LEZIONE 17. B : kn k m.
|
|
- Martina Zanella
- 2 anni fa
- Visualizzazioni
Transcript
1 LEZIONE Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione Siano V e W spazi vettoriali su k = R, C finitamente generati. Allora V = W se e solo se dim k (V ) = dim k (W ). Dimostrazione. Supponiamo che f: V W sia un isomorfismo. Siano = (v 1,..., v n ) e D = (w 1,..., w m ) basi di V e W rispettivamente. Allora possiamo considerare la composizione g = [ ] D f [ ] 1 : kn k m. Essendo composizione di applicazioni lineari, g è lineare. Essendo composizione di applicazioni biiettive, g è biiettiva. Concludiamo che g è un isomorfismo. Tramite le usuali identificazioni k n = k n,1 e k m = k m,1 l isomorfismo g si identifica con un isomorfismo k n,1 k m,1 che, necessariamente (si veda l Esempio ), è della forma µ A per una qualche matrice A k m,n. Allora dim k (V ) = n = m = dim k (W ) (si veda l Esempio ). Viceversa sia dim k (V ) = dim k (W ) e siano = (v 1,..., v n ) e D = (w 1,..., w n ) basi di V e W rispettivamente. Allora dalla Proposizione segue l esistenza di due applicazioni lineari f: V W e g: W V tali che f(v i ) = w i e g(w i ) = v i, i = 1,..., n, rispettivamente. Consideriamo l applicazione lineare g f: V V. Allora g f(v i ) = g(f(v i )) = g(w i ) = v i, i = 1,..., n. D altra parte anche l applicazione identica id V : V V è lineare e soddisfa la condizione id V (v i ) = v i, i = 1,..., n. Per il Corollario si ha dunque g f = id V : analogamente, scambiando i ruoli di f e g, si ottiene f g = id W. Concludiamo che f è un applicazione lineare biiettiva, cioè un isomorfismo, quindi V = W. Esempio Sia k = R, C. Riprendiamo in considerazione i sottospazi T S n (k) e Sim n (k) di k n,n. Nell Esempio abbiamo visto che dim k (T S n (k)) = n(n + 1)/2. Se A k n,n allora A + t A Sim n (k). In particolare è definita l applicazione f: T S n (k) Sim n (k) A A + t A. 1 Typeset by AMS-TEX
2 ISOMORFISMI TRA SPAZI VETTORIALI FINITAMENTE GENERATI Se A = (a i,j ) 1 i,j n T S n (k) allora f(a) = = (b i,j ) 1 i,j n Sim n (k) dove a i,j se i < j, ( ) b i,j = 2a i,i se i = j, a j,i se i > j. Chiaramente se α k e A T S n (k) allora f(αa) = αa + t (αa) = αa + α t A = α(a + t A) = αf(a). Se, A, A T S n (k) allora f(a + A ) = A + A + t (A + A ) = A + A + t A + t A = = A + t A + A + t A = f(a ) + f(a ). Quindi f è k lineare. L applicazione f è un isomorfismo. Infatti f è suriettiva. Infatti se = (b i,j ) 1 i,j n Sim n (k) risulta = f(a) con A = (a i,j ) 1 i,j n T S n (k) definita da b i,j se i < j, a i,j = b i,i /2 se i = j, 0 se i > j. Inoltre f è iniettiva, cioè ker(f) = { 0 n,n }: se A = (a i,j ) 1 i,j n T S n (k) è tale che f(a) = 0 n,n, dalla relazione ( ) segue che a i,j = 0 = 2a i,i, ovvero A = 0 n,n. Il Corollario garantisce dunque che dim k (Sim n (k)) = dim n (T S n (k)) = n(n + 1)/2, come anticipato nell Esempio Similmente si consideri Alt n (k) = { A k n,n t A = A }. Si verifichi che Alt n (k) è un sottospazio vettoriale di k n,n e che l applicazione è un isomorfismo: in particolare g: ST S n (k) Alt n (k) A A t A dim k (Alt n (k)) = dim n (ST S n (k)) = n(n 1)/2
3 LEZIONE Matrice di un applicazione lineare. Siano V e W spazi vettoriali su k = R, C finitamente generati e siano = (v 1,..., v n ) e D = (w 1,..., w m ) basi di V e W rispettivamente. Come abbiamo visto nella dimostrazione della Proposizione invece di studiare direttamente un applicazione k lineare f: V W, può risultare più agevole comporla con opportuni isomorfismi con spazi vettoriali semplici come k n = k n,1 e k m = k m,1 e studiare l applicazione k lineare composta k n,1 k m,1 utilizzando quanto visto negli Esempi , e Se f: V W è un applicazione k lineare, possiamo costruire il diagramma V [ ] 1 k n f g W [ ] D k m k n,1 k m,1 ove, per definizione, si è posto g = [ ] 1 f [ ] D. Chiaramente g è k lineare (cfr. Proposizione ). Identificando k n e k m con k n,1 e k m,1 rispettivamente, in forza dell Esempio , segue l esistenza di una matrice A k m,n tale che l applicazione k n,1 k m,1 indotta dal diagramma sopra sia µ A. La matrice A dipende sia da f che dalle basi e D. Si noti che le colonne di A sono µ A (E j,1 ) = ([ ] D f [ ] 1 )(E j,1): poiché [ ] 1 (E j,1) = v j, segue che le colonne di A non sono altro che ([ ] D f)(v j ) = [f(v j )] D : cioè la j esima colonna di A sono le componenti rispetto alla base fissata nel codominio di f (disposte in colonna!) del j esimo vettore della base fissata nel dominio di f. Definizione Siano V e W spazi vettoriali su k = R, C finitamente generati, = (v 1,..., v n ) e D = (w 1,..., w m ) basi di V e W rispettivamente. Se f: V W è un applicazione k lineare definiamo la matrice di f rispetto alle basi e D la matrice M D (f) avente per colonne le componenti delle immagini dei vettori di rispetto a D. È opportuno osservare che V = k n e W = k m la matrice M(f) di f non è altro che la matrice di f rispetto alle basi canoniche nel senso della definizione data sopra. Esempio Si consideri l applicazione f: R 1 [x] R 2 [x] p(x) xp(x) : Chiaramente se α R e p 1 (x), p 2 (x) R 1 [x] si ha f(αp(x)) = x(αp(x)) = α(xp(x)) = αf(p(x)), f(p 1 (x) + p 2 (x)) = x(p 1 (x) + p 2 (x)) = xp 1 (x) + xp 2 (x) = f(p 1 (x)) + f(p 2 (x)),
4 MATRICE DI UN APPLICAZIONE LINEARE cioè f è R lineare. Si considerino le basi = (1, x) in R 1 [x] e D = (1, x, x 2 ) in R 2 [x]: determiniamo M D (f). Risulta quindi [f(1)] D = [x] D = (0, 1, 0), [f(x)] D = [x 2 ] D = (0, 0, 1) M D (f) = Si noti che [f(a + bx)] D = M D (f)[a + bx]. Si noti che X ker(g) k n,1 se e solo se ([ ] D f [ ] 1 )(X) = 0 m,1, se e solo se, posto v = [ ] 1 (X), si ha [f(v)] D = ([ ] D f)(v) = 0 m,1, se e solo se f(v) = ([ ] 1 D [ ] D f)(v) = [ ] 1 D (0 m,1) = 0 W ovvero se e solo se v = [ ] 1 (X) ker(f). In particolare restringendo [ ] 1 a ker(g) = ker(µ A) otteniamo un isomorfismo fra ker(g) (che si identifica naturalmente con ker(µ A )) e ker(f). Similmente restringendo [ ] 1 a im(f) otteniamo un isomorfismo fra im(f) eim(g) (che si identifica naturalmente con im(µ A )). Per il Corollario dim k (im(f)) = dim k (im(µ A )) = rk(a), dim k (ker(f)) = dim k (ker(µ A )) = n rk(a) (si veda ), quindi abbiamo immediatamente il seguente risultato, spesso chiamato Teorema della dimensione: esso non è altro che il Teorema di Rouché Capelli. Proposizione Siano V e W spazi vettoriali su k = R, C finitamente generati. Se f: V W è un applicazione k lineare si ha dim k (V ) = dim k (ker(f)) + dim k (im(f)). Il seguente corollario è immediata conseguenza della precedente proposizione (si veda anche l Esempio ) Corollario Siano V e W spazi vettoriali su k = R, C finitamente generati, f: V W un applicazione k lineare. i) Se f è iniettiva allora dim k (V ) dim k (W ). ii) Se f è suriettiva allora dim k (V ) dim k (W ). Quanto visto sopra ci permette di studiare un applicazione lineare tra spazi vettoriali di dimensione finita in modo più facile, studiando la sua matrice rispetto a basi fissate (comode).
5 Esempio Si consideri l applicazione LEZIONE 17 5 f: R 2 [x] R 2,2 ( ) a + bx + cx 2 a + b a + c. b c b c Il lettore verifichi che f è lineare. Fissiamo le basi = (1, x, x 2 ) e D = (E 1,1, E 1,2, E 2,1, E 2,2 ) in R 2 [x] e R 2,2 rispettivamente. Poiché [( )] 1 1 [f(1)] D = = (1, 1, 0, 0), 0 0 D [( )] 1 0 [f(x)] D = = (1, 0, 1, 1), 1 1 D [( )] [f(x )] D = = (0, 1, 1, 1), 1 1 segue che la matrice di A rispetto alle basi e D è A = Chiaramente dim(ker(f)) = dim(ker(µ A )) = 3 rk(a) = 1, dim(im(f)) = dim(im(µ A )) = rk(a) = 2. Quindi f non è né iniettiva né suriettiva. Se poi vogliamo essere più precisi circa ker(f) ed im(f), ci riduciamo a studiare ker(µ A ) e im(µ A ). Risolvendo il sistema AX = 0 4,1 otteniamo ker(µ A ) = { t ( a a a ) a R }, quindi, con l usuale identificazione di R 4 con R 4,1, ker(f) = { p(x) R 2 [x] [p(x)] ker(µ A ) } = = { a ax ax 2 a R } = L(1 x x 2 ) : in particolare dim R (ker(f)) = 1, come già visto sopra. Una conseguenza immediata è che 0 2,2 = f(1 x x 2 ) = f(1) f(x) f(x 2 ) ovvero f(x 2 ) = f(1) f(x), sicché im(f) = L(f(1), f(x), f(x 2 )) = L(f(1), f(x)). Poiché f(x) L(f(1)), segue che dim R (im(f)) = 2, come già visto sopra. D
6 MATRICE DI UN APPLICAZIONE LINEARE Esempio Ricordiamo che nell esempio abbiamo verificato che, se v 0 V 3 (O) è un vettore fissato, risulta im( v 0 ) = { w V 3 (O) v V 3 (O) tale che w = v v 0 } v 0 = { w V 3 (O) w, v 0 = 0 } Chiaramente se v 0 = 0, risulta im( v 0 ) = L( 0). Se, invece, v 0 0, l Esempio ci permette di affermare che dim R (ker( v 0 )) = 1, dunque la Proposizione implica dim R (im( v 0 )) = 2. D altra parte v 0 è un sottospazio di V 3 (O) (esercizio) non contenente v 0 : poiché dim R (V 3 (O)) = 3 segue che dim R ( v 0 ) 2. Essendo im( v 0 ) v 0 segue allora che deve valere l uguaglianza, come anticipato. Si noti che, fissato un sistema di riferimento 0 ı j k, risulta v 0 = a ı + b j + c k. La matrice di v 0 rispetto alla stessa base = ( ı, j, k) fissata nel dominio e codominio è A = 0 c b c 0 a b a 0. Esempio Si considerino in R 3 i vettori v 1 = (1, 2, 1), v 2 = (1, 0, 1), v 3 = (1, 0, 2) ed in R 2,2 i vettori A 1 = ( ) 1 0, A = ( ) 1 1, A = ( ) Poiché rk = rk = segue che v 1, v 2, v 3 sono linearmente indipendenti, quindi, per la Proposizione si ha che = (v 1, v 2, v 3 ) è una base di R 3. In particolare esiste un unica applicazione lineare f: R 3 R 2,2 tale che f(v i ) = A i, i = 1, 2, 3, in forza di Vogliamo studiare tale applicazione. A tale scopo scriviamone la matrice rispetto a basi opportunamente scelte nel dominio e nel codominio. Nel dominio abbiamo varie scelte possibili: potremmo per esempio scegliere la base canonica C. Per semplificare al massimo la forma della matrice e, di conseguenza, i calcoli la scelta migliore è, in realtà, quella di prendere la base = (v 1, v 2, v 3 ). Anche nel codominio possiamo fare molte scelte lecite: per esempio potremmo prendere la base E = (E 1,1, E 1,2, E 2,1, E 2,2 ). Ancora per semplificare al massimo i conti una buona scelta può essere quella di prendere D = (A 1, A 2, E 1,2, E 2,1 ) (verificare, per esercizio, che D è base di R 2,2 ).
7 LEZIONE 17 7 Poiché f(v 1 ) = A 1 = 1A 1 + 0A 2 + 0E 1,2 + 0E 2,1, f(v 2 ) = A 2 = 0A 1 + 1A 2 + 0E 1,2 + 0E 2,1, f(v 3 ) = A 3 = 1A 1 + 1A 2 + 0E 1,2 + 0E 2,1, segue che [f(v 1 )] D = (1, 0, 0, 0), [f(v 2 )] D = (0, 1, 0, 0), [f(v 3 )] D = (1, 1, 0, 0), sicché M D (f) = Per semplificare le notazioni sia A = M D (f). Poiché, come è facile vedere dalla matrice, una base di im(µ A ) R 4,1 è (E 1,1, E 2,1 ) corrispondente, tramite l usuale identificazione R 4 = R 4,1, con (e 1, e 2 ), e risulta A 1 = [ ] 1 D (e 1), A 2 = [ ] 1 D (e 2), segue che im(f) ha per base (A 1, A 2 ). Ancora è facile vedere che ker(µ A ) è generato dal singolo vettore E = t ( ) corrispondente, tramite l usuale identificazione R 3 = R 3,1, con e = (1, 1, 1). Poiché (1, 2, 0) = v 1 + v 2 v 3 = [ ] 1 (e), segue che ker(f) è generato dal vettore (1, 2, 0). Per esercizio calcolare MC E(f): si verifichi che M C E(f) M D (f) e che procedendo come fatto sopra con la matrice MC E(f) in luogo di M D (f) si riottengono gli stessi risultati Endomorfismi. Proposizione Siano V e W spazi vettoriali su k = R, C finitamente generati con dim k (V ) = dim k (W ). Sia f: V W un applicazione lineare. Le seguenti affermazioni sono equivalenti: i) f è iniettiva; ii) f è suriettiva; iii) f è un isomorfismo. Dimostrazione. Chiaramente l affermazione iii) implica sia l affermazione i) che l affermazione ii). Supponiamo che valga i), cioè che f è iniettiva. In tal caso dim k (ker(f)) = 0: per la Proposizione e per l ipotesi segue allora che dim k (W ) = dim k (V ) = dim k (im(f)), quindi im(f) = W poiché hanno la stessa dimensione e im(f) W è sottospazio vettoriale (si veda la Proposizione ). Concludiamo che f è suriettiva, quindi è un isomorfismo. Supponiamo che valga ii), cioè che f sia suriettiva. In tal caso dim k (V ) = dim k (W ) = dim k (im(f)), quindi dim k (ker(f)) = 0 per la Proposizione Concludiamo che f è iniettiva, quindi è un isomorfismo. Vediamo ora un esempio che illustra l utilità della precedente proposizione. Esempio Si consideri l applicazione f: C 3 C 2 [x] (a, b, c) (a + (a + b)x + (a + b + c)x 2 ).
8 ENDOMORFISMI Chiaramente (a, b, c) ker(f) se e solo se a + (a + b)x + (a + b + c)x 2 = 0 se e solo se a = a + b = a + b + c = 0, cioè se e solo se (a, b, c) = (0, 0, 0). In particolare f è iniettiva: per la Proposizione possiamo concludere che f è un isomorfismo senza doverne studiare la suriettività. Ad un analogo risultato si poteva arrivare osservando che la matrice di f rispetto alla base canonica di C 3 ed alla base (1, x, x 2 ) di C 2 [x] è che è invertibile A = , Chiaramente la Proposizione si applica, in particolare, al caso V = W, purché V sia finitamente generato. Definizione Sia V uno spazio vettoriale su k = R, C. Un endomorfismo di V è un applicazione lineare f: V V. Chiaramente la Proposizione si applica agli endomorfismi di spazi vettoriali finitamente generati. Essa non è valida se si lavora con spazi non finitamente generato come mostra il seguente esempio. Esempio Esistono endomorfismi suriettivi ma non iniettivi. Infatti sia I =]a, b[ R non vuoto. Nell Esempio abbiamo osservato che l applicazione D: C (I) C (I) è lineare. Tale applicazione non è iniettiva, ma è suriettiva per un ben noto risultato di analisi. Esistono endomorfismi iniettivi ma non suriettivi. Infatti sia k = R, C e si consideri l applicazione f: k[x] k[x] p(x) xp(x). Si verifichi che f è lineare. Chiaramente f è iniettiva, ma non è suriettiva perché i polinomi costanti non sono in im(f). Le applicazioni lineari del precedente esempio sono particolari esempi di endomorfismi.
LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W
LEZIONE 16 16.1. Applicazioni lineari iniettive e suriettive. Ricordo le seguenti due definizioni valide per applicazioni di qualsiasi tipo ϕ: X Y fra due insiemi. L applicazione ϕ si dice iniettiva se
f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))
Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,
LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1
LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI Esercizi Esercizio 1. Sia f: R 3 R 2 (x, y, z) (x + 2y + z, y + z). (1) Verificare che f è lineare. (2) Determinare una base di ker(f) e stabilire se f è iniettiva. (3) Calcolare w
Parte 6. Applicazioni lineari
Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)
ESERCIZI APPLICAZIONI LINEARI
ESERCIZI APPLICAZIONI LINEARI PAOLO FACCIN 1. Esercizi sulle applicazioni lineari 1.1. Definizioni sulle applicazioni lineari. Siano V, e W spazi vettoriali, con rispettive basi B V := (v 1 v n) e B W
LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0
LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi
ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA
ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai
Applicazioni lineari
Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av
3 Applicazioni lineari e matrici
3 Applicazioni lineari e matrici 3.1 Applicazioni lineari Definizione 3.1 Siano V e W dei K spazi vettoriali. Una funzione f : V W è detta applicazione lineare se: i u, v V, si ha f(u + v = f(u + f(v;
Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W
Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione
Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine
Lezione 6 Nucleo, Immagine e Teorema della Dimensione In questa lezione entriamo nel vivo della teoria delle applicazioni lineari. Per una applicazione lineare L : V W definiamo e impariamo a calcolare
1 Applicazioni Lineari tra Spazi Vettoriali
1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!
Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica
Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim
2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione
Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza
Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari
Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle
x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.
Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini
Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio
Lezioni di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio CAPITOLO 4 Applicazioni lineari 1. Definizioni ed esempi. In questo capitolo ci proponiamo di studiare le funzioni tra spazi
CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA
COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno
APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.
APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per
Lezione 9: Cambio di base
Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire
LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.
LEZIONE 31 31.1. Domini di funzioni di più variabili. Sia ora U R n e consideriamo una funzione f: U R m. Una tale funzione associa a x = (x 1,..., x n ) U un elemento f(x 1,..., x n ) R m : tale elemento
Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura
Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Primo Esonero del corso di Geometria Docente F. Flamini, Roma, 2//28 SOLUZIONI COMPITO I ESONERO Esercizio.
Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2
Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di
FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1
FOGLIO 4 - Applicazioni lineari Esercizio 1. Si risolvano i seguenti sistemi lineari al variare di k R. { x y + z + 2w = k x z + w = k 2 { kx + y z = 2 x + y kw = k Esercizio 2. Al variare di k R trovare
Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.
CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1
STRUTTURE ALGEBRICHE
STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione
Elementi di Algebra Lineare Applicazioni lineari
Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 18 index Applicazioni lineari 1 Applicazioni lineari
Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga
Lezioni del corso di Geometria e Algebra prof Michele Mulazzani dott Alessia Cattabriga AA 20001/2002 Indice 1 Equazioni e sistemi lineari 4 11 Alcune strutture algebriche 4 12 Operazioni standard su K
LE FIBRE DI UNA APPLICAZIONE LINEARE
LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini
Parte 3. Rango e teorema di Rouché-Capelli
Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici
Esercizi su lineare indipendenza e generatori
Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v
Parte 2. Determinante e matrice inversa
Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice
Algebra Lineare e Geometria
Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da
Applicazioni lineari
CAPITOLO 8 Applicazioni lineari Esercizio 8.. Sia T : R 3 R 3 l applicazione definita da T(x,x,x 3 ) = (x,x,x 3 ). Stabilire se T è lineare. Esercizio 8.. Verificare che la funzione determinante definita
II Spazi vettoriali ed applicazioni lineari
II Spazi vettoriali ed applicazioni lineari Nel capitolo precedente abbiamo visto come assumano un ruolo importante nello studio dello Spazio Euclideo la sua struttura di spazio affine e quindi di spazio
Prova scritta di Geometria 2 Prof. M. Boratynski
10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale
UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali
UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali APPROFONDIMENTI DI ALGEBRA M. Chiara Tamburini Anno Accademico 2013/2014 Indice Prefazione iii I Moduli su un anello
(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.
29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola
4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale
4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,
Diagonalizzazione di matrici e applicazioni lineari
CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x
4. Operazioni elementari per righe e colonne
4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:
Anello commutativo. Un anello è commutativo se il prodotto è commutativo.
Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e
LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),
LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con
Dimensione di uno Spazio vettoriale
Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione
Fondamenti di ALGEBRA LINEARE E GEOMETRIA
Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 19 Capitolo
I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione
Lezioni del 29 settembre e 1 ottobre. 1. Funzioni iniettive, suriettive, biiettive. Sia f : A B una funzione da un insieme A ad un insieme B. Sia a A e sia b = f (a) B l elemento che f associa ad a, allora
Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A)
Esame di Geometria - 9 CFU (Appello del 28 gennaio 23 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Nello spazio R 3, siano dati il piano e i punti P = (, 2, ), Q = (2,, ). π : x + 2y 3
ALGEBRA I: MODULI. Abbiamo indicato con 0 A, 1 A lo zero e l unità nell anello A e con 0 M l elemento neutro del gruppo abeliano (M, +).
ALGEBRA I: MODULI 1 GENERALITÀ SUGLI A-MODULI Il concetto di A-modulo generalizza quello di spazio vettoriale su un campo K Definizione 11 Sia A un anello commutativo con unità Un A-modulo è un insieme
Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.
1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A
G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ
G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ 1. Definizione di funzione Definizione 1.1. Siano X e Y due insiemi. Una funzione f da X a Y è un sottoinsieme del prodotto cartesiano: f X Y, tale che
Prodotto elemento per elemento, NON righe per colonne Unione: M R S
Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può
ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) SPAZI VETTORIALI SU R
ISTITUZIONI DI MATEMATICA I (prof MPCavaliere) SPAZI VETTORIALI SU R Abbiamo visto parlando dei numeri complessi che i punti P del piano possono essere determinati da coppie di numeri reali, se è dato
LEZIONE 15. Esempio L applicazione f: R 3 R 2. è lineare. Infatti si ha che se α R, (x, y, z) R 3 risulta
LEZIONE 15 15.1. Applicazioni lineari ed esempi. Definizione 15.1.1. Siano V e W spazi vettoriali su k = R, C. Un applicazione f: V W si dice k lineare se: (AL1) per ogni v 1, v 2 V si ha f(v 1 + v 2 )
1 Regole generali per l esame. 2 Libro di Testo
FACOLTÀ DI INGEGNERIA Corso di GEOMETRIA E ALGEBRA (mn). (Ing. per l Ambiente e il Territorio, Ing. Informatica - Sede di Mantova) A.A. 2008/2009. Docente: F. BISI. 1 Regole generali per l esame L esame
1.1. Spazi metrici completi
SPAZI METRICI: COMPLETEZZA E COMPATTEZZA Note informali dalle lezioni 1.1. Spazi metrici completi La nozione di convergenza di successioni è centrale nello studio degli spazi metrici. In particolare è
Note di matematica per microeconomia
Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme
LEZIONE 12. v = α 1 v α n v n =
LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono
FUNZIONI CONVESSE. + e x 0
FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )
Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24
Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione
Cenni di teoria dei campi finiti
Cenni di teoria dei campi finiti Luca Giuzzi 31 ottobre 2011 In queste note vengono richiamati alcuni risultati di algebra relativi la teoria dei campi finiti. 1 Anelli Definizione 1. Un anello (R, +,
Appunti di Algebra Lineare
Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e
ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE
ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è
ALGEBRA I: CARDINALITÀ DI INSIEMI
ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito
RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come
RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può
Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.
Politecnico di Torino. Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Basi e coordinate. Applicazioni lineari. Matrici come applicazioni
19. Inclusioni tra spazi L p.
19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p
Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá
Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) [# Aii [10 pagine]] Algebre di Boole Un algebra di Boole è una struttura 1. Definizione e proprietá B =< B,,, ν, 0, 1 > in cui B è un insieme non
Esercizi Applicazioni Lineari
Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le
Serie numeriche. 1 Definizioni e proprietà elementari
Serie numeriche Definizioni e proprietà elementari Sia { } una successione, definita per ogni numero naturale n n. Per ogni n n, consideriamo la somma s n degli elementi della successione di posto d s
2 FUNZIONI REALI DI VARIABILE REALE
2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento
Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI
Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni
SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1
SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,
1 Serie di Taylor di una funzione
Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita
Metodi iterativi per sistemi lineari
Metodi iterativi per sistemi lineari Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi ai metodi iterativi per risolvere sistemi di equazioni
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da
Dispense di Matematica Analisi Matematica. Riccarda Rossi
Dispense di Matematica Analisi Matematica Riccarda Rossi Corso di Laurea in Disegno Industriale Università degli Studi di Brescia Anno Accademico 2009/2010 2 Capitolo 1 Nozioni preliminari 4 Riccarda Rossi
3. SPAZI VETTORIALI CON PRODOTTO SCALARE
3 SPAZI VETTORIALI CON PRODOTTO SCALARE 31 Prodotti scalari Definizione 311 Sia V SV(R) Un prodotto scalare su V è un applicazione, : V V R (v 1,v 2 ) v 1,v 2 tale che: i) v,v = v,v per ogni v,v V ; ii)
Compito di SISTEMI E MODELLI. 19 Febbraio 2015
Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.
Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.
Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello
Prodotto libero di gruppi
Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto
ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la
ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme { V = X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare
Corso di Calcolo Numerico
Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis
Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari:
Applicazioni lineari Definizione Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: f(αv + βv 2 ) = αf(v ) + βf(v 2 ) v, v 2 V, α, β K.
Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009
Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 28/29 Dire se le seguenti proposizioni sono vere o false: ESERCITAZIONE. Proposizione Vera Falsa f : R R 4 rk(f f : R 4 R rk(f f :
ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI
ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI 1. CLASSI DI RESTO E DIVISIBILITÀ In questa parte sarò asciuttissimo, e scriverò solo le cose essenziali. I commenti avete potuto ascoltarli a lezione.
Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4
Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università
CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI
CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI 1. REGOLA DI CRAMER Sia S un sistema lineare di n ( 2) equazioni in n incognite su un campo K : a 11 x 1 + a 12 x 2 + + a 1n x n
2 Progetto e realizzazione di funzioni ricorsive
2 Progetto e realizzazione di funzioni ricorsive Il procedimento costruttivo dato dal teorema di ricorsione suggerisce due fatti importanti. Una buona definizione ricorsiva deve essere tale da garantire
IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO)
IL CALCOLO VETTORIALE SUPPLEMENTO AL LIBRO CLAUDIO BONANNO Contents. Campi di vettori e operatori 2. Il lavoro di un campo di vettori 5 2.. Lavoro e campi conservativi 6 2.2. Lavoro e campi irrotazionali:
Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica
Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 13
Corrispondenze e funzioni
Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei
Teoremi di struttura dei moduli finitamente generati su un dominio euclideo
Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Appunti al corso di Algebra Anno accademico 23-24 1 Prodotti diretti. Siano M e N due moduli sullo stesso anello A, non necessariamente
ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE
ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto
Corso di Analisi Numerica
Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze
APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA. Margherita Roggero
APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA Margherita Roggero A.A. 2005/2006 M. Roggero - Appunti ed Esercizi di Matematica Discreta Introduzione Queste note contengono gli appunti del corso di Matematica
ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura
Cognome Nome Matricola ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura (Primo appello/ii prova parziale 15/6/15 - Chiarellotto-Urbinati) Per la II prova: solo esercizi
Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007
Spazi lineari - PARTE II - Felice Iavernaro Dipartimento di Matematica Università di Bari 9 e 16 Marzo 2007 Felice Iavernaro (Univ. Bari) Spazi lineari 9-16/03/2007 1 / 17 Condizionamento dei sistemi lineari
Geometria I A. Algebra lineare
UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali Geometria I A. Algebra lineare Prof.ssa Silvia Pianta Anno Accademico 22/23 Indice Spazi vettoriali 7 Definizione