove le quantita sono scalari con segno + se il corrispondente vettore e parallelo al vettore v! Settembre 0 Urto elastico Cinematica non relativistica Deinizioni: a reazione e + -> + sistema di rierimento del centro di massa p! p! ) sistema di rierimento del laboratorio particella erma) velocita

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 17 Giugno 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 17 Giugno 2010 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 17 Giugno 2010 1) Un proiettile di massa m P =30 g ha velocità v P =100 m/s e viene sparato contro un blocco di massa M B =200 g, fermo su un piano

Dettagli

dq dt Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

dq dt Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Corrente elettrica Consideriamo il moto non accelerato e con velocità piccole rispetto a quella della luce nel vuoto di un insieme di particelle dotate di carica elettrica: possono ritenersi valide le

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 10 Fusione nucleare Fusione nucleare (Das-Ferbel, cap. 5.3) Abbiamo già accennato alla fusione nucleare che costituisce la sorgente

Dettagli

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1 7 Una molla ideale di costante elastica k 48 N/m, inizialmente compressa di una quantità d 5 cm rispetto alla sua posizione a riposo, spinge una massa m 75 g inizialmente ferma, su un piano orizzontale

Dettagli

geometria di un apparato di conteggio

geometria di un apparato di conteggio La Sezione d urto Supponiamo di avere un fascio di particelle (protoni, elettroni, fotoni o qualsiasi altra particella) di ben definita energia che incide su un bersaglio (target). L intensità I di un

Dettagli

Fisica 2 per biotecnologie: Prova scritta 8 Gennaio 2015

Fisica 2 per biotecnologie: Prova scritta 8 Gennaio 2015 Fisica 2 per biotecnologie: Prova scritta 8 Gennaio 2015 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :...

Dettagli

Dispositivi e Tecnologie Elettroniche. Trasporto nei semiconduttori

Dispositivi e Tecnologie Elettroniche. Trasporto nei semiconduttori Dispositivi e Tecnologie Elettroniche Trasporto nei semiconduttori Trasporto di carica I portatori liberi nel materiale vengono accelerati dalla presenza di un campo elettrico E La presenza di cariche

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

n(z) = n(0) e m gz/k B T ; (1)

n(z) = n(0) e m gz/k B T ; (1) Corso di Introduzione alla Fisica Quantistica (f) Prova scritta 4 Luglio 008 - (tre ore a disposizione) [sufficienza con punti 8 circa di cui almeno 4 dagli esercizi nn. 3 e/o 4] [i bonus possono essere

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1 Effetto Stark Studiamo l equazione di Schrödinger per l atomo di idrogeno in presenza di un campo elettrico costante e diretto lungo l asse z, E = E k. La hamiltoniana di Schrödinger per l atomo di idrogeno

Dettagli

Divagazioni sulla fisica delle particelle. La struttura della materia Le particelle fondamentali Le interazioni fondamentali

Divagazioni sulla fisica delle particelle. La struttura della materia Le particelle fondamentali Le interazioni fondamentali Divagazioni sulla fisica delle particelle La fisica delle particelle come pretesto per fare alcune semplici considerazioni di fisica La struttura della materia Le particelle fondamentali Le interazioni

Dettagli

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

2.3 Percorso residuo (range)

2.3 Percorso residuo (range) Figure 13: Determinazione del range a partire da una curva di trasmissione (I èil numero di particelle tramesse per unità di tempo in funzione delle spessore t essendo I 0 il numero di particelle entranti)

Dettagli

VELOCITA di REAZIONE. Quali sono le dimensioni di una velocità di reazione?? E una definizione che ha senso NON all equilibrio!!!

VELOCITA di REAZIONE. Quali sono le dimensioni di una velocità di reazione?? E una definizione che ha senso NON all equilibrio!!! VELOCITA di REAZIONE Quali sono le dimensioni di una velocità di reazione?? E una definizione che ha senso NON all equilibrio!!! Data la reazione: aa + bb cc + dd v = - 1 Δ[A] = - 1 Δ[B] = 1 Δ[C] = 1 Δ[D]

Dettagli

INTRODUZIONE ALLA RELATIVITÀ SPECIALE: Dalla seconda legge di Newton a E = mc 2. 8 marzo 2017

INTRODUZIONE ALLA RELATIVITÀ SPECIALE: Dalla seconda legge di Newton a E = mc 2. 8 marzo 2017 INTRODUZIONE ALLA RELATIVITÀ SPECIALE: Dalla seconda legge di Newton a E = mc 2 8 marzo 2017 Piano della presentazione Trasformazioni di Lorentz Red Shift Relatività e leggi di Newton Galileo Seconda Legge

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

Scritto Appello III, Materia Condensata. AA 2017/2018

Scritto Appello III, Materia Condensata. AA 2017/2018 Scritto Appello III, Materia Condensata. AA 2017/2018 21/06/2018 1 Esercizio 1 Sia un A un solido monoatomico che cristallizza in una struttura cubica a facce centrate con lato del cubo a e velocità del

Dettagli

ESERCIZIO 1 SOLUZIONI

ESERCIZIO 1 SOLUZIONI - ESERCIZIO - Un corpo di massa m = 00 g si trova su un tavolo liscio. Il corpo m è mantenuto inizialmente fermo, appoggiato ad una molla di costante elastica k = 00 N/m, inizialmente compressa. Ad un

Dettagli

La Produzione dei Raggi X

La Produzione dei Raggi X La Produzione dei Raggi X Master: Verifiche di Qualità in Radiodiagnostica, Medicina Nucleare e Radioterapia Lezione 2 Dr. Rocco Romano (Dottore di Ricerca) Facoltà di Farmacia, Università degli Studi

Dettagli

8π c 3 ν2. dx x 2 /(e x 1) fotoni/m 2 /sec,

8π c 3 ν2. dx x 2 /(e x 1) fotoni/m 2 /sec, Corso di Introduzione alla Fisica Quantistica (f) Prova scritta 8 Giugno 7 - (tre ore a disposizione) Soluzione 1.) Una stazione radio trasmette emettendo una potenza di un kilowatt alla frequenza di 9

Dettagli

F (t)dt = I. Urti tra corpi estesi. Statica

F (t)dt = I. Urti tra corpi estesi. Statica Analogamente a quanto visto nel caso di urto tra corpi puntiformi la dinamica degli urti tra può essere studiata attraverso i principi di conservazione. Distinguiamo tra situazione iniziale, prima dell

Dettagli

Velocità di Reazione. H ICl I HCl

Velocità di Reazione. H ICl I HCl Velocità di Reazione H 2 + 2 ICl I 2 + 2 HCl Cinetica Chimica ci dice se una reazione avviene spontaneamente. È indispensabile però sapere anche quanto impiega una reazione a raggiungere il proprio stato

Dettagli