APPLICAZIONI LINEARI e MATRICI ASSOCIATE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "APPLICAZIONI LINEARI e MATRICI ASSOCIATE"

Transcript

1 APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e α R. Se 0 V e 0 W sono i vettori nulli di V e di W, ovvimente risult f(0 V ) = 0 W Se un vettore v V è combinzione linere di p vettori v, v 2,,v p V con coefficienti, 2,, p, llor il vettore f(v) W immgine di v è combinzione linere dei vettori f(v ), f(v 2 ),,f(v p ) secondo gli stessi coefficienti, cioè f(v) = f( v + 2 v 2 +,, p v p ) = f(v ) + 2 f(v 2 ) + + p f(v p ). In prticolre se V h dimensione finit n e B = { u, u 2,, u n } è un bse di V, llor il vettore f(v), immgine di un v di V, è combinzione linere delle immgini dei vettori dell bse B con coefficienti che coincidono con le coordinte di v rispetto B, cioè se v = x u + x 2 u x n u n f(v) = f(x u + x 2 u 2 +,,x n u n ) = x f(u ) + x 2 f(u 2 ) + + x n f(u n ). Dt f: V W un ppliczione linere di V in W, l insieme degli elementi di W che sono immgini di lmeno un elemento di V si dice immgine dell ppliczione e si indic con f(v) o con Im f. Si dimostr che Teorem L immgine f(v) di un ppliczione linere f: V W è un sottospzio vettorile di W. Si f: V W un ppliczione linere di V in W; si definisce nucleo di f e si denot con Ker f l insieme di tutti gli elementi di V che hnno per immgine il vettore nullo 0 W, cioè Ker f = {x V : f(x) = 0 W } Si dimostr che Teorem Il nucleo di un ppliczione linere f: V W è un sottospzio vettorile di V. Sino dunque V e W due spzi vettorili di dimensione rispettivmente n ed m e sino B = {u, u 2,,u n } e B = {w, w 2,,w m } due bsi di V e W.

2 Se f: V W un ppliczione linere di V in W; si possono rppresentre i vlori di ogni f(v j ) come f(v j ) = j w + 2j w mj w m Quindi l mtrice m n costituit d tutti gli ij (i =, 2,, n; j =, 2,, n) è quell delle coordinte dei vettori f(v j ) W rispetto ll bse B per j =, 2,, n. Ess si dice mtrice ssocit d f rispetto lle bsi B e B ; esplicitmente l mtrice ssocit ll ppliczione f è 2 A = m 2 22 m2 n 2n mn Risult inoltre che dim Im f = r(a), dove A è un mtrice ssocit d f; dim Ker f = dim V dim Im f. ESEMPI 2 5 Se si consider l mtrice A = d ess è ssocit l ppliczione linere f: R R 2 tle che f(x, x 2, x ) = (x + 2x 2 + 5x, x + x 2 - x ) vendo considerto come bsi di R e R 2 le bsi cnoniche. Vicevers se si consider l ppliczione linere f: R 4 R tle che f(x, x 2, x, x 4 ) = (2x x + x 4 ; x 2-7x + x 4 ; x x 2 + x + 5x 4 ) d ess è ssocit l mtrice 2 0 Determinre quli delle seguenti ppliczioni sono lineri:. f : R 2 R tle che f (x, y) = (x + y, 2x y, y x) ; 2. f 2 : R R 2 tle che f 2 (, b, c) = ( + 2b c, b c);. f : R 2 R 2 tle che f (, b) = ( 2, + b); 4. f 4 : R R tle che f 4 (x, y, z) = (x, y, z) + (, 0, ); 5. f 5 : R R tle che f 5 (v) = 2v; 6. f 6 : R 2 R 2 tle che f 6 (x, y) = (x - y, x + y + ) 0 Soluzione. Si trtt di verificre che (x, y), (z, w) in R 2 e λ, µ in R risulti f (λ(x, y) + µ (z, w)) = λ f (x, y) + µ f (z, w) 7 5 2

3 Quindi si h f (λ(x, y) + µ (z, w)) = f (λx + µ z, λy + µ w) = = (λx + µ z + λy + µ w, 2λx + 2µ z - λy - µ w, λy + µ w - λx - µ z ) = = λ( x + y, 2x y, y x) + µ( x + y, 2x y, y x) = λ f (x, y) + µ f (z, w) f è linere 2. Anlogmente si procede per dimostrre che l f 2 è linere. Considerte le terne (, b, c) e (x, y, z) in R e λ, µ in R si h f 2 (λ(, b, c) + µ (x, y, z)) = f 2 (λ + µ x, λb + µ y, λc + µ z ) = = (λ + µ x + 2λb + 2µ y - λc - µ z, λ + µ x - λb - µ y - λc - µ z ) = = λ( + 2b c, b c) + µ( x + 2y z, x y z) = = λ f 2 (, b, c) + µ f 2 (x, y, z) f 2 è linere.. L f non è linere. A tle fine considerimo le coppie (, 0) e (, ) e fccimo vedere che f ((, 0) + (, )) f (, 0) + f (, ) Si h f ((, 0) + (, )) = f (2, ) = (4, ) e f (, 0) + f (, ) = (, ) + (, 2) = (2, ) d cui (4, ) (2, ). 4. L f 4 non è linere. Inftti considerte le terne (-,, 0) e (0, -2, ) si h f 4 ((-,, 0) + (0, -2, )) = f 4 (-, -, ) = (-, -, ) + (, 0, ) = (0, -, 2) f 4 (-,, 0) = (-,, 0) + (, 0, ) = (0,, ) f 4 (0, -2, ) = (0, -2, ) + (, 0, ) = (, -2, 2) quindi f 4 (-,, 0) + f 4 (0, -2, ) = (0,, ) + (, -2, 2) = (, -, ) cioè f 4 ((-,, 0) + (0, -2, )) = (0, -, 2) (, -, ) = f 4 (-,, 0) + f 4 (0, -2, ). Inoltre per essere linere dovrebbe essere f 4 (0, 0, 0) = (0, 0, 0) invece risult f 4 (0, 0, 0) = (0, 0, 0) + (, 0,) = (, 0,). 5. L f 4 è un endomorfismo. Inftti considerti v e w di R e λ, µ in R risult f 5 (λv + µ w) = 2λv + 2µw = λ(2v) + µ(2w) = λ f 5 (v) + µ f 5 (w).

4 6. L f 6 non è linere. Inftti considert l coppi (0, 0) si h f 6 (0, 0) = (0, ) (0, 0). Si dt l ppliczione linere f: R R tle che f(x, y, z) = (-x + 2y + z, x 4y 6z, x + z) determinimo l mtrice ssocit ll ppliczione f rispetto ll bse cnonic di R. Si h f(, 0, 0) = (-,, ); f(0,, 0) = (2, -4, 0); f(0, 0, ) = (, -6, ). Quindi l mtrice ssocit ll ppliczione f è: A = Si dt l ppliczione f: R R tle che f(, b, c) = ( + b, 2c, 2 - b 2 ) provre che l f non è linere. Considerimo v(, 2,0) e w(, 2, 0); si h f(v + w) = f((, 2, 0) + (0,, 2)) = f(,, 2) = (4, 4, -8); inoltre f(v) = f(, 2, 0) = (, 0, -) f(w) = f(0,, 2) = (, 4, -) d cui f(v) + f(w) = (, 0, -) + (, 4, -) = (4, 4, -4) (4, 4, -8) = f(v + w). Si f: R R 2 l ppliczione linere tle che f(, 0, 0) = (, ) f(0,, 0) = (, 0) f(0, 0, ) = (, ) ) determinre l mtrice A ssocit d f e le equzioni di f rispetto lle bsi cnoniche di R ed R 2 ; b) trovre un bse e l dimensione di Im f e di Ker f. Soluzione ) L mtrice ssocit d f rispetto lle bsi cnoniche è 0 Se v(x, y, z) è il generico vettore di R, posto f(v) = (x, y ) le equzioni dell f rispetto lle bsi cnoniche sono: x = x + y + z y = x + z 2 b) poichè Im f è generto dlle immgini dei vettori dell bse cnonic di R, si h Im f = ((, ), (, 0), (,)) = R 2 llor un bse di Im f è {(,), (, 0)} e l dim Im f = 2 = r(a)

5 Per definizione Ker f = {v = (x. y, z) : f(v) = (0, 0)}, quindi un vettore v = (x, y, z) Ker f se e solo se le sue coordinte rispetto ll bse cnonic soddisfno il sistem linere x + y + z = 0 x + z = 0 Allor il Ker f è il sottospzio vettorile costituito dlle soluzioni del sistem. Tle sistem mmette soluzioni del tipo (h, 0, -h) h R, quindi un bse di Ker f è {, 0, -} e dim Ker f =. 5

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

Geometria I. Prova scritta del 2 marzo 2016

Geometria I. Prova scritta del 2 marzo 2016 Geometri I Anno ccdemico 0/06 Prov scritt del mrzo 06 Esercizio. Si E il pino euclideo numerico munito delle coordinte cnoniche (x, y). Si consideri il tringolo T con vertici P = (0, 0), P = (, 0), P =

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

15. Cambiamenti di base in uno spazio vettoriale.

15. Cambiamenti di base in uno spazio vettoriale. 5 Cmbimenti di bse in uno spzio vettorile 5 Esempio Si VR uno spzio vettorile di dimensione e si B = (u, u, u ) un su bse Sino v = 5u + 6u, v = u u + 5u, v = u + u + u, v = u 4u 7u Si M l mtrice vente

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

5. Quanti blocchi ha la forma di Jordan di f(x, y, z, s, t) = (0, y + z, y + z, t, 0)?

5. Quanti blocchi ha la forma di Jordan di f(x, y, z, s, t) = (0, y + z, y + z, t, 0)? Ing. erospzile e meccnic. Geometri e lgebr T. Prov del 24/01/2018 cod. 8919280 Nome Cognome Mtricol 1. Il rngo di 1 2 0 0 2 0 è: 2 4 3 ; d 5. 1 2 0 2. Le coordinte di 1, 1, 0 rispetto ll bse di C 3 formt

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

; c. ; d nessuna delle precedenti In R 5 [x] distanza tra x e x 2 rispetto al prodotto scalare p, q = 1

; c. ; d nessuna delle precedenti In R 5 [x] distanza tra x e x 2 rispetto al prodotto scalare p, q = 1 Ing. erospzile e meccnic. Geometri e lgebr T. Prov del 08/01/2018 cod. 701385 Nome Cognome Mtricol 1. L conic definit d x 2 + y 2 4xy = 1 è: ellisse iperbole prbol; d un punto. 2. Le coordinte di rispetto

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Definizione opposto: Somma. Definizione vettore 0:

Definizione opposto: Somma. Definizione vettore 0: Somm Operzioni in R n : somm :... n n Definizione ettore : Definizione opposto: :... :... n Rispetto tle operzione R n risult un gruppo elino. Cioè l somm h le seguenti proprietà: S5) Commutti S) Intern

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA SCUOLA DI SCIENZE. Statistica per le tecnologie e le scienze

UNIVERSITA DEGLI STUDI DI PADOVA SCUOLA DI SCIENZE. Statistica per le tecnologie e le scienze Corsi di lure: 1.1 Sino UNIVERSITA DEGLI STUDI DI PADOVA SCUOLA DI SCIENZE Sttistic per l economi e l impres Sttistic per le tecnologie e le scienze 1 1 1 A(α) = α 2 + 1 α 2 + 1 e (α) = α + 1 dove α C.

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

0.1 Teorema di Lax-Milgram

0.1 Teorema di Lax-Milgram 0. Teorem di Lx-Milgrm Definizione. (Form sesquilinere) Si H uno spzio di Hilbert su C. Un form sesquilinere sul cmpo C è un ppliczione : H H C linere nell prim componente e ntilinere nell second (cioè

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

3 Applicazioni lineari e matrici

3 Applicazioni lineari e matrici 3 Applicazioni lineari e matrici 3.1 Applicazioni lineari Definizione 3.1 Siano V e W dei K spazi vettoriali. Una funzione f : V W è detta applicazione lineare se: i u, v V, si ha f(u + v = f(u + f(v;

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

5. Autovalori e autovettori di matrici reali.

5. Autovalori e autovettori di matrici reali. 5 Autovlori e utovettori di mtrici reli Definizione 5 Dt un mtrice A M n si dice utovlore di A un numero rele tle che X per cui n, n, AX = λ X L mtrice X si dice utovettore reltivo ll'utovlore λ λ Vicevers

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile.

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile. Esercizio (). Il polinomio crtteristico dell mtrice A(t) è p(λ) λ (TrA)λ + deta ovvero p(λ) λ tλ t t il cui discriminnte è 6(t+)t. Sppimo che un mtrice A di ordine due non digonle è digonlizzbile se e

Dettagli

; c. ; d. ; b. 15. Quante soluzioni ha in R 3 il sistema AX=0 con A=? a 0; b 1; c ; d

; c. ; d. ; b. 15. Quante soluzioni ha in R 3 il sistema AX=0 con A=? a 0; b 1; c ; d Nome Cognome Mtricol 1. Qule di questi insiemi di vettori gener R 3 [x]? 0,1,x,x 2,x 3 x 2 +x 1; b x,x 2,x 3 2 x,x+,x 2 x,3+x+4x 2 +x 3 ; d nessuno. 2. Si A un mtrice 3x3 coefficienti reli. Allor deta

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Algebra lineare - Applicazioni. Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova

Algebra lineare - Applicazioni. Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova Algebr linere - Appliczioni Antonino Polimeno Diprtimento di Scienze Chimiche Università degli Studi di Pdov 1 Sistemi lineri - 1 Sistem sottodeterminto (n>m), sovrdeterminto (n

Dettagli

2 Generalità sulle matrici

2 Generalità sulle matrici 2 Generlità sulle mtrici 21 Definizione e csi prticolri Definizione 21 Mtrice n m Un mtrice n m è un tbell rettngolre di n righe e m colonne i cui elementi sono numeri reli (o complessi) indicizzti con

Dettagli

Candidato: Matricola: Sede locale: Per la Commissione 1B 2B 3B Parte A Parte B Totale

Candidato: Matricola: Sede locale: Per la Commissione 1B 2B 3B Parte A Parte B Totale FACOLTÀ DI INGEGNERIA - CORSO DI LAUREA IN INGEGNERIA INFORMATICA Esme di MATEMATICA B (IN TELECONFERENZA), TITOLARE: A. LANGUASCO) mrzo 00 (Secondo compitino,.. 001/00) Cndidto: Mtricol: Sede locle: Per

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n Coniche e qudriche Un qudric è il luogo degli zeri in E n, lo spzio euclideo di dimensione n, di un polinomio di grdo nelle vribili,, n Polinomi proporzionli dnno luogo ll stess qudric Se n = un qudric

Dettagli

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione.

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione. T. ZOLZZI. Appunti del corso di Introduzione ll Anlisi Funzionle Scuol di Dottorto in Scienze e Tecnologie dell Informzione e dell Comuniczione. NOTA. L utore desider ringrzire le studentesse di dottorto,

Dettagli

11. I teoremi del calcolo differenziale, I

11. I teoremi del calcolo differenziale, I 11. I teoremi del clcolo differenzile, I 11. Funzioni di clsse C 1 Abbimo visto, cfr Cpitolo 9, che l esistenz delle sole derivte przili non è sufficiente grntire l differenzibilit in un punto dto. Pero

Dettagli

CONDIZIONE NECESSARIA E SUFFICIENTE perché il sottoinsieme W di V sia sottospazio di V è che sia:

CONDIZIONE NECESSARIA E SUFFICIENTE perché il sottoinsieme W di V sia sottospazio di V è che sia: SPAZI VETTORIALI CONDIZIONE NECESSARIA E SUFFICIENTE perché il sottoinsieme W di V si sottospzio di V è che si: (λ w + µ u) V per ogni u, w V e ogni λ, µ R CONDIZIONE NECESSARIA (m NON SUFFICIENTE) perché

Dettagli

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica Esercizi di Geometri - Foglio Corso di Lure in Mtemtic A. Sottospzi ffini. Esercizio A.1 Esempi e non-esempi di sottospzi ffini Determinre quli dei seguenti insiemi sono sottospzi ffini (precisndo di qule

Dettagli

La prima forma quadratica fondamentale

La prima forma quadratica fondamentale Cpitolo 1 L prim form qudrtic fondmentle Si M un superficie immers nello spzio euclideo R 3. Osservimo che in R 3, pensto come spzio euclideo, vi è un prodotto sclre nturle h(x 1 x 2 x 3 ) (y 1 y 2 y 3

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

II Spazi vettoriali ed applicazioni lineari

II Spazi vettoriali ed applicazioni lineari II Spazi vettoriali ed applicazioni lineari Nel capitolo precedente abbiamo visto come assumano un ruolo importante nello studio dello Spazio Euclideo la sua struttura di spazio affine e quindi di spazio

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

AM : Tracce delle lezioni- IV Settimana

AM : Tracce delle lezioni- IV Settimana AM0 04-5: Trcce delle lezioni- IV Settimn SUCCESSIONI CONVERGENTI in uno SPAZIO NORMATO Si (E,. ) spzio normto. Sino x k, x E. Allor x k k x x k x k 0 (i) u k, v k E, u k u, v k v tu k + sv k tu + sv t,

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

Proiettività della Retta e del Piano.

Proiettività della Retta e del Piano. Introduzione. In queste note proponimo l clssificzione delle proiettività per l rett proiettiv ed il pino proiettivo su un corpo lgebricmente chiuso. Nel cso dell rett studieremo nche il cso del corpo

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Ortogonalità di funzioni

Ortogonalità di funzioni Cpitolo 0 Ortogonlità di funzioni 01 Funzioni linermente indipendenti e funzioni ortogonli Si (, b) un intervllo dell sse rele Si dice le n + 1 funzioni φ 0 (x), φ 1 (x),, φ n (x), definite in (, b), sono

Dettagli

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n :

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n : Mtemtic II. Generlità sui sistemi lineri Un sistem linere è un sistem di m equzioni lineri (cioè di primo grdo) in n incognite,, n : n n b b m mn n m (*) Un soluzione del sistem linere è un n-upl di numeri

Dettagli

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie 33 possono essere introdotte in diverse mniere. Prim definizione di isometri Dicesi isometri un similitudine vente come rpporto di similitudine l unità, cioè vente k det A. Questo ci induce d ffermre che

Dettagli

ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.mtefili.it ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si D il dominio di un funzione rele di vribile rele f (x) e si x 0 un elemento di D: definire l continuità e l discontinuità di

Dettagli

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1 FOGLIO 4 - Applicazioni lineari Esercizio 1. Si risolvano i seguenti sistemi lineari al variare di k R. { x y + z + 2w = k x z + w = k 2 { kx + y z = 2 x + y kw = k Esercizio 2. Al variare di k R trovare

Dettagli

Basi di Algebra Lineare. Ivan Zivko

Basi di Algebra Lineare. Ivan Zivko Bsi di Algebr Linere Ivn Zivko Trigonometri Rdinti Nelle scienze l unità di misur più ust per glingoli non sono i grdi, bensì i rdinti. Vle l seguente relzione: 36 o = π rd Per trovre qulsisi ngolo in

Dettagli

CORSO DI ALGEBRA (M-Z) Prof. A. Venezia

CORSO DI ALGEBRA (M-Z) Prof. A. Venezia CORSO DI ALGEBRA (M-Z) Prof. A. Venezia 2018-19 Complementi ed Esercizi APPLICAZIONI LINEARI Siano V e V spazi vettoriali sul campo K. Una applicazione L: V V si dice lineare se: 1 AL. L(v+w) = L(v) +

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

+ (vista come funzione di x).

+ (vista come funzione di x). Corso di Approssimzioni Numeriche, A.A. 27/8 Esercitzione di lbortorio su: relzione di ricorrenz per B-splines e nucleo di Peno Prof. S. De Mrchi - 23 gennio 28 1 B-splines e teorem del nucleo di Peno

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di Sistemi principli di normli d un vrietà gicenti nel suo o 2. Not di Giuseppe Vitli Pdov. In un mio recente lvoro *) ho considerto, per ogni superficie il cui j si di 2 k dimensioni (k 2, 3), un sistem

Dettagli

Richiami sulle matrici (TITOLO)

Richiami sulle matrici (TITOLO) Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione prile Introduzione lle trsformzioni F. Cliò Richimi sulle mtrici (TITOLO) Lezione prile Trsformzioni Mtrici: Definizioni

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Corso di Modelli Matematici in Biologia Esame del 22 Gennaio 2018

Corso di Modelli Matematici in Biologia Esame del 22 Gennaio 2018 Corso di Modelli Mtemtici in Biologi Esme del Gennio 08 Scrivere chirmente in test ll elborto: Nome Cognome numero di mtricol Risolvere tutti gli esercizi Tempo disposizione: DUE ORE E MEZZA Non e consentito

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi su spazi di funzioni, convergenza uniforme

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi su spazi di funzioni, convergenza uniforme Corso di Metodi Mtemtici per l Ingegneri A.A. 2016/2017 Esercizi su spzi di funzioni, convergenz uniforme Mrco Brmnti Politecnico di Milno October 7, 2016 A. Esercizi su spzi vettorili, spzi vettorili

Dettagli

Generalità sulle superfici algebriche. Superficie cilindrica

Generalità sulle superfici algebriche. Superficie cilindrica Generlità sulle superfici lgeriche Definizione: Si definisce superficie lgeric di ordine n il luogo geometrico dei punti P dello spzio le cui coordinte crtesine,, z verificno un equzione lgeric di grdo

Dettagli

1. Elementi di analisi funzionale Esercizi

1. Elementi di analisi funzionale Esercizi . Elementi di nlisi funzionle Esercizi http://www.cirm.unibo.it/~brozzi/mi/pdf/mi-cp.-ese.pdf.. Spzi vettorili.. Spzi vettorili normti.-. Dimostrre l diseguglinz tringolre in C n reltivmente ll norm (

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

UNIVERSITÁ DEGLISTUDIDISALERNO C.d.L. in INGEGNERIA GESTIONALE Ricerca Operativa 12 Gennaio 2009 Prof. Saverio Salerno. Compito A

UNIVERSITÁ DEGLISTUDIDISALERNO C.d.L. in INGEGNERIA GESTIONALE Ricerca Operativa 12 Gennaio 2009 Prof. Saverio Salerno. Compito A 1. Risolvere i seguenti problemi: 12 Gennio 2009 Compito A () stbilire se il vettore (3, 2, 0) è combinzione convess i u 1 =(3, 0, 6) e u 2 =(3, 3, 3); (b) per il poliero S = (x 1,x 2 ) R 2 :0 x 1 1, 0

Dettagli

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:...

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:... Sistemi di equzioni lgebriche lineri Un equzione lgebric linere in n incognite si present nell form: 1 1+ 2 2 +... + n n = b dove ( 1, 2,... n ) rppresentno le incognite, 1, 2,... n sono i coefficienti

Dettagli

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W LEZIONE 16 16.1. Applicazioni lineari iniettive e suriettive. Ricordo le seguenti due definizioni valide per applicazioni di qualsiasi tipo ϕ: X Y fra due insiemi. L applicazione ϕ si dice iniettiva se

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010 LUISS Lure specilistic in Economi e Finn Anno Accdemico 9/ Corso di Metodi Mtemtici per l Finn Prof. Fusto Goi, Dr. Dvide Vergni Soluioni dell'esme scritto del 5/7/. Sino dti i due opertori Â, ˆB : R 3

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006

COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006 COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006 Esercizio. Si consideri il seguente sistem tempo discreto: x(t + ) = Fx(t) + gu(t) = 0 0 0 x(t) + 0 u(t), 0 0 0 y(t) = Hx(t) = x(t), t Z 0 +, dove è un

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Compito di matematica Classe III ASA 26 marzo 2015

Compito di matematica Classe III ASA 26 marzo 2015 Compito di mtemtic Clsse III ASA 6 mrzo 05 Quesiti. Per quli vlori di l espressione può rppresentre l eccentricità di un ellisse? Dovrà risultre 0 < e

Dettagli

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1 MTRICI E DETERMINNTI CENNI SUI SISTEMI LINERI ngel Dontiello Considerimo un insieme di numeri reli rppresentti tr prentesi qudre o tonde n n ij m m mn ( ) [ ] ij i,,m j,,n Si definisce mtrice un tbell

Dettagli

AM2: Tracce delle lezioni- I Settimana

AM2: Tracce delle lezioni- I Settimana AM: Trcce delle lezioni- I Settimn FUNZIONI DI PIÚ VARIABILI Si n N. Un funzione rele di n vribili reli é un funzione f : A R, A R n = R... R n volte Il grfico di f é G f := {(x, f(x)) R n+ = R n R : x

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli