Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Anello commutativo. Un anello è commutativo se il prodotto è commutativo."

Transcript

1 Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e a sinistra) del prodotto rispetto alla somma. Per la somma si usa la notazione additiva e per il prodotto la notazione moltiplicativa. L elemento neutro della somma si indica con 0 e quello del prodotto con 1. Si assume sempre che 0 1. La legge di cancellazione per la somma vale sempre: per ogni a, b, c A, a + c = b + c a = b. Valgono le seguenti proprietà: a0 = 0a = 0, per ogni a A; a( b) = ( a)b = (ab) e ( a)( b) = ab, per ogni a, b A. Per ogni a, b A, con la scrittura a b si intende a + ( b) (questa ultima espressione in notazione moltiplicativa sarebbe a b 1 ); il prodotto di a e b va invece indicato utilizzando le parentesi, cioè come a( b), o in modo più esplicito come a ( b). Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Multipli interi. Per ogni a A e per ogni n Z, il multiplo na è definito da: 0a = 0, (n + 1)a = na + a se n 0 e na = ( n)( a) se n < 0. Per ogni a A e ogni n Z, si ha: ( n)a = n( a) = (na). Per ogni a A e ogni m, n Z, si ha: ma + na = (m + n)a e n(ma) = m(na) = (mn)a. Per ogni a, b A e ogni m Z, si ha: ma + mb = m(a + b). Potenze intere. Per ogni a A e per ogni n N, la potenza a n è definita da: a 0 = 1 e a n+1 = a n a. Se a è invertibile rispetto al prodotto, la potenza a n è definita anche per ogni n Z da a n = (a 1 ) n se n < 0. Per ogni a A che sia invertibile e per ogni n Z, si ha a n = (a 1 ) n = (a n ) 1. Per ogni a A e ogni m, n N, si ha: a m a n = a m+n e (a m ) n = (a n ) m = a mn ; se a è invertibile queste proprietà valgono per ogni m, n Z. Per ogni a, b A e ogni m N, si ha: a m b m = (ab) m ; se a e b sono invertibili questa proprietà vale per ogni m Z. Divisori dello zero. Un elemento a di un anello A è un divisore dello zero se a 0 ed esiste b A, con b 0, tale che ab = 0 oppure ba = 0. Gli elementi 0 e 1 non sono divisori dello zero. Gli anelli Z, Q, R e C non hanno divisori dello zero; mentre gli anelli M n (Z) hanno divisori dello zero. I divisori dello zero dell anello Z/nZ sono le classi di congruenza [h], al variare di h N, con 1 < h < n e (h, n) 1. Quindi, se p è primo l anello Z/pZ non ha divisori dello zero. Se c è un elemento di un anello A, c 0 e c non è un divisore dello zero, allora valgono le due leggi di cancellazione per c, cioè: per ogni a, b A, da ac = bc segue a = b, e da ca = cb segue a = b. Elementi invertibili. Un elemento a di un un anello A è invertibile se è invertibile rispetto al prodotto. L elemento 0 non è invertibile (mentre, 1 lo è, ovviamente). Un divisore dello zero non è invertibile; ovvero, un elemento invertibile non è un divisore dello zero. Gruppo degli elementi invertibili. L insieme degli elementi invertibili di un anello A è un sottomonoide di (A, ), risulta un gruppo e si indica con U(A). In generale, U(A) non è chiuso rispetto alla somma. Considerando alcuni degli anelli più comuni, si ha: U(Z) = {1, 1}, U(Q) = Q, U(R) = R, U(C) = C, U(Z/nZ) = {[a] : a N, 1 a < n, (a, n) = 1}, U(M n (Q) = GL n (Q), U(R[X]) = R, U(R R ) = (R ) R. 1

2 Dominio d integrità. Un dominio d integrità è un anello commutativo privo di divisori dello zero. In un dominio d integrità vale la legge di cancellazione per ogni elemento diverso da zero (le due leggi di cancellazione si riducono ad una sola poiché il prodotto è commutativo). Campo. Un campo è un anello commutativo tale che ogni suo elemento diverso da zero è invertibile. Un campo è un dominio d integrità; ma esistono domini d integrità che non sono campi. Un dominio d integrità finito è necessariamente un campo. Sottoanelli. Un sottoinsieme S di un anello A è un sottoanello di A se è un sottogruppo di A rispetto alla somma e è un sottomonoide di A rispetto al prodotto. Un sottoanello di A è un anello rispetto alle operazioni indotte da quelle di A, contiene 0 e contiene 1. Ogni anello è sottoanello di se stesso. Ogni sottoanello di un anello commutativo è commutativo. L intersezione, anche infinita, di sottoanelli è un sottoanello. Se A è un anello e S A, allora S è un sottoanello di A se, e solo se: 0 S e 1 S; per ogni x, y S, x + y S e xy S; per ogni x S, x S. Ideali. Un sottoinsieme I di un anello A è un ideale di A se è un sottogruppo rispetto alla somma e se per ogni a A e ogni x I si ha ax I e xa I. Ogni ideale contiene 0. Il sottoinsieme {0} è un ideale, detto ideale nullo o ideale banale. Ogni anello è ideale di se stesso, ed è detto l ideale improprio. L intersezione, anche infinita, di ideali è un ideale. Se A è un anello e I A, allora I è un ideale di A se, e solo se: 0 I; per ogni x, y I, x + y I; per ogni x I, x I; per ogni x I e ogni a A, ax I e xa I. In alternativa, I è un ideale di A se, e solo se: I ; per ogni x, y I, x + y I; per ogni x I e ogni a A, ax I e xa I. Gli ideali di Z sono tutti i soli i sottoinsiemi nz, con n N. Un ideale che contiene 1 o un qualsiasi elemento invertibile è necessariamente l ideale improprio. I soli ideali di un campo sono l ideale nullo e l ideale improprio. Ideali principali. Se A è un anello commutativo e a A, l insieme (a) = {xa : x A} è un ideale, viene chiamato l ideale generato da a e viene anche indicato con Aa o aa. Un ideale I di un anello commutativo A si dice principale se esiste a A tale che I = (a). L ideale (a) è il più piccolo ideale di A che contiene a. L ideale nullo è principale, perché {0} = (0); l ideale improprio è principale, perché A = (1). Un anello commutativo A i cui soli ideali sono {0} e A è necessariamente un campo. Un dominio a ideali principali è un dominio d integrità in cui ogni ideale è principale. Somma di ideali. Se I e J sono due ideali di un anello A, l insieme I + J = {x + y : x I, y J} è un ideale e viene chiamato somma di I e J. L ideale I + J è il più piccolo ideale di A che contiene sia I che J (cioè, che contiene I J). Nel caso dell anello Z, se m, n N, si ha: mz + nz = (m, n)z, mentre mz nz = [m, n]z. Anello quoziente. Se I è un ideale proprio di un anello A, l anello quoziente A/I è l insieme delle classi laterali di A modulo I rispetto alla somma, con le operazioni di somma e prodotto definite sui rappresentanti. Utilizzando quanto già visto per i gruppi, sappiamo già che A/I è un gruppo rispetto alla somma [ricordiamo le definizioni e i ragionamenti seguiti: la classe laterale di un elemento a A rispetto a I è l insieme a + I = {a + x : x I}; l insieme delle classi laterali è una partizione di A; per ogni a, b A, a e b appartengono a una stessa classe laterale (a + I) (b + I) a b + I b a + I a + I = b + I a b I b a I; la relazione di equivalenza I è la relazione associata alla partizione e può essere anche definita da una qualunque delle precedenti condizioni, tra loro equivalenti; le classi laterali 2

3 coincidono con le classi di equivalenza, precisamente si ha [a] I = a + I, per ogni a A; la somma è definita da (a + I) + (b + I) = (a + b) + I; la somma è ben definita e rispetto a questa operazione A/I è un gruppo abeliano]. Sullo stesso insieme A/I si definisce il prodotto, ponendo (a+i) (b+i) = (a b)+i; questa definizione è ben posta, cioè non dipende dalla scelta dei rappresentanti delle classi; l insieme A/I con tali somma e prodotto verifica tutte le proprietà di un anello. L elemento neutro della somma è I (cioè la classe di 0); l opposto di a + I è a + I, per ogni a A; l elemento neutro del prodotto è 1 + I. Un esempio importante è dato dall anello Z e da un suo ideale nz, con n N e n 2. Dallo studio di Z come gruppo additivo, sappiamo già che la relazione di equivalenza associata alla partizione di Z in classi laterali modulo nz coincide con la relazione di congruenza modulo n; e sappiamo anche che l insieme quoziente Z/nZ è un gruppo, abeliano e di ordine n. Ora osserviamo che Z/nZ è un anello, ed è evidente che coincide con l anello delle classi di congruenza modulo n, cioè con (Z/ n, +, ), che già conosciamo. Omomorfismi. Se A e B sono due anelli, un applicazione φ : A B è un omomorfismo di anelli se è compatibile con le operazioni di A e di B, cioè se, per ogni x, y A, φ(x + y) = φ(x) + φ(y) e φ(xy) = φ(x)φ(y) e, inoltre, φ(1 A ) = 1 B. Quindi, un applicazione tra due anelli è un omomorfismo di anelli se, e solo se, è un omomorfismo di gruppi rispetto alla somma e un omomorfismo di monoidi rispetto al prodotto. Se φ : A B è un omomorfismo di anelli, allora φ(0 A ) = 0 B, φ(nx) = nφ(x) per ogni x A e ogni n Z, e φ(x) n = φ(x n ) per ogni x A e ogni n N; l ultima uguaglianza vale per ogni n Z, se x è invertibile. Un isomorfismo è un omomorfismo biettivo. L inverso di un isomorfismo è un isomorfismo. La composizione di omomorfismi è un omomorfismo. Due anelli si dicono isomorfi se esiste un isomorfismo tra di loro. Nucleo e immagine di un omomorfismo di anelli. Se φ : A B è un omomorfismo di anelli, l immagine di φ, denotata con Im(φ), è l insieme {φ(x) : x A} e il nucleo di φ, denotato con Ker(φ), è l insieme {x A : φ(x) = 0 B }. L immagine di un omomorfismo φ : A B è un sottoanello di B. Osserviamo che la definizione di immagine di un omomorfismo non coinvolge le due operazioni di somma e prodotto dei due anelli; quindi tale definizione coincide con la definizione di immagine di φ, considerato solo come applicazione tra insiemi. Il nucleo di un omomorfismo φ : A B è un ideale di A. Osserviamo che la definizione di nucleo di un omomorfismo (di anelli) coinvolge solo le operazioni di somma dei due anelli, ma non quelle di prodotto; quindi tale definizione coincide con la definizione di nucleo di φ, considerato solo come omomorfismo di gruppi (i gruppi additivi dei due anelli.) Un omomorfismo φ : A B è iniettivo se, e solo se, Ker(φ) = {0 A }. Se I è un ideale proprio di A, la proiezione canonica π : A A/I, definita da x x + I, è un omomorfismo di anelli, suriettivo, con nucleo I. Da ciò segue che gli ideali propri di un anello sono tutti e soli i nuclei degli omomorfismi con dominio l anello stesso. Teorema fondamentale sugli omomorfismi di anelli. Se φ : A B è un omomorfismo di anelli, allora esiste un unica applicazione φ : A/Ker(φ) B tale che φ π = φ; tale applicazione è un omomorfismo iniettivo e la sua immagine coincide con quella di φ. Considerando solo le operazioni di somma su A e B, l applicazione φ è un omomorfismo di gruppi (abeliani) e quindi per il teorema fondamentale sugli omomorfismi di gruppi, sappiamo già che esiste un unica applicazione φ tale che il diagramma φ A B π φ A/Ker(φ) 3

4 è commutativo e che φ è iniettiva, Im( φ) = Im(φ) e φ è un omomorfismo di gruppi. Tenendo conto che φ(x + Ker(φ)) = φ(x), per ogni x A, si verifica subito che φ è un omomorfismo di anelli. Come corollario, si ha: se φ : A B è un omomorfismo di anelli, allora A/Ker(φ) è isomorfo a Im(φ); e come caso particolare: se φ : A B è un omomorfismo suriettivo di anelli, allora A/Ker(φ) è isomorfo a B. Ricordiamo che per ogni x, y A, x φ y φ(x) = φ(y) φ(x y) = 0 B x y Ker(φ) x Ker(φ) y; e quindi che per ogni z Im(φ), se x φ 1 (z), allora φ 1 (z) = x + Ker(φ). Caratteristica di un anello. La caratteristica di un anello A è : 0, se h1 A 0 A per ogni h N + ; il minimo degli interi h N + tali che h1 A = 0 A, altrimenti (dove h1 A è il multiplo intero di 1 A con coefficiente h, cioè la somma di h volte 1 A ). Consideriamo l omomorfismo di anelli φ : Z A, dato da z z1 A. Il suo nucleo è un ideale di Z, e quindi è principale: sia Ker(φ) = mz, con m 0. Allora m è la caratteristica di A. La caratteristica di A può anche essere definita nel modo seguente, considerando l ordine additivo di 1 A, cioè l ordine di 1 A nel gruppo additivo di A, (A, +): è 0 se tale ordine è infinito, ed è uguale a tale ordine, altrimenti. Sia m la caratteristica di A. Allora m 1, poiché 1 A 0 A ; inoltre, m = 0 se, e solo se, φ è iniettivo; infine, per ogni a A, si ha ma = 0 A. In generale, Im(φ) è un sottoanello di A, isomorfo a Z/mZ, e viene chiamato anello fondamentale, o anello primo, di A. Esso è contenuto in ogni sottoanello di A. In termini discorsivi (precisamente, a meno di isomorfismi), possiamo dire che ogni anello contiene l anello degli interi Z (se la sua caratteristica è 0), oppure contiene l anello delle classi di congruenza modulo m Z/mZ (se la sua caratteristica è m, con m 2). La caratteristica di un dominio d integrità (e quindi anche di un campo) è 0, oppure è un numero primo p. Esempi classici di anelli. Insiemi numerici: (Z, +, ), (Q, +, ), (R, +, ), (C, +, ). Matrici quadrate: (M n (Z), +, ), (M n (Q), +, ), (M n (R), +, ), (M n (C), +, ). Polinomi: (Z[X], +, ), (Q[X], +, ), (R[X], +, ), (C[X], +, ). Classi di congruenza modulo n : (Z/ n, +, ). Parti di un insieme con la differenza simmetrica e l intersezione: (P(X),, ). Funzioni reali su un intervallo: (R I, +, ), (C(I), +, ), (C h (I), +, ) (I intervallo dell asse reale e h N). (Z[ 2], +, ), (Z[i], +, ), (Q[ 3], +, ). (Z n, +, ), (Q n, +, ), (R n, +, ), (C n, +, ), ((Z/mZ) n, +, ). Esempi classici di campi. Q, R, C. Z/pZ, con p un numero primo. Q[ 2], Q[ 3], Q[i]. Altri esempi di anelli. Z R, Q Z/nZ, M n (R) Q Q M n (Z/mZ), M n (R[X]), M n (R R ) Z/nZ[X], M n (R)[X], (Q[X])[Y ] 4

5 Il teorema cinese dei resti, II. Se m, n N, m, n 2 e (m, n) = 1, dalla teoria dei gruppi già sappiamo che l applicazione f : Z/mnZ Z/mZ Z/nZ, definita da [z] mn ([z] m, [z] n ), è un isomorfismo di gruppi (rispetto alle operazioni di somma). Si vede facilmente che f è compatibile anche con le operazioni di prodotto: quindi f è un isomorfismo di anelli. Come conseguenza, abbiamo che U(Z/mnZ) e U(Z/mZ Z/nZ) sono isomorfi (come gruppi moltiplicativi, ovviamente); in particolare, hanno lo stesso numero di elementi. Quindi, poiché U(Z/mZ Z/nZ) è uguale a U(Z/mZ) U(Z/nZ), abbiamo ϕ(mn) = ϕ(m)ϕ(n). Questo risultato si generalizza a più interi: se n 1,..., n t N, dove t N e t 2, n i 2 e n i è primo con N/n i per ogni i = 1,..., t, dove N = n 1... n t, allora l applicazione f : Z/NZ Z/n 1 Z... Z/n t Z è un isomorfismo di anelli; in particolare, ϕ(n 1... n t ) = ϕ(n 1 )... ϕ(n t ). Una diversa generalizzazione, ad anelli qualsiasi, è la seguente: se A è un anello e I e J sono due suoi ideali propri tali che I + J = A, allora l applicazione f : A/I J A/I A/J è un isomorfismo di anelli. Questa applicazione f puó essere data direttamente ponendo, per ogni x A, f(x + I J) = (x + I, x + J), e dimostrando che questa è una buona definizione; oppure puè essere ottenuta considerando l omomorfismo φ : A A/I A/J, definito da x (x + I, x + J), e osservando che f = φ. 5

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Il problema della fattorizzazione nei domini di Dedekind

Il problema della fattorizzazione nei domini di Dedekind Il problema della fattorizzazione nei domini di Dedekind Stefania Gabelli Dipartimento di Matematica, Università degli Studi Roma Tre Note per i corsi di Algebra Commutativa a.a. 2010/2011 1 Indice 1 Preliminari

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

TUTTO QUELLO CHE NON AVRESTE VOLUTO SAPERE DEL CORSO DI

TUTTO QUELLO CHE NON AVRESTE VOLUTO SAPERE DEL CORSO DI TUTTO QUELLO CHE NON AVRESTE VOLUTO SAPERE DEL CORSO DI INTRODUZIONE ALLA TEORIA DEI GRUPPI, DEGLI ANELLI E DEI CAMPI MA CHE QUALCUNO VI HA VOLUTO INSEGNARE LO STESSO CONTIENE 1. tutte le risposte alle

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Lezioni del corso AL430 - Anelli Commutativi e Ideali

Lezioni del corso AL430 - Anelli Commutativi e Ideali Lezioni del corso AL430 - Anelli Commutativi e Ideali a.a. 2011-2012 Introduzione alla Teoria delle Valutazioni Stefania Gabelli Testi di Riferimento M. F. Atiyah and I. G. Macdonald, Introduction to Commutative

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

4. Strutture algebriche. Relazioni

4. Strutture algebriche. Relazioni Relazioni Sia R una relazione definita su un insieme A (cioè R A A). R si dice riflessiva se a A : ara R si dice simmetrica se a, b A : arb = bra R si dice antisimmetrica se a, b A : arb bra = a = b R

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Figura 2.1. A sottoinsieme di B

Figura 2.1. A sottoinsieme di B G Sammito, ernardo, Formulario di matematia Insiemi F Cimolin, L arletta, L Lussardi Insiemi Generalità Un insieme è una ollezione distinguibile di oggetti, detti elementi dell'insieme Quando un elemento

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Lezioni di Teoria dei Gruppi. Andrea Mori Dipartimento di Matematica Università di Torino

Lezioni di Teoria dei Gruppi. Andrea Mori Dipartimento di Matematica Università di Torino Lezioni di Teoria dei Gruppi Andrea Mori Dipartimento di Matematica Università di Torino Maggio 2005 Questo lavoro è dedicato alla memoria di Lia Venanzangeli (1959 2004) amica e compagna. Gigni de nihilo

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Appunti al corso di Algebra Anno accademico 23-24 1 Prodotti diretti. Siano M e N due moduli sullo stesso anello A, non necessariamente

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

GRUPPI TOPOLOGICI. 1 Gruppi Un gruppo è un insieme G, che contiene un elemento distinto e e su cui è definita un operazione binaria

GRUPPI TOPOLOGICI. 1 Gruppi Un gruppo è un insieme G, che contiene un elemento distinto e e su cui è definita un operazione binaria CAPITOLO I GRUPPI TOPOLOGICI 1 Gruppi Un gruppo è un insieme G, che contiene un elemento distinto e e su cui è definita un operazione binaria (1.1) G G (a, b) a b G con le proprietà: (i) a e = e a = a

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1 FOGLIO 4 - Applicazioni lineari Esercizio 1. Si risolvano i seguenti sistemi lineari al variare di k R. { x y + z + 2w = k x z + w = k 2 { kx + y z = 2 x + y kw = k Esercizio 2. Al variare di k R trovare

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Alla pagina successiva trovate la tabella

Alla pagina successiva trovate la tabella Tabella di riepilogo per le scomposizioni Come si usa la tabella di riepilogo per le scomposizioni Premetto che, secondo me, questa tabella e' una delle pochissime cose che in matematica bisognerebbe "studiare

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Spazi metrici e spazi topologici

Spazi metrici e spazi topologici Topologia 1 2007/2008 D. Dikranjan, UDINE Spazi metrici e spazi topologici D. Dikranjan L origine della topologia é dovuta a H. Poincaré, M. Fréchet e F. Hausdorff circa un secolo fa. Adesso questa disciplina

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili

Dettagli

Sulla teoria delle funzioni di una variabile complessa

Sulla teoria delle funzioni di una variabile complessa Capitolo Sulla teoria delle funzioni di una variabile complessa Funzioni olomorfe e Teorema di Cauchy Consideriamo il piano complesso C, con coordinata complessa z Vogliamo studiare le funzioni f : U C,

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

CAPITOLO I SPAZI TOPOLOGICI

CAPITOLO I SPAZI TOPOLOGICI CAPITOLO I SPAZI TOPOLOGICI 1 Topologie su un insieme Sia X un insieme. Una topologia su X è una famiglia τ di sottoinsiemi di X, che si dicono aperti. Gli aperti di una topologia su X devono soddisfare

Dettagli

IL TEOREMA DI LIOUVILLE OVVERO PERCHÉ NON ESISTE LA PRIMITIVA DI e x2

IL TEOREMA DI LIOUVILLE OVVERO PERCHÉ NON ESISTE LA PRIMITIVA DI e x2 IL TEOREMA DI LIOUVILLE OVVERO PERCHÉ NON ESISTE LA PRIMITIVA DI e x2 CAMILLO DE LELLIS Il seguente lavoro è l elaborazione di un contributo alla conferenza tenuta dall autore il 29 settembre 2012 presso

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Funzioni tra insiemi niti Numeri di Stirling e Bell. Davide Penazzi

Funzioni tra insiemi niti Numeri di Stirling e Bell. Davide Penazzi Funzioni tra insiemi niti Numeri di Stirling e Bell Davide Penazzi 2 Funzioni tra insiemi niti: i numeri di Stirling e Bell 1 Contare il numero delle funzioni tra insiemi 1.1 Denizioni e concetti preliminari

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli