Divisione in tre parti uguali

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Divisione in tre parti uguali"

Transcript

1 Divisione in tre parti uguali ) Il metodo più pratico per dividere un quadrato in tre parti uguali è quello di trisecare ad occhio il foglio ed aggiustare la parte in eccesso o in difetto con piccoli spostamenti laterali (Fig. ). Una volta raggiunta una soddisfacente sovrapposizioni degli estremi del foglio con le terze parti, fissare la piega, aprire e piegare con cura. ) Un metodo più preciso ma meno pratico è il seguente: Metodo di Sidney French D C M N C) Metodo di Kazuo Haga Un terzo metodo è il seguente: Piegare su DC per trovare il punto medio di C. Riaprire e piegare facendo in modo che contemporaneamente vada a cade su DC e passi per punto medio di C. Il segmento DP = / DC D P C Dimostrazione: I triangoli C e D (Fig. ) sono simili. llora : C = D : D / : C = / : da cui C = DM = /. Stessa cosa per i due segmenti MN ed N che risultano essere uguali ad / di D D / P / C

2 D P Q C D P Q C D P Q C /9 R /9 Facendo unicamente la prima piega e la diagonale, è possibile più agevolmente, dividere in parti uguali C. Non solo! anche possibile dividere in 9 parti uguali il lato C in quanto il segmento R risulta /9 di C. Fig. e Fig. 6. D P C 6 L Dimostrazione: I triangoli DPL PC R risultano simili. R Si ha che DP = x, DL = y, PC = -x, C = ½ quindi x : y = ½ : ( - x) e y = x( - x) pplicando il teorema di Pitagora al triangolo DPL si ha: x + x ( - x) = [ - x(-x)] x + x ( + x -x) = ( -x + x ) x + x + x - 8x = + x + x - x + x - 8x x - x + = 0 x = [ ± - ] / e in definitiva x = (soluzione non accettabile) x = / (soluzione accettabile) e pertanto DP = / DC DL = y = /( - /) = /9 mentre PL = - /9 = /9. Il triangolo PDL ha i lati proporzionali alla terna pitagorica,,. Perciò gli altri due triangoli considerati hanno le seguenti dimensioni: C = ½ (cioè /6); PC = / (cioè /6); P = /6 riferendosi al triangolo PC. = - /6 = /6 (cioè /8); R = /8; R = /8 riferendosi al triangolo R. Da ciò risulta, infine, che essendo R = /8 = /9 è possibile avere un riferimento per poter dividere il foglio in 9 parti uguali.

3 Divisione in parti uguali Metodo di K. Kasahara / / / Dimostrazione visiva M D P C P T P M / / / / / C Il segmento C = + = (,, terna pitagorica). La bisettrice dell angolo C ^ passa per il punto medio M, di D (provate a dimostrarlo in modo rigoroso!!). Lo si deduce dalle figure,, e dal fatto che i segmenti M e MD coincidono nel punto P ottenuto dalle due piegature (Fig.,,). Il punto P divide C in due parti / e / e quindi per il Teorema di Talete mandando per P una parallela ad e successivamente un fascio di altre tre parallele si ottiene una suddivisione di C in parti uguali. (Fig. ) ssendo infine PM = TM = ( - /) si ha per il Teorema di Pitagora: PT = - ( - /) = - 6/ = 6/ = 8/ risulta essere doppio della quinta parte del segmento.

4 Teorema di Talete applicazioni b D Per dividere un foglio qualsiasi in n parti uguali rispetto al lato a si può procedere nel seguente modo: Si divide b in un numero di parti equivalenti alla potenza di immediatamente superiore ad n. Si congiunge quindi la n-esima suddivisione con il vertice (ovviamente piegando), Le intersezioni di questa traccia con le suddivisioni fatte sul lato b danno i riferimenti per poter dividere a nelle n parti stabilite. C a Dimostrazione: Sia a da suddividere in n parti. Divido b in parti con n <. Dalla figura e dalla similitudine dei triangoli D e C si ha b/ : x = n(b/ ) : a da cui x = (ab/ ) * ( /nb) = a/n. Cvd. possibile dividere un segmento o un lato di un quadrato usando uno strumento di semplicissima costruzione ed utilizzabile da alunni di scuola elementare e media. Occorre un rettangolo di cartoncino rigido o plastica diviso in un numero pari (più facile secondo le potenze di ) di parti uguali. R Q Ho diviso il quadrato Q in 7 parti uguali utilizzando il rettangolo R diviso in 8 parti uguali. parti uguali parti uguali 6 parti uguali 7 parti uguali

5 Convergenze e approssimazioni Metodo di S. Fujimoto Tramite piegatura è possibile dividere un segmento o un angolo in parti uguali con metodi convergenti e quindi approssimazioni. Si può dividere (Fig. ) in parti uguali con la seguente procedura che può essere ripetuta per ottenere un approssimazione migliore. Si scelga un punto P0 qualunque su P P0 su P0 P P0 su P P P P0 su P P P P0 su P PP P P P0 su P / / / Scegliendo il punto iniziale P0 nelle vicinanze di / il metodo converge più velocemente e quindi occorrono meno pieghe per avere un soddisfacente /

6 Convergenze e approssimazioni Metodo di S. Fujimoto Procedura per ottenere /. Si scelga un punto P0 qualunque su P P0 su P0 P P0 su P P P P0 su P P P0 P su P PP P P0 P su P P6 PP P P0 P su P / / / / / Scegliendo il punto iniziale P0 nelle vicinanze di / il metodo converge più velocemente e quindi occorrono meno pieghe per avere un soddisfacente /

7 pprossimazioni di angoli 60 Metodo di S. Fujimoto Per ottenere una rapida convergenza alla misura di un angolo, è possibile usare il seguente metodo dovuto a S. Fujimoto e J. Pedersen. Si prenda una striscia di carta e volendo, ad esempio, approssimare un angolo di 60, si scelga un arbitrario angolo ^ individuato da una trasversale P e si prosegua con le istruzioni seguenti: P P P * * P P P P P P P P P P P7 P8 # # P Dopo pochi passaggi le pieghe formano con notevole precisione angoli di 60.

8 pprossimazioni di angoli 6 Metodo di S. Fujimoto Si scelga un arbitrario angolo ^ individuato da una trasversale P ottenuta piegando una striscia di carta partendo da un vertice. Proseguire seguendo le istruzioni. P â â P â * * â â P P P P â â â P P P P â â P â â P P P â â P P P P P Dopo pochi passaggi le pieghe formano con notevole precisione angoli di 6.

9 Convergenza e trisezione Di J. Pedersen Il metodo di bisezione precedente può anche essere utilizzato con rette non parallele. t0 Z x x t Z t x x Z0 0 0 Z x isecare l'angolo Z^ 0O facendo sovrapporre il lato Z0 su Z0O. Proseguire bisecando Z Z^ 0 O facendo sovrapporre ZoO su ZoZ facendo perno su Z. Proseguendo in questo modo si avrà che a ciascun passo il triangolo delimitato da O ed OZ 0 e da ciascuna t avrà gli angoli che soddisfano alla seguente condizione: x t t Z t Ð - O x + x + (ð - ) = ð ( > ) - Per cui si ha: x + x = - Pertanto come detto precedentemente x si esprime come serie geometrica x = / + (-/) [x 0 - /] La quale converge ad / in quanto (-/) tende a zero. Quindi le rette t n approssimano (per parallelismo) le due rette che trisecano l'angolo (a condizione che l'angolo ^ sia compreso tra 0 e ð). ^ Tratto da Le dossiers du plot Settembre 98

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

GEOMETRIA. Congruenza, angoli e segmenti

GEOMETRIA. Congruenza, angoli e segmenti GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

ELEMENTI DI EUCLIDE, LIBRO VI: Le figure simili e le proporzioni in geometria

ELEMENTI DI EUCLIDE, LIBRO VI: Le figure simili e le proporzioni in geometria Richiami dal libro VI di Euclide: ELEMENTI DI EUCLIDE, LIBRO VI: Le figure simili e le proporzioni in geometria Definizione I del libro VI: due figure poligonali si dicono simili se hanno angoli uguali

Dettagli

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli

Dettagli

Costruzioni geometriche. ( Teoria pag , esercizi 141 )

Costruzioni geometriche. ( Teoria pag , esercizi 141 ) Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non

Dettagli

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti. Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti

Dettagli

k l equazione diventa 2 x + 1 = 0 e ha unica soluzione

k l equazione diventa 2 x + 1 = 0 e ha unica soluzione a B 3 Compito del Q 8 maggio 009 A) Equazioni con parametro. Data l equazione ( k + k ) + k + 0 determinare il valore di k in ciascuno dei seguenti casi. L equazione si abbassa di grado (risolvere l equazione

Dettagli

I quadrilateri Punti notevoli di un triangolo

I quadrilateri Punti notevoli di un triangolo I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono

Dettagli

Risposte ai quesiti D E H D

Risposte ai quesiti D E H D Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

Geometria. Rudimenti della Logica e della Matematica. Marzo Geometria Marzo / 18

Geometria. Rudimenti della Logica e della Matematica. Marzo Geometria Marzo / 18 Geometria Rudimenti della Logica e della Matematica Marzo 2013 Geometria Marzo 2013 1 / 18 La geometria tratta delle figure e le forme nello spazio. Letteralmente della misura della terra o più in concreto,

Dettagli

Parallelogrammi 1 Parallelogrammi Nome: classe: data:

Parallelogrammi 1 Parallelogrammi Nome: classe: data: www.matematicamente.it Parallelogrammi 1 Parallelogrammi Nome: classe: data: 1. Quali tra le seguenti sono proprietà del parallelogramma?. ciascuna diagonale lo divide in due triangoli uguali. gli angoli

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

La parallela tracciata dal punto medio di un lato di un triangolo a uno degli altri due lati incontra il terzo lato nel suo punto medio.

La parallela tracciata dal punto medio di un lato di un triangolo a uno degli altri due lati incontra il terzo lato nel suo punto medio. TEOREMA DI TALETE Piccolo Teorema di Talete Dato un fascio di rette parallele tagliate da due trasversali, a segmenti congruenti su una trasversale corrispondono segmenti congruenti sull altra trasversale.

Dettagli

RICORDIAMO CHE LA PROSPETTIVITÀ È: ESSA PUÒ ESSERE CARATTERIZZATA DA:

RICORDIAMO CHE LA PROSPETTIVITÀ È: ESSA PUÒ ESSERE CARATTERIZZATA DA: RICORDIAMO CHE LA PROSPETTIVITÀ È: La corrispondenza biunivoca tra due enti (punti o rette) posti su due piani in rapporto diretto tra loro. I punti sono allineati al centro della prospettività. Le rette

Dettagli

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui

Dettagli

Ottavio Serra. Problemi.

Ottavio Serra. Problemi. Ottavio Serra Costruzioni e Problemi di geometria La geometria è l occhio della matematica Avvertenza. E bene, preliminarmente, avere (o acquisire) competenza sulle trasformazioni geometriche del piano,

Dettagli

Unità Didattica N 36 La similitudine

Unità Didattica N 36 La similitudine Unità Didattica N 36 La similitudine 1 Unità Didattica N 36 La similitudine 01) Definizione di poligoni simili 0) Definizione di triangoli simili 03) Primo criterio di similitudine dei triangoli 04) Secondo

Dettagli

Elementi di Geometria euclidea

Elementi di Geometria euclidea Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto

Dettagli

Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2.

Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2. PAS 2014 GEOMETRIA Programma di massima: Elementi di logica elementare. La geometria degli Elementi di Euclide. De nizioni, assiomi e postulati. La geometria del triangolo. Criteri di uguaglianza. Teorema

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli.

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli. I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché tre è il numero minimo di lati con cui si può

Dettagli

3^A - MATEMATICA compito n d. l'equazione della mediana BM, verificando che il baricentro le appartenga;

3^A - MATEMATICA compito n d. l'equazione della mediana BM, verificando che il baricentro le appartenga; ^ - TETI compito n 2-2014-2015 1 Il triangolo ha come lati le rette r : y=x 2, s: x 4=0, t : x y 22=0 Disegna le rette r, s, t e determina: a le coordinate dei vertici =r s, =s t, =t r ; b l'area del triangolo;

Dettagli

Liceo classico Vittorio Emanuele II. Napoli. Prof. Ognissanti Gabriella. Programma di Matematica

Liceo classico Vittorio Emanuele II. Napoli. Prof. Ognissanti Gabriella. Programma di Matematica Liceo classico Vittorio Emanuele II Napoli Anno scol. 2016/17 classe V sez. E Prof. Ognissanti Gabriella Programma di Matematica POLINOMI Richiami sui prodotti notevoli e sulle operazioni. EQUAZIONI Generalità

Dettagli

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

1 MISURA DEI SEGMENTI

1 MISURA DEI SEGMENTI 1 MISUR DEI SEGMENTI 1 MISUR DEI SEGMENTI 1.1 La classe dei segmenti Nell insieme S formato da tutti i segmenti contenuti in un piano introduciamo le seguenti operazioni: Confronto di segmenti: dati due

Dettagli

Giocando intorno a Pitagora

Giocando intorno a Pitagora 12 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE per una educazione alla cittadinanza Giocando intorno a Pitagora Roma, lì 23 Maggio 2017 BUGLIA GIOVANNI LUIGI Contesto Scuola secondaria di primo grado Classe

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 017 da parte degli studenti

Dettagli

LE FRAZIONI. ll pesce fratto. Modello di Fumiaki Shingu (da

LE FRAZIONI. ll pesce fratto. Modello di Fumiaki Shingu (da LE FRAZIONI Modello di Fumiaki Shingu (da http://en.origami-club.com) ll pesce fratto Lo scopo del laboratorio è quello di scovare delle frazioniche rappresentino, rispetto al tutto, la parte bianca e

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

Liceo classico Vittorio Emanuele II. Napoli. Prof. Ognissanti Gabriella. Programma di Matematica

Liceo classico Vittorio Emanuele II. Napoli. Prof. Ognissanti Gabriella. Programma di Matematica Liceo classico Vittorio Emanuele II Napoli Anno scol. 2015/16 classe V sez. E Prof. Ognissanti Gabriella Programma di Matematica POLINOMI Richiami sui prodotti notevoli e sulle operazioni. EQUAZIONI Generalità

Dettagli

lato obliquo trapezio isoscele Un quadrilatero che ha i lati opposti paralleli. Ogni parallelogramma ha... D α + β π

lato obliquo trapezio isoscele Un quadrilatero che ha i lati opposti paralleli. Ogni parallelogramma ha... D α + β π Ripasso Scheda per il recupero Trapezi e parallelogrammi OMNE he cos è un trapezio? RISOSTE Un trapezio è un quadrilatero con una coppia di lati opposti paralleli: i lati paralleli si chiamano basi del

Dettagli

Unità 8 Esercizi per il recupero

Unità 8 Esercizi per il recupero LA GEOMETRIA DEL PIANO E LE TRASFORMAZIONI VOLUME Unità 8 Esercizi per il recupero ARGOMENTO: I quadrilateri. Teorema di Talete CONTENUTI: Il trapezio isoscele I parallelogrammi Il piccolo teorema di Talete

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

Matematica Introduzione alla geometria

Matematica Introduzione alla geometria Matematica Introduzione alla geometria prof. Vincenzo De Felice 2014 Problema. Si mostri che un triangolo con due bisettrici uguali è isoscele. La matematica è sfuggente. Ziodefe 1 2 Tutto per la gloria

Dettagli

Applicazioni dei teoremi di Pitagora ed Euclide

Applicazioni dei teoremi di Pitagora ed Euclide Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =

Dettagli

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati).

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). ppunti di geometria.s. 013-014 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo

Dettagli

Considerato un qualunque triangolo ABC, siano D ed E due punti interni al lato BC tali che:

Considerato un qualunque triangolo ABC, siano D ed E due punti interni al lato BC tali che: atematica per la nuova maturità scientifica. Bernardo. Pedone 8 PROBLE Considerato un qualunque triangolo BC, siano D ed E due punti interni al lato BC tali che: BD= DE = EC Siano poi ed i punti medi rispettivamente

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Problemi di geometria

Problemi di geometria criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente

Dettagli

Lezione 4. Da questa definizione si ha dunque che le similitudini sono particolari trasformazioni affini.

Lezione 4. Da questa definizione si ha dunque che le similitudini sono particolari trasformazioni affini. Lezione 4 Trasformazioni affini tra piani Una affinità f tra due piani P e Q è una trasformazione biunivoca di P in Q che conserva l allineamento. Ciò significa che comunque si scelgano tre punti allineati

Dettagli

Progetto Matematica in Rete - Geometria euclidea - La similitudine. La similitudine. Figure simili

Progetto Matematica in Rete - Geometria euclidea - La similitudine. La similitudine. Figure simili Figure simili Se consideriamo due triangoli equilateri di lato diverso, due quadrati di lato diverso intuitivamente diciamo che hanno la stessa forma. Ma cosa comporta avere la stessa forma? Se osserviamo

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

Come risolvere i quesiti dell INVALSI - primo

Come risolvere i quesiti dell INVALSI - primo Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo

Dettagli

Determina il terzo vertice A di un triangolo di cui. l ortocentro

Determina il terzo vertice A di un triangolo di cui. l ortocentro La Retta Esercizi Esercizio 6. Determina il terzo vertice A di un triangolo di cui sono noti due vertici ; 1, 1; e l ortocentro ;. Soluzione 1 Analizziamo il problema ragionando, per semplicità, su un

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

IL PIANO CARTESIANO E LA RETTA

IL PIANO CARTESIANO E LA RETTA IL PIANO CARTESIANO E LA RETTA ESERCIZI 1. Le coordinate di un punto su un piano 1 A Scrivi le coordinate dei punti indicati in figura. 1 B Scrivi le coordinate dei punti indicati in figura. Rappresenta

Dettagli

C7. Circonferenza e cerchio

C7. Circonferenza e cerchio 7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio

Dettagli

I Triangoli e i criteri di congruenza

I Triangoli e i criteri di congruenza I Triangoli e i criteri di congruenza 1 Le caratteristiche di un triangolo Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni I punti

Dettagli

Costruzioni geometriche elementari Esercitazioni

Costruzioni geometriche elementari Esercitazioni Costruzioni geometriche elementari Esercitazioni Università Mediterranea di Reggio Calabria Facoltà di Architettura Corso di DISEGNO 1 Prof. Franco Prampolini Unità didattica n. 3 Alcune brevi esercitazioni

Dettagli

e) A10, ( 1;B6,2 ) ( ) f) A3,42;B12,2

e) A10, ( 1;B6,2 ) ( ) f) A3,42;B12,2 7. ESERCIZI SULLA DISTANZA FRA DUE PUNTI ) Calcola le distanze fra le seguenti coppie di punti: a) A;B6 ( ) ( ) A( 8 ); B( 7 5) c) A ( ;B ) ( 7) d) A( ); B e) A ( ;B6 ) ( ) f) A4;B ( ) ( ) g) A ; B 6 h)

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

TRIANGOLI CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI. Def: Si dice triangolo un poligono che ha 3 lati e 3 angoli.

TRIANGOLI CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI. Def: Si dice triangolo un poligono che ha 3 lati e 3 angoli. TRIANGOLI Si dice triangolo un poligono che ha 3 lati e 3 angoli. Proprietà: in ogni triangolo la somma di due lati è sempre maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI SCALENO:

Dettagli

Gli enti geometrici fondamentali

Gli enti geometrici fondamentali capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento

Dettagli

UNITÀ 9 LE GRANDEZZE E LA PROPORZIONALITÀ

UNITÀ 9 LE GRANDEZZE E LA PROPORZIONALITÀ UNITÀ 9 LE GRANDEZZE E LA PROPORZIONALITÀ 9. Generalità Nelle unità precedenti abbiamo considerato insiemi di elementi (segmenti, angoli, superfici piane) con i quali abbiamo operato il confronto e la

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è. DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro

Dettagli

VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2.

VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2. VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI 1.- 0 < 3a+1 < 2 0 < 3a + 1 < 4 1 < 3a < 3 1 2 3 1 < 1 b < 2 2 < b < 1 1 < b < 2. 1 < a < 1 3 1 < b < 2 4 < a + b < 3 e, a fortiori, 4 < a +

Dettagli

POTENZIAMENTO VISUO-SPAZIALE

POTENZIAMENTO VISUO-SPAZIALE POTENZIAMENTO VISUO-SPAZIALE Spunti ricavati dalla bozza (fornita da Marta) per potenziare le carenze visuo-spaziali di alunni di seconda media Docente Gisella Maculan Obiettivo : Con questa sezione si

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

Uno spazio per lo spazio.

Uno spazio per lo spazio. Uno spazio per lo spazio. Il gruppo di matematica del Laboratorio Franco Conti ha lavorato quest anno nella direzione di ripensare l insegnamento della geometria dello spazio, unendo la riflessione teorica

Dettagli

I PARALLELOGRAMMI E I TRAPEZI

I PARALLELOGRAMMI E I TRAPEZI I PARALLELOGRAMMI E I TRAPEZI 1. Il parallelogramma ESERCIZI 1 A Disegna un parallelogramma ABCD, la diagonale BD e i segmenti AK e CH, perpendicolari a BD. Dimostra che il quadrilatero AHCK è un parallelogramma.

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 2.8 esercizi 31 2.8 esercizi hi non risolve esercizi non impara la matematica. 1 Vero o falso? a. I punti (0, 2), (4, 4), (6, 0) e (2, 2) sono i vertici di un quadrato. V F b. Non esiste il coefficiente

Dettagli

Geometria degli origami

Geometria degli origami UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA TESI DI LAUREA Geometria degli origami Relatore Candidato Ch.ma Prof.ssa Mariacarmela

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma I quadrilateri Il parallelogramma Definizione: un parallelogramma è un quadrilatero avente i lati opposti paralleli AB // DC AD // BC Teorema : se ABCD è un parallelogramma allora ciascuna diagonale lo

Dettagli

equivalenti =. ABCD è un trapezio

equivalenti =. ABCD è un trapezio EQUISCOMPONIBILITÀ Problema P.367.41 Dato un trapezio ABCD, considera i due triangoli che hanno ciascuno per base uno dei due lati obliqui e per terzo vertice il punto medio del lato opposto. Dimostra

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................

Dettagli

FONDAMENTI DI GEOMETRIA

FONDAMENTI DI GEOMETRIA 1 FONDAMENTI DI GEOMETRIA (Fundamental geometrical concepts) La geometria [ghè (terra) metron (misura)] è una parte della matematica che studia lo spazio, la forma, l estensione, la trasformazione delle

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa.

Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzioni Costruzioni di rette, segmenti ed angoli Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzione. Consideriamo la retta r ed un punto

Dettagli

Test A Teoria dei numeri e Combinatoria

Test A Teoria dei numeri e Combinatoria Test A Teoria dei numeri e Combinatoria Problemi a risposta secca 1. Determinare con quanti zeri termina la scrittura in base 12 del fattoriale di 2002. 2. Determinare quante sono le coppie (x, y) di interi

Dettagli

Poligoni inscritti e circoscritti ad una circonferenza

Poligoni inscritti e circoscritti ad una circonferenza Poligoni inscritti e circoscritti ad una circonferenza Def: 1. Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della La circonferenza si dice circoscritta al poligono.

Dettagli

CONGRUENZE TRA FIGURE DEL PIANO

CONGRUENZE TRA FIGURE DEL PIANO CONGRUENZE TRA FIGURE DEL PIANO Appunti di geometria ASSIOMI 15. La congruenza tra figure è una relazione di equivalenza 16. Tutte le rette del piano sono congruenti tra loro; così come tutti i piani,

Dettagli

6 ottobre 2010 Prof.ssa Marina Rocco GEOMETRIA CON PIEGATURE DELLA CARTA: COSTRUZIONI GEOMETRICHE, IN PARTICOLARE DI TRIANGOLI E QUADRILATERI.

6 ottobre 2010 Prof.ssa Marina Rocco GEOMETRIA CON PIEGATURE DELLA CARTA: COSTRUZIONI GEOMETRICHE, IN PARTICOLARE DI TRIANGOLI E QUADRILATERI. U N I V E R S I T A D E G L I S T U D I D I T R I E S T E CENTRO INTERDIPARTIMENTALE PER LA RICERCA DIDATTICA Via A. Valerio 12/1, 34127 Trieste, Italia Tel.: +39 040 558 2659 Fax: +39 040 558 2660 email:

Dettagli

La geometria euclidea

La geometria euclidea La geometria euclidea a ritroso Una proposta che prende spunto da riflessioni di esperti ben più titolati di noi Zeuthen, Gallo, L a proposta tutta da discutere Partire dal teorema di Pitagora, noto agli

Dettagli

Costruzioni inerenti i triangoli

Costruzioni inerenti i triangoli Costruzioni inerenti i triangoli D ora in poi indicheremo con a, b e c i tre lati del triangolo di vertici A, B e C, in modo che a sia opposto al vertice A, b al vertice B e c al vertice C Costruzione

Dettagli

Elementi di soluzione per la prova 10 febbraio 2009

Elementi di soluzione per la prova 10 febbraio 2009 Elementi di soluzione per la prova 10 febbraio 009 Usare solo un foglio risposta per esercizio. Sono richieste spiegazioni o giustificazioni per gli esercizi 1, 9, 10, 1 e 13. Saranno esaminate tutte le

Dettagli

PREREQUISITI. Rette e piani (parallelismo, perpendicolarità, incidenza) Proiezioni ortogonali Componenti Direzione Seno, coseno e tangente Glossario

PREREQUISITI. Rette e piani (parallelismo, perpendicolarità, incidenza) Proiezioni ortogonali Componenti Direzione Seno, coseno e tangente Glossario Appunti corso di Fisica, Facoltà di Agraria, Docente Ing. Francesca Todisco REREQUISITI Rette e piani (parallelismo, perpendicolarità, incidenza) roiezioni ortogonali Componenti Direzione Seno, coseno

Dettagli

ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI

ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI LE RELAZIONI FRA GLI ELEMENTI DI UN TRIANGOLO 1) La somma degli angoli interni di un triangolo è 180 γ Consideriamo il triangolo ABC. Tracciamo la parallela

Dettagli

Test sull ellisse (vai alla soluzione) Quesiti

Test sull ellisse (vai alla soluzione) Quesiti Test sull ellisse (vai alla soluzione) Quesiti ) Considerata nel piano cartesiano l ellisse Γ : + y = 8 valutare il valore di verità delle seguenti affermazioni. I fuochi si trovano sull asse delle ordinate

Dettagli

FIGURE EQUIVALENTI. Dimostrazione: dato il parallelogramma ABCD ed il parallogramma ABC'D', con

FIGURE EQUIVALENTI. Dimostrazione: dato il parallelogramma ABCD ed il parallogramma ABC'D', con 1. FIGURE EQUIVALENTI 1.1 EQUIVALENZA TRA PARALLELOGRAMMI TEOREMA: Due parallelogrammi aventi le basi e le altezze congruenti sono equivalenti. Dimostrazione: dato il parallelogramma ABCD ed il parallogramma

Dettagli

(l'uguaglianza degli angoli indica il parallelismo delle rette)

(l'uguaglianza degli angoli indica il parallelismo delle rette) SESTA LEZIONE-teoria delle parallele Riprendiamo la discussione del teorema degli angoli alterni interni. Questo teorema è alla base della teoria delle parallele. Da esso discendono i criteri di parallelismo.

Dettagli

C6. Quadrilateri - Esercizi

C6. Quadrilateri - Esercizi C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono

Dettagli

SIMULAZIONE TEST INVALSI

SIMULAZIONE TEST INVALSI SIMULAZIONE TEST INVALSI AREE POLIGONI Disegna nel piano quadrettato un rettangolo che abbia la stessa area del rettangolo ABCD, ma perimetro maggiore. Osserva il rettangolo. Sul lato DC segna il punto

Dettagli

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema Liceo Scientifico Statale M. Curie Classe D aprile Verifica di Matematica sommativa durata della prova : ore Nome Cognome Voto N.B. Il punteggio massimo viene attribuito in base alla correttezza e alla

Dettagli

1. IL CERCHIO COLORATO

1. IL CERCHIO COLORATO 1. IL CERCHIO COLORATO Utilizzare l icona per inserire un segmento di data lunghezza Cliccare sul punto (estremo) e scrivere quindi la lunghezza del segmento (10 per esempio) Cliccare col tasto destro

Dettagli

Allenamenti di Matematica

Allenamenti di Matematica rescia, 3-4 febbraio 2006 llenamenti di Matematica Geometria 1. Il trapezio rettangolo contiene una circonferenza di raggio 1 metro, tangente a tutti i suoi lati. Sapendo che il lato obliquo è lungo 7

Dettagli

I criteri di similitudine introdotti a partire dalle trasformazioni

I criteri di similitudine introdotti a partire dalle trasformazioni I criteri di similitudine introdotti a partire dalle trasformazioni Cinzia Cerroni, Rosa Conforto, Leo Maggio Introduzione La scelta metodologica di introdurre i criteri di similitudine a partire dalle

Dettagli

Unità Didattica N 25 Quadrilateri particolari

Unità Didattica N 25 Quadrilateri particolari Unità idattica N 25 Quadrilateri particolari 41 Unità idattica N 25 Quadrilateri particolari 01) efinizione di quadrilatero 02) efinizione di parallelogrammo 03) Teoremi diretti sul parallelogrammo 04)

Dettagli