A i è un aperto in E. i=1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "A i è un aperto in E. i=1"

Transcript

1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque se un punto è di accumulazione per A c deve per forza appartenere ad A c, ovvero (A c ) A c. = : se x o A allora x o A c e quindi, se per ipotesi A c è chiuso, x o non può essere di accumulazione per A c ; negando la condizione x o (A c ) si ottiene che esiste allora r > 0 tale che B(x o, r) A c =Ø, ovvero B(x o, r) A e quindi x o è interno ad A, il che prova che A è aperto. Proposizione A è aperto se e solo se A A =Ø. 2. C è chiuso se e solo se C C. Dimostrazione. Proviamo la condizione necessaria della 1. Se A è aperto, ogni x o A è interno, e quindi ceramente non appartiene alla frontiera. Viceversa, se A A =Ø, ogni elemento di A non appartiene a A e quindi è necessariamente interno. Proviamo la 2. Se C è chiuso per la Porposizione 1 A = C c è aperto; quindi per la 1, C c C c =Ø; Ma C c = C e quindi C c C =Ø, il che significa che C C. Viceversa, se C C, e A = C c allora A C = A c e quindi A A =Ø; di nuovo per la 1. allora A è aperto e per la Proposizione 1 C = A c è chiuso. Proposizione. C è chiuso se e solo se C = C. Dimostrazione. = : Dalla Proposizione 2 C C e poichè C = C C si ha C C C ovvero C = C. = Se C = C in particolare C C, cioè C C C e quindi C C; dalla Proposizione 2, allora, C è chiuso. Proposizione 4. Gli aperti di uno spazio normato (E, ) godono delle proprietà 1 Ø e E sono aperti; 2 Se {A α, α I} è una famiglia di sottoinsiemi aperti di E, allora α I A α è un aperto; Se A 1,, A n sono aperti in E anche n A i è un aperto in E. i=1 Dimostrazione Che tutto lo spazio E sia aperto è un immediata conseguenza della definizione, in quanto ogni x E è interno allo spazio; per questo motivo E =Ø, e quindi E E; dunque dalla Proposizione 2, E è anche chiuso, e quindi il suo complementare, cioè Ø, è aperto. 1

2 Per provare la 2, osserviamo che comunque scelto x α I A α deve esistere almeno un α I tale che x A α che è aperto; pertanto esiste anche r > 0 tale che B(x, r) A α α I A α e quindi x è interno all unione. Per provare la infine, osserviamo che se x n A i =Ø non si deve provare nulla; se invece i=1 n A i cioè x A i, i = 1,, n,allora esistono n raggi, r i tali che B(x, r i ) A i. i=1 Preso r = min{r 1,, r n } > 0 risulta chiaramente B(x, r) B(x, r i ) A i ovvero B(x, r) n A i, ovvero x è interno all intersezione.. Utilizzando la Proposizione 1 e le Leggi di De Morgan, si ottiene immediatamente il seguente Corollario. I chiusi di uno spazio normato (E, ) godono delle proprietà 1 Ø e E sono chiusi; 2 Se {C α, α I} è una famiglia di sottoinsiemi chiusi di E, allora α I C α è un chiuso; i=1 Se A 1,, A n sono chiusi in E anche n C i è un chiuso in E. Infine, come ultima caratterizzazione dei chiusi proviamo il seguente risultato. Proposizione 5. In uno spazio normato (E, ) sono equivalenti 1 C è chiuso in E; 2 per ogni successione (x n ) n C convergente a x o E risulta x o C. i=1 Dimostrazione. Proviamo innanzitutto che 1= 2. Supponiamo per assurdo che esista invece (x n ) C convergente a x o, ma che x o C; allora x o C c che per l ipotesi 1 è aperto; dunque esiste un raggio r tale che B(x o, r) C c ovvero B(x o, r) C =Ø, mentre per la convergenza dovrebbe contenere una coda della successione, e quindi dovrebbe contenere elementi di C. Passiamo all implicazione inversa; per provare che 2 = 1, proviamo che C C. Sia allora x o C fissato; consideriamo r 1 = 1 e applichiamo la definizione di punto di accumulazione; dunque B(x o, 1) C \ {x o } Ø, ovvero esiste x 1 C B(x o, 1) e x 1 x o ; allora ρ 1 = x o x 1 > 0 e scegliendo r 2 = ρ e iterando il procedimento si trova x 2 C B(x o, r 2 )\{x o } che di nuovo implica 0 < ρ 2 = x 2 x o < 1 ; proseguendo in questo modo si costruisce una 2 2

3 successione di punti x n C tali che x n x o 1 2 n e quindi tale che x n x o. Dall ipotesi 2, quindi x o C che è esattamente quello che ci proponevamo di provare.

4 Teorema 1. (Caratterizzazione dei connessi di R) Un sottoinsieme I di R è connesso se e solo se è un intervallo, o una semiretta o tutto R. Dimostrazione. Proviamo prima che se I è del tipo detto, allora I è connesso. A tale scopo, supponiamo per fissare le idee, che I sia limitato superiormente, e supponiamo per assurdo che I ammetta una sconnessione (A 1, A 2 ). Allora I A i Ø; di conseguenza, anche A i I o Ø, e quindi possiamo scegliere x A 1 I o e x A 2 I o ; poichè A 1 A 2 =Ø, necessariamente x x. Supponiamo per esempio che x < x, e poniamo H = {x I : x x e [x, x] A 1 }, x o = sup H. Poichè tra i punti di H vi è in particolare x, risulta certamente x x o. Proviamo ora che x > x o. Se infatti supponiamo per assurdo che x < x o esisterebbe necessariamente un elemento ξ H tale che ξ > x ; ciò significa che ξ I e che [x, ξ] A 1. Ma allora anche [x, x ] A 1 e quindi x A 1 il che è assurdo perchè A 1 e A 2 sono disgiunti. Se supponiamo d altra parte che x o = x, esiste una successione x n H tale che x n x, e quindi [x, x n ] A 1. D altra parte x A 2 che è aperto; dunque esiste un raggio r tale che B(x, r) A 2, e per la convergenza in questa boccia cade tutta una coda della successione (x n ) n ; poichè ciascun x n A 1 di nuovo perveniamo alla contraddizione A 1 A 2 Ø. Pertanto x x o < x. Ora, poichè x, x I o, x o [x, x [, necessariamente anche x o I o. Proviamo che [x, x o [ A 1 ; se x = x o l intervallo è vuoto e l inclusione è immediata; se invece x < x o, possiamo determinare una successione (ξ n ) n H convergente dal basso a x o (perchè I non è degenere e tutti i suoi punti interni sono di accumulazione sia da destra che da sinistra). Quindi tutti gli intervalli [x, ξ n [ sono contenuti in A 1 ; allora [x, x o [= n [x, ξ n [ A 1. (1) Se supponiamo che x o A 1, x o A 1 I o che è aperto, e quindi esiste certamente x 1 > x o tale che [x o, x 1 ] A 1 I o A 1 I (perchè contiene un intorno centrato in x o e dunque, a maggior ragione, contiene un intorno destro di x o ). Dalla (1), [x, x o [ [x o, x 1 ] = [x, x 1 ] A 1 ; ma allora x 1 H e questo contraddice il fatto che x o è un maggiorante di H. D altra parte se supponiamo che x o A 2, esiste certamente x 2 < x o tale che [x 2, x o ] A 2 (di nuovo perchè A 2 è aperto quindi contiene un intorno centrato in x o e dunque, a maggior ragione, contiene un intorno sinistro di x o ); senza restrizione di generalità si può supporre che x 2 x. Quindi [x 2, x o ] A 1 =Ø. Ma allora nessun elemento ξ x 2 può appartenere ad H, perchè in caso contrario [x 2, ξ] [x, ξ] A 1 e quindi x 2 A 1 ; cioè x 2 è un maggiorante di H. Allora sup H x 2 < x o che è di nuovo una contraddizione. In conclusione il punto x o I ma x o A 1 A 2 e questo contraddice l assunzione che (A 1, A 2 ) è una sconnessione per I. Viceversa, proviamo che se I è un connesso, allora è un insieme del tipo elencato. Per brevità trattiamo solo il caso di I connesso limitato, lasciando al lettore la trattazione dei rimanenti casi. 4

5 Poniamo allora a = inf I, b = sup I; negare che I sia uno qualsiasi degli intervalli determinati da a e da b, equivale a supporre che ci sia un punto x o ]a, b[\i; infatti, se al contrario fosse ]a, b[ I, I coinciderebbe con uno dei quattro intervalli [a, b], ]a, b[, [a, b[, ]a, b]. Prendiamo A 1 = (, x o [, A 2 =]x o, + ) e osserviamo che sono entrambe aperti, che sono disgiunti e la loro unione copre I; in altre parole abbiamo generato una sconnessione di I, il che nega l ipotesi che I sia connesso. 5

6 Teorema 2. Ogni insieme E stellato è connesso. Dimostrazione. Sia E stellato rispetto a x o e supponiamo per assurdo che E ammetta una sconnessione (A 1, A 2 ); allora x o appartiene ad uno solo dei due aperti, sia per esempio x o A 1. Poichè E A 2 Ø, possiamo scegliere x 1 E A 2 ; consideriamo I 1 = {t ]0, 1[: tx o + (1 t)x 1 A 1 }, I 2 = {t ]0, 1[: tx o + (1 t)x 1 A 2 }. Allora I 1 I 2 =]0, 1[ e I 1 I 2 =Ø; se proviamo che sono aperti e non vuoti abbiamo determinato una sconnessione di ]0, 1[ e quindi perveniamo ad un assurdo. Proviamo ora che sono entrambe non vuoti; basta provarlo per I 1 perchè la dimostrazione che I 2 Ø è analoga. Consideriamo la successione in ]0, 1[ definita da t n = n 1 n, e consideriamo corrispondentemente x n = t n x o + (1 t n )x 1 ; è facile verificare che x n x o. D altra parte, essendo A 1 aperto, e x o A 1 esiste certamente r > 0 tale che B(x o, r) A 1, mentre dalla convergenza, risulta x n B(x o, r) per n sufficientemente grande; dunque x n A 1 definitivamente, e di conseguenza t n I 1 definitivamente; ciò ci assicura che I 1 Ø. Proviamo per esempio che I 1 è aperto, cioè che se t o I 1 allora tutto un intorno di t o cade in I 1. Poniamo x = t o x o + (1 t o )x 1. Per definizione di I 1 si ha x A 1, ed essendo quest ultimo aperto, esiste r > 0 tale che B(x, r) A 1. Poichè x o x 1 (perchè appartengono a due insiemi disgiunti), risulta x o x 1 > 0. ] [ ] [ r Proviamo che t o x o x 1, t r r o + I 1 ; infatti se τ t o x o x 1 x o x 1, t r o + x o x 1 si ha τx o +(1 τ)x 1 x = (τ t o )x o +[(1 τ) (1 t o )]x 1 = (τ t o )x o (τ t o )x 1 = τ t o x o x 1 < r. Quindi τx o + (1 τ)x 1 B(x, r) A 1 che per definizione implica τ I 1. 6

7 Teorema. Se E è aperto e connesso, allora è connesso per poligonali. Dimostrazione. Consideriamo in E la relazione binaria x... y se e solo se esiste una poligonale S(x, y) tutta contenuta in E. E facile convincersi che si tratta di una relazione di equivalenza. Denotiamo con E[x] la classe di equivalenza del generico elemento x E ovvero E[x] = {y E : x... y}. Proviamo che E[x] è aperto per ogni x E. Infatti se y E[x], y E che è aperto, e quindi esiste r > 0 tale che B(y, r) E; ora B(y, r) è stellato rispetto a y quindi ogni suo punto z... y e poichè y... x per transitività z... x; così B(y, r) E[x] e quindi ogni punto di E[x] è interno. Ovviamente se x... y si ha E[x] E[y] =Ø; ma allora E[x] e E[y] sono due aperti y...x disgiunti la cui unione copre E, in altre parole costituiscono una sconnessione di E, il che contraddice l assunzione che E è connesso. Dunque non possono esistere due punti di E tali che x... y, ovvero x... y per ogni coppia di punti di E, il che assicura che E è connesso per poligonali. 7

8 Primo teorema di continuità globale. Siano V e W due spazi normati, D un sottoinsieme aperto di V e f : D W. Allora f è continua se e solo se per ogni aperto B W risulta f 1 (B) aperto in V. Dimostrazione. Proviamo prima la parte necessaria, cioè supponiamo f continua, e fissiamo un aperto B W. Se f 1 (B) è vuoto non vi è nulla da provare. Se f 1 (B) non è vuoto, vogliamo provare che ogni suo punto è interno. Sia allora x o f 1 (B); allora f(x o ) B e dunque esiste certamente r > 0 tale che B[f(x o ), r] B. Per l assunzione di continuità esiste in corrispondenza δ(r) > 0 tale che per ogni x D con x x o V < δ risulta f(x) f(x o ) W < r. D altra parte anche D è aperto; quindi esiste ρ > 0 tale che B(x o, ρ) D. Allora se scegliamo δ (r) = min{δ(r), ρ} risulta certamente B(x o, δ ) D ma anche f(x) B[f(x o ), r] per ogni x B(x o, δ ), e dunque B(x o, δ ) f 1 (B). Viceversa, proviamo la condizione sufficiente: fissato arbitrariamente x o D, per provare la continuità di f in x o, fissiamo ε > 0 e consideriamo l aperto in B = B[f(x o ), ε] W. Per l ipotesi risulta f 1 (B) aperto in V, e poichè ovviamente x o f 1 (B), deve esistere δ > 0 tale che B(x o, δ) f 1 (B). Ciò significa che per ogni x D con x x o V < δ risulta f(x) B = B[f(x o ), ε] cioè f(x) f(x o ) W < ε che è esattamente la definizione di continuità nel punto x o Secondo teorema di continuità globale. Siano V e W due spazi normati, D un sottoinsieme chiuso di V e f : D W una funzione continua. Allora per ogni chiuso C W risulta f 1 (C) chiuso in V. Dimostrazione. Fissato il chiuso C, sia x o [f 1 (C)], e sia (x n ) n una successione in f 1 (C) convergente a x o. Vogliamo provare che x o f 1 (C) ovvero che f 1 (C) contiene ogni suo punto di accumulazione. Sappiamo che x o D, in quanto D è chiuso, che f(x n ) C, e per la continuità, che f(x n ) f(x o ); dunque x o f 1 (C). 8

9 Teorema di conservazione della connessione. Siano V e W due spazi normati, C un sottoinsieme connesso di V e f : C W una funzione continua. Allora f(c) è connesso. Dimostrazione. Supponiamo per assurdo che esista una sconnessione (B 1, B 2 ) di f(c), e consideriamo C i = f 1 (B i ). Immediatamente si prova che C 1 e C 2 sono disgiunti, e che la loro unione ricopre C. Tuttavia non è detto che essi siano aperti, perchè per poter applicare il Primo teorema di continuità globale avremmo bisogno di sapere che anche C è aperto. Per questo motivo occorre costruire diversamente una sconnessione di C (in modo da pervenire ad una contraddizione). Per ogni x C consideriamo r(x) = { d(x, C2 ) se x C 1 d(x, C 1 ) se x C 2. Vogliamo provare innanzitutto che r(x) > 0 per ogni x C. Anche per questo passo procediamo per assurdo, e supponiamo per esempio, che esista x o C 1 tale che r(x o ) = 0; dunque deve esistere una successione (x n ) n C 2 tale che x o x n V 0; quindi si ha anche x n x o e per la continuità f(x n ) f(x o ). Poichè x o C 1 la sua immagine f(x o ) B 1 che è aperto; pertanto f(x n ) B 1 definitivamente; allora anche x n C 1 definitivamente, il che è assurdo perchè si era scelta x n C 2 e C 1 C 2 =Ø. Consideriamo ora gli insiemi A 1 = x C 1 B ( x, r(x) ), A 2 = ( B x, r(x) ). x C 2 Vogliamo provare che costituiscono una sconnessione di C. Intanto sono entrambe aperti, perchè sono unione di aperti; inoltre è evidente che C i A i per i = 1, 2 e quindi che C = C 1 C 2 A 1 A 2. Resta allora da provare che sono disgiunti. Supponiamo ancora per assurdo che ( A 1 A 2 contenga un punto x o ; allora debbono esistere x 1 C 1 e x 2 C 2 tali che x o B x 1, r(x ) ( 1) B x 2, r(x ) 2). Supponiamo per esempio r(x 1 ) r(x 2 ); allora x 1 x 2 V x 1 x o V + x o x 2 V < r(x 1) + r(x 2) < r(x 2 ). Ma x 1 C 1 e quindi r(x 2 ) = d(x 2, C 1 ) x 2 x 1 V < r(x 2 ) che è assurdo. 9

10 Teorema di Heine. Sia K un sottoinsieme sequenzialmente compatto di uno spazio normato (V, V ), e sia f : K (W, W ) una funzione continua. Allora f è uniformemente continua. Dim. Ciò che si vuole provare è che per ogni ε > 0 eiste δ(ε) > 0 tale che per ogni coppia di punti x, x K con x x V < δ risulta f(x ) f(x ) W < ε. Procediamo per assurdo, ovvero supponiamo che esista ε > 0 tale che per ogni δ > 0 esistono x δ, x δ D con x δ x δ V < δ ma f(x δ ) f(x δ ) W > ε. Applicando questa ipotesi assurda con δ = 1 n, n N+ si costruiscono quindi due successioni (x n) n, (x n) n D tali che x n x n V < 1 n e f(x n) f(x n) W > ε. Dalla compattezza sequenziale di K esiste una sottosuccessione (x n p ) p convergente a un elemento x o K; d altra parte se si considera la sottosuccessione (x n p ) p risulta x n p x o V x n p x n p V + x n p x o V < 1 n p + x n p x o V, e quindi immediatamente si ottine che anche converge a x o. Per la continuità di f (che come si è provato precedentemente comporta la continuità sequenziale), risulta allora che lim p + f(x n p ) = f(x o ), lim p + f(x n p ) = f(x o ). Dunque, in corrspondenza di ε esiste p tale che per ogni p > p risulta f(x n p ) f(x o ) W < ε, f(x n p ) f(x o ) W < ε e quindi, sempre per la disuguaglianza triangolare, f(x n p ) f(x n p ) W f(x n p ) f(x o ) W + f(x n p ) f(x o ) W < ε + ε < ε che contraddice l ipotesi inziale, cioè che f(x n) f(x n) W > ε per ogni n N. 10

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Spazi metrici e spazi topologici

Spazi metrici e spazi topologici Topologia 1 2007/2008 D. Dikranjan, UDINE Spazi metrici e spazi topologici D. Dikranjan L origine della topologia é dovuta a H. Poincaré, M. Fréchet e F. Hausdorff circa un secolo fa. Adesso questa disciplina

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Analisi Matematica I

Analisi Matematica I Analisi Matematica I Fabio Fagnani, Gabriele Grillo Dipartimento di Matematica Politecnico di Torino Queste dispense contengono il materiale delle lezioni del corso di Analisi Matematica I rivolto agli

Dettagli

MAPPE IN DIMENSIONE UNO

MAPPE IN DIMENSIONE UNO ¾ MAPPE IN DIMENSIONE UNO Abbiamo visto come la sezione di Poincaré conduca in modo naturale alla considerazione di mappe definite mediante funzioni reali. In questo capitolo passiamo a discutere la dinamica

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

4. Strutture algebriche. Relazioni

4. Strutture algebriche. Relazioni Relazioni Sia R una relazione definita su un insieme A (cioè R A A). R si dice riflessiva se a A : ara R si dice simmetrica se a, b A : arb = bra R si dice antisimmetrica se a, b A : arb bra = a = b R

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1 Particelle identiche : schema (per uno studio più dettagliato vedi lezione ) Funzioni d onda di un sistema composto Sistema costituito da due particelle (eventualmente identiche) H φ q H φ H ψ φ φ stato

Dettagli

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = +

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = + FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO Si chiama funzione lineare (o funzione affine) una funzione del tipo = + dove m e q sono numeri reali fissati. Il grafico di tale funzione è una retta, di cui

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

Funzioni tra insiemi niti Numeri di Stirling e Bell. Davide Penazzi

Funzioni tra insiemi niti Numeri di Stirling e Bell. Davide Penazzi Funzioni tra insiemi niti Numeri di Stirling e Bell Davide Penazzi 2 Funzioni tra insiemi niti: i numeri di Stirling e Bell 1 Contare il numero delle funzioni tra insiemi 1.1 Denizioni e concetti preliminari

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

CAPITOLO I SPAZI TOPOLOGICI

CAPITOLO I SPAZI TOPOLOGICI CAPITOLO I SPAZI TOPOLOGICI 1 Topologie su un insieme Sia X un insieme. Una topologia su X è una famiglia τ di sottoinsiemi di X, che si dicono aperti. Gli aperti di una topologia su X devono soddisfare

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli