LEZIONE 17. B : kn k m.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONE 17. B : kn k m."

Transcript

1 LEZIONE Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione Siano V e W spazi vettoriali su k = R, C finitamente generati. Allora V = W se e solo se dim k (V ) = dim k (W ). Dimostrazione. Supponiamo che f: V W sia un isomorfismo. Siano = (v 1,..., v n ) e D = (w 1,..., w m ) basi di V e W rispettivamente. Allora possiamo considerare la composizione g = [ ] D f [ ] 1 : kn k m. Essendo composizione di applicazioni lineari, g è lineare. Essendo composizione di applicazioni biiettive, g è biiettiva. Concludiamo che g è un isomorfismo. Tramite le usuali identificazioni k n = k n,1 e k m = k m,1 l isomorfismo g si identifica con un isomorfismo k n,1 k m,1 che, necessariamente (si veda l Esempio ), è della forma µ A per una qualche matrice A k m,n. Allora dim k (V ) = n = m = dim k (W ) (si veda l Esempio ). Viceversa sia dim k (V ) = dim k (W ) e siano = (v 1,..., v n ) e D = (w 1,..., w n ) basi di V e W rispettivamente. Allora dalla Proposizione segue l esistenza di due applicazioni lineari f: V W e g: W V tali che f(v i ) = w i e g(w i ) = v i, i = 1,..., n, rispettivamente. Consideriamo l applicazione lineare g f: V V. Allora g f(v i ) = g(f(v i )) = g(w i ) = v i, i = 1,..., n. D altra parte anche l applicazione identica id V : V V è lineare e soddisfa la condizione id V (v i ) = v i, i = 1,..., n. Per il Corollario si ha dunque g f = id V : analogamente, scambiando i ruoli di f e g, si ottiene f g = id W. Concludiamo che f è un applicazione lineare biiettiva, cioè un isomorfismo, quindi V = W. Esempio Sia k = R, C. Riprendiamo in considerazione i sottospazi T S n (k) e Sim n (k) di k n,n. Nell Esempio abbiamo visto che dim k (T S n (k)) = n(n + 1)/2. Se A k n,n allora A + t A Sim n (k). In particolare è definita l applicazione f: T S n (k) Sim n (k) A A + t A. 1 Typeset by AMS-TEX

2 ISOMORFISMI TRA SPAZI VETTORIALI FINITAMENTE GENERATI Se A = (a i,j ) 1 i,j n T S n (k) allora f(a) = = (b i,j ) 1 i,j n Sim n (k) dove a i,j se i < j, ( ) b i,j = 2a i,i se i = j, a j,i se i > j. Chiaramente se α k e A T S n (k) allora f(αa) = αa + t (αa) = αa + α t A = α(a + t A) = αf(a). Se, A, A T S n (k) allora f(a + A ) = A + A + t (A + A ) = A + A + t A + t A = = A + t A + A + t A = f(a ) + f(a ). Quindi f è k lineare. L applicazione f è un isomorfismo. Infatti f è suriettiva. Infatti se = (b i,j ) 1 i,j n Sim n (k) risulta = f(a) con A = (a i,j ) 1 i,j n T S n (k) definita da b i,j se i < j, a i,j = b i,i /2 se i = j, 0 se i > j. Inoltre f è iniettiva, cioè ker(f) = { 0 n,n }: se A = (a i,j ) 1 i,j n T S n (k) è tale che f(a) = 0 n,n, dalla relazione ( ) segue che a i,j = 0 = 2a i,i, ovvero A = 0 n,n. Il Corollario garantisce dunque che dim k (Sim n (k)) = dim n (T S n (k)) = n(n + 1)/2, come anticipato nell Esempio Similmente si consideri Alt n (k) = { A k n,n t A = A }. Si verifichi che Alt n (k) è un sottospazio vettoriale di k n,n e che l applicazione è un isomorfismo: in particolare g: ST S n (k) Alt n (k) A A t A dim k (Alt n (k)) = dim n (ST S n (k)) = n(n 1)/2

3 LEZIONE Matrice di un applicazione lineare. Siano V e W spazi vettoriali su k = R, C finitamente generati e siano = (v 1,..., v n ) e D = (w 1,..., w m ) basi di V e W rispettivamente. Come abbiamo visto nella dimostrazione della Proposizione invece di studiare direttamente un applicazione k lineare f: V W, può risultare più agevole comporla con opportuni isomorfismi con spazi vettoriali semplici come k n = k n,1 e k m = k m,1 e studiare l applicazione k lineare composta k n,1 k m,1 utilizzando quanto visto negli Esempi , e Se f: V W è un applicazione k lineare, possiamo costruire il diagramma V [ ] 1 k n f g W [ ] D k m k n,1 k m,1 ove, per definizione, si è posto g = [ ] 1 f [ ] D. Chiaramente g è k lineare (cfr. Proposizione ). Identificando k n e k m con k n,1 e k m,1 rispettivamente, in forza dell Esempio , segue l esistenza di una matrice A k m,n tale che l applicazione k n,1 k m,1 indotta dal diagramma sopra sia µ A. La matrice A dipende sia da f che dalle basi e D. Si noti che le colonne di A sono µ A (E j,1 ) = ([ ] D f [ ] 1 )(E j,1): poiché [ ] 1 (E j,1) = v j, segue che le colonne di A non sono altro che ([ ] D f)(v j ) = [f(v j )] D : cioè la j esima colonna di A sono le componenti rispetto alla base fissata nel codominio di f (disposte in colonna!) del j esimo vettore della base fissata nel dominio di f. Definizione Siano V e W spazi vettoriali su k = R, C finitamente generati, = (v 1,..., v n ) e D = (w 1,..., w m ) basi di V e W rispettivamente. Se f: V W è un applicazione k lineare definiamo la matrice di f rispetto alle basi e D la matrice M D (f) avente per colonne le componenti delle immagini dei vettori di rispetto a D. È opportuno osservare che V = k n e W = k m la matrice M(f) di f non è altro che la matrice di f rispetto alle basi canoniche nel senso della definizione data sopra. Esempio Si consideri l applicazione f: R 1 [x] R 2 [x] p(x) xp(x) : Chiaramente se α R e p 1 (x), p 2 (x) R 1 [x] si ha f(αp(x)) = x(αp(x)) = α(xp(x)) = αf(p(x)), f(p 1 (x) + p 2 (x)) = x(p 1 (x) + p 2 (x)) = xp 1 (x) + xp 2 (x) = f(p 1 (x)) + f(p 2 (x)),

4 MATRICE DI UN APPLICAZIONE LINEARE cioè f è R lineare. Si considerino le basi = (1, x) in R 1 [x] e D = (1, x, x 2 ) in R 2 [x]: determiniamo M D (f). Risulta quindi [f(1)] D = [x] D = (0, 1, 0), [f(x)] D = [x 2 ] D = (0, 0, 1) M D (f) = Si noti che [f(a + bx)] D = M D (f)[a + bx]. Si noti che X ker(g) k n,1 se e solo se ([ ] D f [ ] 1 )(X) = 0 m,1, se e solo se, posto v = [ ] 1 (X), si ha [f(v)] D = ([ ] D f)(v) = 0 m,1, se e solo se f(v) = ([ ] 1 D [ ] D f)(v) = [ ] 1 D (0 m,1) = 0 W ovvero se e solo se v = [ ] 1 (X) ker(f). In particolare restringendo [ ] 1 a ker(g) = ker(µ A) otteniamo un isomorfismo fra ker(g) (che si identifica naturalmente con ker(µ A )) e ker(f). Similmente restringendo [ ] 1 a im(f) otteniamo un isomorfismo fra im(f) eim(g) (che si identifica naturalmente con im(µ A )). Per il Corollario dim k (im(f)) = dim k (im(µ A )) = rk(a), dim k (ker(f)) = dim k (ker(µ A )) = n rk(a) (si veda ), quindi abbiamo immediatamente il seguente risultato, spesso chiamato Teorema della dimensione: esso non è altro che il Teorema di Rouché Capelli. Proposizione Siano V e W spazi vettoriali su k = R, C finitamente generati. Se f: V W è un applicazione k lineare si ha dim k (V ) = dim k (ker(f)) + dim k (im(f)). Il seguente corollario è immediata conseguenza della precedente proposizione (si veda anche l Esempio ) Corollario Siano V e W spazi vettoriali su k = R, C finitamente generati, f: V W un applicazione k lineare. i) Se f è iniettiva allora dim k (V ) dim k (W ). ii) Se f è suriettiva allora dim k (V ) dim k (W ). Quanto visto sopra ci permette di studiare un applicazione lineare tra spazi vettoriali di dimensione finita in modo più facile, studiando la sua matrice rispetto a basi fissate (comode).

5 Esempio Si consideri l applicazione LEZIONE 17 5 f: R 2 [x] R 2,2 ( ) a + bx + cx 2 a + b a + c. b c b c Il lettore verifichi che f è lineare. Fissiamo le basi = (1, x, x 2 ) e D = (E 1,1, E 1,2, E 2,1, E 2,2 ) in R 2 [x] e R 2,2 rispettivamente. Poiché [( )] 1 1 [f(1)] D = = (1, 1, 0, 0), 0 0 D [( )] 1 0 [f(x)] D = = (1, 0, 1, 1), 1 1 D [( )] [f(x )] D = = (0, 1, 1, 1), 1 1 segue che la matrice di A rispetto alle basi e D è A = Chiaramente dim(ker(f)) = dim(ker(µ A )) = 3 rk(a) = 1, dim(im(f)) = dim(im(µ A )) = rk(a) = 2. Quindi f non è né iniettiva né suriettiva. Se poi vogliamo essere più precisi circa ker(f) ed im(f), ci riduciamo a studiare ker(µ A ) e im(µ A ). Risolvendo il sistema AX = 0 4,1 otteniamo ker(µ A ) = { t ( a a a ) a R }, quindi, con l usuale identificazione di R 4 con R 4,1, ker(f) = { p(x) R 2 [x] [p(x)] ker(µ A ) } = = { a ax ax 2 a R } = L(1 x x 2 ) : in particolare dim R (ker(f)) = 1, come già visto sopra. Una conseguenza immediata è che 0 2,2 = f(1 x x 2 ) = f(1) f(x) f(x 2 ) ovvero f(x 2 ) = f(1) f(x), sicché im(f) = L(f(1), f(x), f(x 2 )) = L(f(1), f(x)). Poiché f(x) L(f(1)), segue che dim R (im(f)) = 2, come già visto sopra. D

6 MATRICE DI UN APPLICAZIONE LINEARE Esempio Ricordiamo che nell esempio abbiamo verificato che, se v 0 V 3 (O) è un vettore fissato, risulta im( v 0 ) = { w V 3 (O) v V 3 (O) tale che w = v v 0 } v 0 = { w V 3 (O) w, v 0 = 0 } Chiaramente se v 0 = 0, risulta im( v 0 ) = L( 0). Se, invece, v 0 0, l Esempio ci permette di affermare che dim R (ker( v 0 )) = 1, dunque la Proposizione implica dim R (im( v 0 )) = 2. D altra parte v 0 è un sottospazio di V 3 (O) (esercizio) non contenente v 0 : poiché dim R (V 3 (O)) = 3 segue che dim R ( v 0 ) 2. Essendo im( v 0 ) v 0 segue allora che deve valere l uguaglianza, come anticipato. Si noti che, fissato un sistema di riferimento 0 ı j k, risulta v 0 = a ı + b j + c k. La matrice di v 0 rispetto alla stessa base = ( ı, j, k) fissata nel dominio e codominio è A = 0 c b c 0 a b a 0. Esempio Si considerino in R 3 i vettori v 1 = (1, 2, 1), v 2 = (1, 0, 1), v 3 = (1, 0, 2) ed in R 2,2 i vettori A 1 = ( ) 1 0, A = ( ) 1 1, A = ( ) Poiché rk = rk = segue che v 1, v 2, v 3 sono linearmente indipendenti, quindi, per la Proposizione si ha che = (v 1, v 2, v 3 ) è una base di R 3. In particolare esiste un unica applicazione lineare f: R 3 R 2,2 tale che f(v i ) = A i, i = 1, 2, 3, in forza di Vogliamo studiare tale applicazione. A tale scopo scriviamone la matrice rispetto a basi opportunamente scelte nel dominio e nel codominio. Nel dominio abbiamo varie scelte possibili: potremmo per esempio scegliere la base canonica C. Per semplificare al massimo la forma della matrice e, di conseguenza, i calcoli la scelta migliore è, in realtà, quella di prendere la base = (v 1, v 2, v 3 ). Anche nel codominio possiamo fare molte scelte lecite: per esempio potremmo prendere la base E = (E 1,1, E 1,2, E 2,1, E 2,2 ). Ancora per semplificare al massimo i conti una buona scelta può essere quella di prendere D = (A 1, A 2, E 1,2, E 2,1 ) (verificare, per esercizio, che D è base di R 2,2 ).

7 LEZIONE 17 7 Poiché f(v 1 ) = A 1 = 1A 1 + 0A 2 + 0E 1,2 + 0E 2,1, f(v 2 ) = A 2 = 0A 1 + 1A 2 + 0E 1,2 + 0E 2,1, f(v 3 ) = A 3 = 1A 1 + 1A 2 + 0E 1,2 + 0E 2,1, segue che [f(v 1 )] D = (1, 0, 0, 0), [f(v 2 )] D = (0, 1, 0, 0), [f(v 3 )] D = (1, 1, 0, 0), sicché M D (f) = Per semplificare le notazioni sia A = M D (f). Poiché, come è facile vedere dalla matrice, una base di im(µ A ) R 4,1 è (E 1,1, E 2,1 ) corrispondente, tramite l usuale identificazione R 4 = R 4,1, con (e 1, e 2 ), e risulta A 1 = [ ] 1 D (e 1), A 2 = [ ] 1 D (e 2), segue che im(f) ha per base (A 1, A 2 ). Ancora è facile vedere che ker(µ A ) è generato dal singolo vettore E = t ( ) corrispondente, tramite l usuale identificazione R 3 = R 3,1, con e = (1, 1, 1). Poiché (1, 2, 0) = v 1 + v 2 v 3 = [ ] 1 (e), segue che ker(f) è generato dal vettore (1, 2, 0). Per esercizio calcolare MC E(f): si verifichi che M C E(f) M D (f) e che procedendo come fatto sopra con la matrice MC E(f) in luogo di M D (f) si riottengono gli stessi risultati Endomorfismi. Proposizione Siano V e W spazi vettoriali su k = R, C finitamente generati con dim k (V ) = dim k (W ). Sia f: V W un applicazione lineare. Le seguenti affermazioni sono equivalenti: i) f è iniettiva; ii) f è suriettiva; iii) f è un isomorfismo. Dimostrazione. Chiaramente l affermazione iii) implica sia l affermazione i) che l affermazione ii). Supponiamo che valga i), cioè che f è iniettiva. In tal caso dim k (ker(f)) = 0: per la Proposizione e per l ipotesi segue allora che dim k (W ) = dim k (V ) = dim k (im(f)), quindi im(f) = W poiché hanno la stessa dimensione e im(f) W è sottospazio vettoriale (si veda la Proposizione ). Concludiamo che f è suriettiva, quindi è un isomorfismo. Supponiamo che valga ii), cioè che f sia suriettiva. In tal caso dim k (V ) = dim k (W ) = dim k (im(f)), quindi dim k (ker(f)) = 0 per la Proposizione Concludiamo che f è iniettiva, quindi è un isomorfismo. Vediamo ora un esempio che illustra l utilità della precedente proposizione. Esempio Si consideri l applicazione f: C 3 C 2 [x] (a, b, c) (a + (a + b)x + (a + b + c)x 2 ).

8 ENDOMORFISMI Chiaramente (a, b, c) ker(f) se e solo se a + (a + b)x + (a + b + c)x 2 = 0 se e solo se a = a + b = a + b + c = 0, cioè se e solo se (a, b, c) = (0, 0, 0). In particolare f è iniettiva: per la Proposizione possiamo concludere che f è un isomorfismo senza doverne studiare la suriettività. Ad un analogo risultato si poteva arrivare osservando che la matrice di f rispetto alla base canonica di C 3 ed alla base (1, x, x 2 ) di C 2 [x] è che è invertibile A = , Chiaramente la Proposizione si applica, in particolare, al caso V = W, purché V sia finitamente generato. Definizione Sia V uno spazio vettoriale su k = R, C. Un endomorfismo di V è un applicazione lineare f: V V. Chiaramente la Proposizione si applica agli endomorfismi di spazi vettoriali finitamente generati. Essa non è valida se si lavora con spazi non finitamente generato come mostra il seguente esempio. Esempio Esistono endomorfismi suriettivi ma non iniettivi. Infatti sia I =]a, b[ R non vuoto. Nell Esempio abbiamo osservato che l applicazione D: C (I) C (I) è lineare. Tale applicazione non è iniettiva, ma è suriettiva per un ben noto risultato di analisi. Esistono endomorfismi iniettivi ma non suriettivi. Infatti sia k = R, C e si consideri l applicazione f: k[x] k[x] p(x) xp(x). Si verifichi che f è lineare. Chiaramente f è iniettiva, ma non è suriettiva perché i polinomi costanti non sono in im(f). Le applicazioni lineari del precedente esempio sono particolari esempi di endomorfismi.

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1 FOGLIO 4 - Applicazioni lineari Esercizio 1. Si risolvano i seguenti sistemi lineari al variare di k R. { x y + z + 2w = k x z + w = k 2 { kx + y z = 2 x + y kw = k Esercizio 2. Al variare di k R trovare

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

3. SPAZI VETTORIALI CON PRODOTTO SCALARE

3. SPAZI VETTORIALI CON PRODOTTO SCALARE 3 SPAZI VETTORIALI CON PRODOTTO SCALARE 31 Prodotti scalari Definizione 311 Sia V SV(R) Un prodotto scalare su V è un applicazione, : V V R (v 1,v 2 ) v 1,v 2 tale che: i) v,v = v,v per ogni v,v V ; ii)

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Appunti al corso di Algebra Anno accademico 23-24 1 Prodotti diretti. Siano M e N due moduli sullo stesso anello A, non necessariamente

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

Il problema della fattorizzazione nei domini di Dedekind

Il problema della fattorizzazione nei domini di Dedekind Il problema della fattorizzazione nei domini di Dedekind Stefania Gabelli Dipartimento di Matematica, Università degli Studi Roma Tre Note per i corsi di Algebra Commutativa a.a. 2010/2011 1 Indice 1 Preliminari

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

4. Strutture algebriche. Relazioni

4. Strutture algebriche. Relazioni Relazioni Sia R una relazione definita su un insieme A (cioè R A A). R si dice riflessiva se a A : ara R si dice simmetrica se a, b A : arb = bra R si dice antisimmetrica se a, b A : arb bra = a = b R

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Lezioni del corso AL430 - Anelli Commutativi e Ideali

Lezioni del corso AL430 - Anelli Commutativi e Ideali Lezioni del corso AL430 - Anelli Commutativi e Ideali a.a. 2011-2012 Introduzione alla Teoria delle Valutazioni Stefania Gabelli Testi di Riferimento M. F. Atiyah and I. G. Macdonald, Introduction to Commutative

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Teoria dei Fibrati. Filippo Bracci

Teoria dei Fibrati. Filippo Bracci Teoria dei Fibrati Filippo Bracci DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DI ROMA TOR VERGATA VIA DELLA RICERCA SCIENTIFICA 1, 00133 ROMA, ITALY. E-mail address: fbracci@mat.uniroma2.it Indice Capitolo

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

FORME DIFFERENZIALI IN R 3 E INTEGRALI

FORME DIFFERENZIALI IN R 3 E INTEGRALI FORME DIFFERENZIALI IN R 3 E INTEGRALI CLADIO BONANNO Contents 1. Spazio duale di uno spazio vettoriale 1 1.1. Esercizi 3 2. Spazi tangente e cotangente 4 2.1. Esercizi 6 3. Le forme differenziali e i

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

GRUPPI TOPOLOGICI. 1 Gruppi Un gruppo è un insieme G, che contiene un elemento distinto e e su cui è definita un operazione binaria

GRUPPI TOPOLOGICI. 1 Gruppi Un gruppo è un insieme G, che contiene un elemento distinto e e su cui è definita un operazione binaria CAPITOLO I GRUPPI TOPOLOGICI 1 Gruppi Un gruppo è un insieme G, che contiene un elemento distinto e e su cui è definita un operazione binaria (1.1) G G (a, b) a b G con le proprietà: (i) a e = e a = a

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Funzioni tra insiemi niti Numeri di Stirling e Bell. Davide Penazzi

Funzioni tra insiemi niti Numeri di Stirling e Bell. Davide Penazzi Funzioni tra insiemi niti Numeri di Stirling e Bell Davide Penazzi 2 Funzioni tra insiemi niti: i numeri di Stirling e Bell 1 Contare il numero delle funzioni tra insiemi 1.1 Denizioni e concetti preliminari

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Le Derivate delle Funzioni Elementari

Le Derivate delle Funzioni Elementari Capitolo 4 Le Derivate delle Funzioni Elementari In questo Capitolo impareremo a trovare la formula per la funzione derivata di una funzione elementare, cioè di una funzione costruita con ingredienti di

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

IL TEOREMA DI LIOUVILLE OVVERO PERCHÉ NON ESISTE LA PRIMITIVA DI e x2

IL TEOREMA DI LIOUVILLE OVVERO PERCHÉ NON ESISTE LA PRIMITIVA DI e x2 IL TEOREMA DI LIOUVILLE OVVERO PERCHÉ NON ESISTE LA PRIMITIVA DI e x2 CAMILLO DE LELLIS Il seguente lavoro è l elaborazione di un contributo alla conferenza tenuta dall autore il 29 settembre 2012 presso

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

TUTTO QUELLO CHE NON AVRESTE VOLUTO SAPERE DEL CORSO DI

TUTTO QUELLO CHE NON AVRESTE VOLUTO SAPERE DEL CORSO DI TUTTO QUELLO CHE NON AVRESTE VOLUTO SAPERE DEL CORSO DI INTRODUZIONE ALLA TEORIA DEI GRUPPI, DEGLI ANELLI E DEI CAMPI MA CHE QUALCUNO VI HA VOLUTO INSEGNARE LO STESSO CONTIENE 1. tutte le risposte alle

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Analisi funzionale. Riccarda Rossi Lezione 9

Analisi funzionale. Riccarda Rossi Lezione 9 Riarda Rossi Lezione 9 Caratterizzazione della onvergenza debole in L p (Ω) Siano 1 < p < e {f n}, f L p (Ω): allora f n f in L p (Ω) Teorema di ompattezza debole in L p (Ω) Teorema Siano 1 < p < e {f

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

CAPITOLO I SPAZI TOPOLOGICI

CAPITOLO I SPAZI TOPOLOGICI CAPITOLO I SPAZI TOPOLOGICI 1 Topologie su un insieme Sia X un insieme. Una topologia su X è una famiglia τ di sottoinsiemi di X, che si dicono aperti. Gli aperti di una topologia su X devono soddisfare

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI CAMPI SCALARI Sono dati: un insieme aperto A Â n, un punto x = (x, x 2,, x n )T A e una funzione f : A Â Si pone allora il PROBLEMA

Dettagli

Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto

Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto Claudio Tamagnini Dipartimento di Ingegneria Civile e Ambientale Università degli Studi di

Dettagli

Funzioni e loro grafici

Funzioni e loro grafici Funzioni e loro grafici Dicesi funzione y=f(x) della variabile x una legge qualsiasi che faccia corrispondere ad ogni valore di x, scelto in un certo insieme, detto dominio, uno ed uno solo valore di y

Dettagli

Spazi metrici e spazi topologici

Spazi metrici e spazi topologici Topologia 1 2007/2008 D. Dikranjan, UDINE Spazi metrici e spazi topologici D. Dikranjan L origine della topologia é dovuta a H. Poincaré, M. Fréchet e F. Hausdorff circa un secolo fa. Adesso questa disciplina

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli