LEZIONE 17. B : kn k m.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONE 17. B : kn k m."

Transcript

1 LEZIONE Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione Siano V e W spazi vettoriali su k = R, C finitamente generati. Allora V = W se e solo se dim k (V ) = dim k (W ). Dimostrazione. Supponiamo che f: V W sia un isomorfismo. Siano = (v 1,..., v n ) e D = (w 1,..., w m ) basi di V e W rispettivamente. Allora possiamo considerare la composizione g = [ ] D f [ ] 1 : kn k m. Essendo composizione di applicazioni lineari, g è lineare. Essendo composizione di applicazioni biiettive, g è biiettiva. Concludiamo che g è un isomorfismo. Tramite le usuali identificazioni k n = k n,1 e k m = k m,1 l isomorfismo g si identifica con un isomorfismo k n,1 k m,1 che, necessariamente (si veda l Esempio ), è della forma µ A per una qualche matrice A k m,n. Allora dim k (V ) = n = m = dim k (W ) (si veda l Esempio ). Viceversa sia dim k (V ) = dim k (W ) e siano = (v 1,..., v n ) e D = (w 1,..., w n ) basi di V e W rispettivamente. Allora dalla Proposizione segue l esistenza di due applicazioni lineari f: V W e g: W V tali che f(v i ) = w i e g(w i ) = v i, i = 1,..., n, rispettivamente. Consideriamo l applicazione lineare g f: V V. Allora g f(v i ) = g(f(v i )) = g(w i ) = v i, i = 1,..., n. D altra parte anche l applicazione identica id V : V V è lineare e soddisfa la condizione id V (v i ) = v i, i = 1,..., n. Per il Corollario si ha dunque g f = id V : analogamente, scambiando i ruoli di f e g, si ottiene f g = id W. Concludiamo che f è un applicazione lineare biiettiva, cioè un isomorfismo, quindi V = W. Esempio Sia k = R, C. Riprendiamo in considerazione i sottospazi T S n (k) e Sim n (k) di k n,n. Nell Esempio abbiamo visto che dim k (T S n (k)) = n(n + 1)/2. Se A k n,n allora A + t A Sim n (k). In particolare è definita l applicazione f: T S n (k) Sim n (k) A A + t A. 1 Typeset by AMS-TEX

2 ISOMORFISMI TRA SPAZI VETTORIALI FINITAMENTE GENERATI Se A = (a i,j ) 1 i,j n T S n (k) allora f(a) = = (b i,j ) 1 i,j n Sim n (k) dove a i,j se i < j, ( ) b i,j = 2a i,i se i = j, a j,i se i > j. Chiaramente se α k e A T S n (k) allora f(αa) = αa + t (αa) = αa + α t A = α(a + t A) = αf(a). Se, A, A T S n (k) allora f(a + A ) = A + A + t (A + A ) = A + A + t A + t A = = A + t A + A + t A = f(a ) + f(a ). Quindi f è k lineare. L applicazione f è un isomorfismo. Infatti f è suriettiva. Infatti se = (b i,j ) 1 i,j n Sim n (k) risulta = f(a) con A = (a i,j ) 1 i,j n T S n (k) definita da b i,j se i < j, a i,j = b i,i /2 se i = j, 0 se i > j. Inoltre f è iniettiva, cioè ker(f) = { 0 n,n }: se A = (a i,j ) 1 i,j n T S n (k) è tale che f(a) = 0 n,n, dalla relazione ( ) segue che a i,j = 0 = 2a i,i, ovvero A = 0 n,n. Il Corollario garantisce dunque che dim k (Sim n (k)) = dim n (T S n (k)) = n(n + 1)/2, come anticipato nell Esempio Similmente si consideri Alt n (k) = { A k n,n t A = A }. Si verifichi che Alt n (k) è un sottospazio vettoriale di k n,n e che l applicazione è un isomorfismo: in particolare g: ST S n (k) Alt n (k) A A t A dim k (Alt n (k)) = dim n (ST S n (k)) = n(n 1)/2

3 LEZIONE Matrice di un applicazione lineare. Siano V e W spazi vettoriali su k = R, C finitamente generati e siano = (v 1,..., v n ) e D = (w 1,..., w m ) basi di V e W rispettivamente. Come abbiamo visto nella dimostrazione della Proposizione invece di studiare direttamente un applicazione k lineare f: V W, può risultare più agevole comporla con opportuni isomorfismi con spazi vettoriali semplici come k n = k n,1 e k m = k m,1 e studiare l applicazione k lineare composta k n,1 k m,1 utilizzando quanto visto negli Esempi , e Se f: V W è un applicazione k lineare, possiamo costruire il diagramma V [ ] 1 k n f g W [ ] D k m k n,1 k m,1 ove, per definizione, si è posto g = [ ] 1 f [ ] D. Chiaramente g è k lineare (cfr. Proposizione ). Identificando k n e k m con k n,1 e k m,1 rispettivamente, in forza dell Esempio , segue l esistenza di una matrice A k m,n tale che l applicazione k n,1 k m,1 indotta dal diagramma sopra sia µ A. La matrice A dipende sia da f che dalle basi e D. Si noti che le colonne di A sono µ A (E j,1 ) = ([ ] D f [ ] 1 )(E j,1): poiché [ ] 1 (E j,1) = v j, segue che le colonne di A non sono altro che ([ ] D f)(v j ) = [f(v j )] D : cioè la j esima colonna di A sono le componenti rispetto alla base fissata nel codominio di f (disposte in colonna!) del j esimo vettore della base fissata nel dominio di f. Definizione Siano V e W spazi vettoriali su k = R, C finitamente generati, = (v 1,..., v n ) e D = (w 1,..., w m ) basi di V e W rispettivamente. Se f: V W è un applicazione k lineare definiamo la matrice di f rispetto alle basi e D la matrice M D (f) avente per colonne le componenti delle immagini dei vettori di rispetto a D. È opportuno osservare che V = k n e W = k m la matrice M(f) di f non è altro che la matrice di f rispetto alle basi canoniche nel senso della definizione data sopra. Esempio Si consideri l applicazione f: R 1 [x] R 2 [x] p(x) xp(x) : Chiaramente se α R e p 1 (x), p 2 (x) R 1 [x] si ha f(αp(x)) = x(αp(x)) = α(xp(x)) = αf(p(x)), f(p 1 (x) + p 2 (x)) = x(p 1 (x) + p 2 (x)) = xp 1 (x) + xp 2 (x) = f(p 1 (x)) + f(p 2 (x)),

4 MATRICE DI UN APPLICAZIONE LINEARE cioè f è R lineare. Si considerino le basi = (1, x) in R 1 [x] e D = (1, x, x 2 ) in R 2 [x]: determiniamo M D (f). Risulta quindi [f(1)] D = [x] D = (0, 1, 0), [f(x)] D = [x 2 ] D = (0, 0, 1) M D (f) = Si noti che [f(a + bx)] D = M D (f)[a + bx]. Si noti che X ker(g) k n,1 se e solo se ([ ] D f [ ] 1 )(X) = 0 m,1, se e solo se, posto v = [ ] 1 (X), si ha [f(v)] D = ([ ] D f)(v) = 0 m,1, se e solo se f(v) = ([ ] 1 D [ ] D f)(v) = [ ] 1 D (0 m,1) = 0 W ovvero se e solo se v = [ ] 1 (X) ker(f). In particolare restringendo [ ] 1 a ker(g) = ker(µ A) otteniamo un isomorfismo fra ker(g) (che si identifica naturalmente con ker(µ A )) e ker(f). Similmente restringendo [ ] 1 a im(f) otteniamo un isomorfismo fra im(f) eim(g) (che si identifica naturalmente con im(µ A )). Per il Corollario dim k (im(f)) = dim k (im(µ A )) = rk(a), dim k (ker(f)) = dim k (ker(µ A )) = n rk(a) (si veda ), quindi abbiamo immediatamente il seguente risultato, spesso chiamato Teorema della dimensione: esso non è altro che il Teorema di Rouché Capelli. Proposizione Siano V e W spazi vettoriali su k = R, C finitamente generati. Se f: V W è un applicazione k lineare si ha dim k (V ) = dim k (ker(f)) + dim k (im(f)). Il seguente corollario è immediata conseguenza della precedente proposizione (si veda anche l Esempio ) Corollario Siano V e W spazi vettoriali su k = R, C finitamente generati, f: V W un applicazione k lineare. i) Se f è iniettiva allora dim k (V ) dim k (W ). ii) Se f è suriettiva allora dim k (V ) dim k (W ). Quanto visto sopra ci permette di studiare un applicazione lineare tra spazi vettoriali di dimensione finita in modo più facile, studiando la sua matrice rispetto a basi fissate (comode).

5 Esempio Si consideri l applicazione LEZIONE 17 5 f: R 2 [x] R 2,2 ( ) a + bx + cx 2 a + b a + c. b c b c Il lettore verifichi che f è lineare. Fissiamo le basi = (1, x, x 2 ) e D = (E 1,1, E 1,2, E 2,1, E 2,2 ) in R 2 [x] e R 2,2 rispettivamente. Poiché [( )] 1 1 [f(1)] D = = (1, 1, 0, 0), 0 0 D [( )] 1 0 [f(x)] D = = (1, 0, 1, 1), 1 1 D [( )] [f(x )] D = = (0, 1, 1, 1), 1 1 segue che la matrice di A rispetto alle basi e D è A = Chiaramente dim(ker(f)) = dim(ker(µ A )) = 3 rk(a) = 1, dim(im(f)) = dim(im(µ A )) = rk(a) = 2. Quindi f non è né iniettiva né suriettiva. Se poi vogliamo essere più precisi circa ker(f) ed im(f), ci riduciamo a studiare ker(µ A ) e im(µ A ). Risolvendo il sistema AX = 0 4,1 otteniamo ker(µ A ) = { t ( a a a ) a R }, quindi, con l usuale identificazione di R 4 con R 4,1, ker(f) = { p(x) R 2 [x] [p(x)] ker(µ A ) } = = { a ax ax 2 a R } = L(1 x x 2 ) : in particolare dim R (ker(f)) = 1, come già visto sopra. Una conseguenza immediata è che 0 2,2 = f(1 x x 2 ) = f(1) f(x) f(x 2 ) ovvero f(x 2 ) = f(1) f(x), sicché im(f) = L(f(1), f(x), f(x 2 )) = L(f(1), f(x)). Poiché f(x) L(f(1)), segue che dim R (im(f)) = 2, come già visto sopra. D

6 MATRICE DI UN APPLICAZIONE LINEARE Esempio Ricordiamo che nell esempio abbiamo verificato che, se v 0 V 3 (O) è un vettore fissato, risulta im( v 0 ) = { w V 3 (O) v V 3 (O) tale che w = v v 0 } v 0 = { w V 3 (O) w, v 0 = 0 } Chiaramente se v 0 = 0, risulta im( v 0 ) = L( 0). Se, invece, v 0 0, l Esempio ci permette di affermare che dim R (ker( v 0 )) = 1, dunque la Proposizione implica dim R (im( v 0 )) = 2. D altra parte v 0 è un sottospazio di V 3 (O) (esercizio) non contenente v 0 : poiché dim R (V 3 (O)) = 3 segue che dim R ( v 0 ) 2. Essendo im( v 0 ) v 0 segue allora che deve valere l uguaglianza, come anticipato. Si noti che, fissato un sistema di riferimento 0 ı j k, risulta v 0 = a ı + b j + c k. La matrice di v 0 rispetto alla stessa base = ( ı, j, k) fissata nel dominio e codominio è A = 0 c b c 0 a b a 0. Esempio Si considerino in R 3 i vettori v 1 = (1, 2, 1), v 2 = (1, 0, 1), v 3 = (1, 0, 2) ed in R 2,2 i vettori A 1 = ( ) 1 0, A = ( ) 1 1, A = ( ) Poiché rk = rk = segue che v 1, v 2, v 3 sono linearmente indipendenti, quindi, per la Proposizione si ha che = (v 1, v 2, v 3 ) è una base di R 3. In particolare esiste un unica applicazione lineare f: R 3 R 2,2 tale che f(v i ) = A i, i = 1, 2, 3, in forza di Vogliamo studiare tale applicazione. A tale scopo scriviamone la matrice rispetto a basi opportunamente scelte nel dominio e nel codominio. Nel dominio abbiamo varie scelte possibili: potremmo per esempio scegliere la base canonica C. Per semplificare al massimo la forma della matrice e, di conseguenza, i calcoli la scelta migliore è, in realtà, quella di prendere la base = (v 1, v 2, v 3 ). Anche nel codominio possiamo fare molte scelte lecite: per esempio potremmo prendere la base E = (E 1,1, E 1,2, E 2,1, E 2,2 ). Ancora per semplificare al massimo i conti una buona scelta può essere quella di prendere D = (A 1, A 2, E 1,2, E 2,1 ) (verificare, per esercizio, che D è base di R 2,2 ).

7 LEZIONE 17 7 Poiché f(v 1 ) = A 1 = 1A 1 + 0A 2 + 0E 1,2 + 0E 2,1, f(v 2 ) = A 2 = 0A 1 + 1A 2 + 0E 1,2 + 0E 2,1, f(v 3 ) = A 3 = 1A 1 + 1A 2 + 0E 1,2 + 0E 2,1, segue che [f(v 1 )] D = (1, 0, 0, 0), [f(v 2 )] D = (0, 1, 0, 0), [f(v 3 )] D = (1, 1, 0, 0), sicché M D (f) = Per semplificare le notazioni sia A = M D (f). Poiché, come è facile vedere dalla matrice, una base di im(µ A ) R 4,1 è (E 1,1, E 2,1 ) corrispondente, tramite l usuale identificazione R 4 = R 4,1, con (e 1, e 2 ), e risulta A 1 = [ ] 1 D (e 1), A 2 = [ ] 1 D (e 2), segue che im(f) ha per base (A 1, A 2 ). Ancora è facile vedere che ker(µ A ) è generato dal singolo vettore E = t ( ) corrispondente, tramite l usuale identificazione R 3 = R 3,1, con e = (1, 1, 1). Poiché (1, 2, 0) = v 1 + v 2 v 3 = [ ] 1 (e), segue che ker(f) è generato dal vettore (1, 2, 0). Per esercizio calcolare MC E(f): si verifichi che M C E(f) M D (f) e che procedendo come fatto sopra con la matrice MC E(f) in luogo di M D (f) si riottengono gli stessi risultati Endomorfismi. Proposizione Siano V e W spazi vettoriali su k = R, C finitamente generati con dim k (V ) = dim k (W ). Sia f: V W un applicazione lineare. Le seguenti affermazioni sono equivalenti: i) f è iniettiva; ii) f è suriettiva; iii) f è un isomorfismo. Dimostrazione. Chiaramente l affermazione iii) implica sia l affermazione i) che l affermazione ii). Supponiamo che valga i), cioè che f è iniettiva. In tal caso dim k (ker(f)) = 0: per la Proposizione e per l ipotesi segue allora che dim k (W ) = dim k (V ) = dim k (im(f)), quindi im(f) = W poiché hanno la stessa dimensione e im(f) W è sottospazio vettoriale (si veda la Proposizione ). Concludiamo che f è suriettiva, quindi è un isomorfismo. Supponiamo che valga ii), cioè che f sia suriettiva. In tal caso dim k (V ) = dim k (W ) = dim k (im(f)), quindi dim k (ker(f)) = 0 per la Proposizione Concludiamo che f è iniettiva, quindi è un isomorfismo. Vediamo ora un esempio che illustra l utilità della precedente proposizione. Esempio Si consideri l applicazione f: C 3 C 2 [x] (a, b, c) (a + (a + b)x + (a + b + c)x 2 ).

8 ENDOMORFISMI Chiaramente (a, b, c) ker(f) se e solo se a + (a + b)x + (a + b + c)x 2 = 0 se e solo se a = a + b = a + b + c = 0, cioè se e solo se (a, b, c) = (0, 0, 0). In particolare f è iniettiva: per la Proposizione possiamo concludere che f è un isomorfismo senza doverne studiare la suriettività. Ad un analogo risultato si poteva arrivare osservando che la matrice di f rispetto alla base canonica di C 3 ed alla base (1, x, x 2 ) di C 2 [x] è che è invertibile A = , Chiaramente la Proposizione si applica, in particolare, al caso V = W, purché V sia finitamente generato. Definizione Sia V uno spazio vettoriale su k = R, C. Un endomorfismo di V è un applicazione lineare f: V V. Chiaramente la Proposizione si applica agli endomorfismi di spazi vettoriali finitamente generati. Essa non è valida se si lavora con spazi non finitamente generato come mostra il seguente esempio. Esempio Esistono endomorfismi suriettivi ma non iniettivi. Infatti sia I =]a, b[ R non vuoto. Nell Esempio abbiamo osservato che l applicazione D: C (I) C (I) è lineare. Tale applicazione non è iniettiva, ma è suriettiva per un ben noto risultato di analisi. Esistono endomorfismi iniettivi ma non suriettivi. Infatti sia k = R, C e si consideri l applicazione f: k[x] k[x] p(x) xp(x). Si verifichi che f è lineare. Chiaramente f è iniettiva, ma non è suriettiva perché i polinomi costanti non sono in im(f). Le applicazioni lineari del precedente esempio sono particolari esempi di endomorfismi.

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W LEZIONE 16 16.1. Applicazioni lineari iniettive e suriettive. Ricordo le seguenti due definizioni valide per applicazioni di qualsiasi tipo ϕ: X Y fra due insiemi. L applicazione ϕ si dice iniettiva se

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio 1. Sia f: R 3 R 2 (x, y, z) (x + 2y + z, y + z). (1) Verificare che f è lineare. (2) Determinare una base di ker(f) e stabilire se f è iniettiva. (3) Calcolare w

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

3 Applicazioni lineari e matrici

3 Applicazioni lineari e matrici 3 Applicazioni lineari e matrici 3.1 Applicazioni lineari Definizione 3.1 Siano V e W dei K spazi vettoriali. Una funzione f : V W è detta applicazione lineare se: i u, v V, si ha f(u + v = f(u + f(v;

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

ESERCIZI APPLICAZIONI LINEARI

ESERCIZI APPLICAZIONI LINEARI ESERCIZI APPLICAZIONI LINEARI PAOLO FACCIN 1. Esercizi sulle applicazioni lineari 1.1. Definizioni sulle applicazioni lineari. Siano V, e W spazi vettoriali, con rispettive basi B V := (v 1 v n) e B W

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine Lezione 6 Nucleo, Immagine e Teorema della Dimensione In questa lezione entriamo nel vivo della teoria delle applicazioni lineari. Per una applicazione lineare L : V W definiamo e impariamo a calcolare

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Lezioni di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio CAPITOLO 4 Applicazioni lineari 1. Definizioni ed esempi. In questo capitolo ci proponiamo di studiare le funzioni tra spazi

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Primo Esonero del corso di Geometria Docente F. Flamini, Roma, 2//28 SOLUZIONI COMPITO I ESONERO Esercizio.

Dettagli

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j. LEZIONE 31 31.1. Domini di funzioni di più variabili. Sia ora U R n e consideriamo una funzione f: U R m. Una tale funzione associa a x = (x 1,..., x n ) U un elemento f(x 1,..., x n ) R m : tale elemento

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga Lezioni del corso di Geometria e Algebra prof Michele Mulazzani dott Alessia Cattabriga AA 20001/2002 Indice 1 Equazioni e sistemi lineari 4 11 Alcune strutture algebriche 4 12 Operazioni standard su K

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1 FOGLIO 4 - Applicazioni lineari Esercizio 1. Si risolvano i seguenti sistemi lineari al variare di k R. { x y + z + 2w = k x z + w = k 2 { kx + y z = 2 x + y kw = k Esercizio 2. Al variare di k R trovare

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Elementi di Algebra Lineare Applicazioni lineari

Elementi di Algebra Lineare Applicazioni lineari Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 18 index Applicazioni lineari 1 Applicazioni lineari

Dettagli

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali APPROFONDIMENTI DI ALGEBRA M. Chiara Tamburini Anno Accademico 2013/2014 Indice Prefazione iii I Moduli su un anello

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

Applicazioni lineari

Applicazioni lineari CAPITOLO 8 Applicazioni lineari Esercizio 8.. Sia T : R 3 R 3 l applicazione definita da T(x,x,x 3 ) = (x,x,x 3 ). Stabilire se T è lineare. Esercizio 8.. Verificare che la funzione determinante definita

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione Lezioni del 29 settembre e 1 ottobre. 1. Funzioni iniettive, suriettive, biiettive. Sia f : A B una funzione da un insieme A ad un insieme B. Sia a A e sia b = f (a) B l elemento che f associa ad a, allora

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

II Spazi vettoriali ed applicazioni lineari

II Spazi vettoriali ed applicazioni lineari II Spazi vettoriali ed applicazioni lineari Nel capitolo precedente abbiamo visto come assumano un ruolo importante nello studio dello Spazio Euclideo la sua struttura di spazio affine e quindi di spazio

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A)

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A) Esame di Geometria - 9 CFU (Appello del 28 gennaio 23 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Nello spazio R 3, siano dati il piano e i punti P = (, 2, ), Q = (2,, ). π : x + 2y 3

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

ALGEBRA I: MODULI. Abbiamo indicato con 0 A, 1 A lo zero e l unità nell anello A e con 0 M l elemento neutro del gruppo abeliano (M, +).

ALGEBRA I: MODULI. Abbiamo indicato con 0 A, 1 A lo zero e l unità nell anello A e con 0 M l elemento neutro del gruppo abeliano (M, +). ALGEBRA I: MODULI 1 GENERALITÀ SUGLI A-MODULI Il concetto di A-modulo generalizza quello di spazio vettoriale su un campo K Definizione 11 Sia A un anello commutativo con unità Un A-modulo è un insieme

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) SPAZI VETTORIALI SU R

ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) SPAZI VETTORIALI SU R ISTITUZIONI DI MATEMATICA I (prof MPCavaliere) SPAZI VETTORIALI SU R Abbiamo visto parlando dei numeri complessi che i punti P del piano possono essere determinati da coppie di numeri reali, se è dato

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ 1. Definizione di funzione Definizione 1.1. Siano X e Y due insiemi. Una funzione f da X a Y è un sottoinsieme del prodotto cartesiano: f X Y, tale che

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

1.1. Spazi metrici completi

1.1. Spazi metrici completi SPAZI METRICI: COMPLETEZZA E COMPATTEZZA Note informali dalle lezioni 1.1. Spazi metrici completi La nozione di convergenza di successioni è centrale nello studio degli spazi metrici. In particolare è

Dettagli

1 Regole generali per l esame. 2 Libro di Testo

1 Regole generali per l esame. 2 Libro di Testo FACOLTÀ DI INGEGNERIA Corso di GEOMETRIA E ALGEBRA (mn). (Ing. per l Ambiente e il Territorio, Ing. Informatica - Sede di Mantova) A.A. 2008/2009. Docente: F. BISI. 1 Regole generali per l esame L esame

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Cenni di teoria dei campi finiti

Cenni di teoria dei campi finiti Cenni di teoria dei campi finiti Luca Giuzzi 31 ottobre 2011 In queste note vengono richiamati alcuni risultati di algebra relativi la teoria dei campi finiti. 1 Anelli Definizione 1. Un anello (R, +,

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità. 1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

3. SPAZI VETTORIALI CON PRODOTTO SCALARE

3. SPAZI VETTORIALI CON PRODOTTO SCALARE 3 SPAZI VETTORIALI CON PRODOTTO SCALARE 31 Prodotti scalari Definizione 311 Sia V SV(R) Un prodotto scalare su V è un applicazione, : V V R (v 1,v 2 ) v 1,v 2 tale che: i) v,v = v,v per ogni v,v V ; ii)

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi ai metodi iterativi per risolvere sistemi di equazioni

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI

ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI 1. CLASSI DI RESTO E DIVISIBILITÀ In questa parte sarò asciuttissimo, e scriverò solo le cose essenziali. I commenti avete potuto ascoltarli a lezione.

Dettagli

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura Cognome Nome Matricola ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura (Primo appello/ii prova parziale 15/6/15 - Chiarellotto-Urbinati) Per la II prova: solo esercizi

Dettagli

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari:

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: Applicazioni lineari Definizione Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: f(αv + βv 2 ) = αf(v ) + βf(v 2 ) v, v 2 V, α, β K.

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Geometria I A. Algebra lineare

Geometria I A. Algebra lineare UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali Geometria I A. Algebra lineare Prof.ssa Silvia Pianta Anno Accademico 22/23 Indice Spazi vettoriali 7 Definizione

Dettagli

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI 1. REGOLA DI CRAMER Sia S un sistema lineare di n ( 2) equazioni in n incognite su un campo K : a 11 x 1 + a 12 x 2 + + a 1n x n

Dettagli

Dispense di Algebra 1 - Gruppi

Dispense di Algebra 1 - Gruppi Dispense di Algebra 1 - Gruppi Dikran Dikranjan e Maria Silvia Lucido Dipartimento di Matematica e Informatica Università di Udine via delle Scienze 200, I-33100 Udine gennaio 2005 L algébre est généreuse,

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Appunti al corso di Algebra Anno accademico 23-24 1 Prodotti diretti. Siano M e N due moduli sullo stesso anello A, non necessariamente

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA. Margherita Roggero

APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA. Margherita Roggero APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA Margherita Roggero A.A. 2005/2006 M. Roggero - Appunti ed Esercizi di Matematica Discreta Introduzione Queste note contengono gli appunti del corso di Matematica

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 13

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Dispense di Matematica Analisi Matematica. Riccarda Rossi

Dispense di Matematica Analisi Matematica. Riccarda Rossi Dispense di Matematica Analisi Matematica Riccarda Rossi Corso di Laurea in Disegno Industriale Università degli Studi di Brescia Anno Accademico 2009/2010 2 Capitolo 1 Nozioni preliminari 4 Riccarda Rossi

Dettagli

4. Strutture algebriche. Relazioni

4. Strutture algebriche. Relazioni Relazioni Sia R una relazione definita su un insieme A (cioè R A A). R si dice riflessiva se a A : ara R si dice simmetrica se a, b A : arb = bra R si dice antisimmetrica se a, b A : arb bra = a = b R

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali ALGEBRA II UNITÀ. M. Chiara Tamburini

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali ALGEBRA II UNITÀ. M. Chiara Tamburini UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali ALGEBRA II UNITÀ M Chiara Tamburini Anno Accademico 2009/2010 Indice I Omomorfismi fra anelli 1 1 Ideali 1 2 Anelli

Dettagli

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007 Spazi lineari - PARTE II - Felice Iavernaro Dipartimento di Matematica Università di Bari 9 e 16 Marzo 2007 Felice Iavernaro (Univ. Bari) Spazi lineari 9-16/03/2007 1 / 17 Condizionamento dei sistemi lineari

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Appunti di. Algebra Superiore. Rosario Strano

Appunti di. Algebra Superiore. Rosario Strano Appunti di Algebra Superiore Rosario Strano A cura di Giuseppe Bilotta. Dattiloscritti con AMS-L A TEX. Indice Parte I. Teoria di Galois 5 Capitolo I. Estensioni di campi 7 1. Richiami 7 2. Estensioni

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Moduli finitamente generati su domini a ideali principali

Moduli finitamente generati su domini a ideali principali Moduli finitamente generati su domini a ideali principali Versione del 2 dicembre 2014 1 Moduli noetheriani Una delle proprietà fondamentali degli spazi vettoriali a coefficienti in un campo consiste nel

Dettagli

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) [# Aii [10 pagine]] Algebre di Boole Un algebra di Boole è una struttura 1. Definizione e proprietá B =< B,,, ν, 0, 1 > in cui B è un insieme non

Dettagli

Algebra lineare for dummies

Algebra lineare for dummies Algebra lineare for dummies Sergio Polini 26 settembre 22 Indice Premessa 2 Spazi vettoriali 3. Definizione................................ 3.2 Sottospazi vettoriali........................... 3.3 Indipendenza

Dettagli

Lezioni di Geometria. Lucian Bădescu, Ettore Carletti, Giacomo Monti Bragadin

Lezioni di Geometria. Lucian Bădescu, Ettore Carletti, Giacomo Monti Bragadin Lezioni di Geometria Lucian Bădescu, Ettore Carletti, Giacomo Monti Bragadin 2 Introduzione Mηδǫίς αγǫωµ ǫτρητoς ǫισίτω Lo scopo di queste note è offrire un testo scritto per il Corso di Geometria Analitica

Dettagli

Corrado Zanella. Modelli Geometrici. applicabili in Meccanica dei Solidi, Robotica, Visione Computazionale

Corrado Zanella. Modelli Geometrici. applicabili in Meccanica dei Solidi, Robotica, Visione Computazionale Corrado Zanella Modelli Geometrici applicabili in Meccanica dei Solidi, Robotica, Visione Computazionale ii Versione del 23 settembre 2010 www.corradozanella.it Questo lavoro è diffuso sotto licenza Creative

Dettagli

Quozienti. Note per gli studenti del corso di Geometria IV, Milano 2009-2010 M.Dedò

Quozienti. Note per gli studenti del corso di Geometria IV, Milano 2009-2010 M.Dedò Quozienti Note per gli studenti del corso di Geometria IV, Milano 2009-2010 M.Dedò N.B. 1 Quanto segue NON va inteso come sostitutivo dei testi consigliati; piuttosto, si propone di fornire un filo conduttore

Dettagli

MODULI INIETTIVI. Definizione: Un inclusione di A-moduli ι : M N si dice estensione essenziale di M se per ogni sottomodulo non nullo P N, P ι(m) 0.

MODULI INIETTIVI. Definizione: Un inclusione di A-moduli ι : M N si dice estensione essenziale di M se per ogni sottomodulo non nullo P N, P ι(m) 0. MODULI INIETTIVI Definizione: Un inclusione di A-moduli ι : M N si dice estensione essenziale di M se per ogni sottomodulo non nullo P N, P ι(m) 0. Esempio: Supponiamo che A sia un dominio e chiamiamo

Dettagli