MOTO DI CARICHE IN CAMPI MAGNETICI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MOTO DI CARICHE IN CAMPI MAGNETICI"

Transcript

1 MOTO DI CARICHE IN CAMPI MAGNETICI E1. Un protone (q = 1.6(10 19 )C, m = 1.67(10 7 )kg) con una velocità iniiale v = 4(10 6 m/s)i + 4(10 6 m/s)j entra in una ona dove vi è un campo magnetico uniforme = 0.3 T i. La traiettoria del protone sarà un elica con passo P pari circa a (A) 1 m () 3.14 m (C) 1.7 m (D) 0.87 m (E) 98 mm SOLUZIONE. Il protone è sottoposto alla fora di Lorent. Questo implica: 1. che solo la componente della sua velocità perpendicolare a, v, viene influenata da ;. che, poiché la fora di Lorent è perpendicolare a v, essa causerà un acceleraione di tipo centripeto nel piano ortogonale a ; 3. che il moto del protone nella direione di sarà rettilineo e uniforme con velocità v. Uguagliando il modulo della fora di Lorent al modulo della fora centripeta che agisce sul protone si ricava il raggio R dell elica: Il periodo T del moto circolare è quindi Il passo P dell elica corrisponde alla distana percorsa dal protone nella direione di in un tempo T: E. Un protone e una particella pesante circa quattro volte il protone e con carica doppia, iniialmente fermi, vengono accelerati dalla stessa differena di poteniale V ed entrano in una regione dello spaio con un campo magnetico perpendicolare alla loro velocità di entrata. Se il protone descrive in tale regione una traiettoria con raggio di curvatura R p, il raggio di curvatura della particella nel limite classico è di circa (A) 1.41 R p () 1.73 R p (C) 1.53 R p (D) 3.31 R p (E) SOLUZIONE. Dette m P e q P massa e carica del protone e indicando con il pedice le quantità relative alla seconda particella, le velocità di ingresso delle due particelle nel campo magnetico si trovano uguagliando il lavoro del campo elettrico all energia cinetica acquisita dalle particelle: Il raggio di curvatura è dato dall espressione ricavata nell eserciio precedente: quindi inserendo la prima relaione nella seconda si trova E3. Un elettrone con velocità v = (310 6 m/s)i +(410 6 m/s)j si muove in un campo magnetico = (0.04 T)i (0.03T)j. Il modulo della fora agente sull'elettrone è di (A) N () N (C) N (D) N (E) 1

2 SOLUZIONE. Dato che i vettori v e giacciono nel piano, il vettore F = qv è parallelo all asse. Calcolando il prodotto vettoriale troviamo [ ] [ ] E4. Un protone (m p = kg, q = C) entra con velocità di modulo v = 6(10 6 ) m/s in un campo magnetico uniforme = k e descrive una spirale di raggio R = 10 m e passo d = 10 m. L angolo acuto formato tra le direioni di e di v vale circa (A) () 45 (C) 60 (D) 81 (E) 90 SOLUZIONE. Dato che è diretto come l asse, la fora di Lorent F = qv non ha componenti lungo tale asse e la spirale descritta dal protone è la combinaione di un moto circolare uniforme nel piano e di un moto rettilineo uniforme lungo l asse. Indicata con v la componente della velocità che giace nel piano e con v la componente parallela a, l angolo si ricava dalla relaione v tan v è legata al passo della spirale dalla relaione d v T con T v πr v v πr tan π 81 v d, dunque E5. Dopo essere stato accelerato da una differena di poteniale V = 300 V un protone entra in una regione dove il campo di induione magnetica è perpendicolare alla direione del moto e in cui descrive una traiettoria circolare di raggio R = 0 cm; il modulo di vale circa (A) 1.44 mt () 7.6 mt (C) 1.5 mt (D) 31.4 mt (E) 74.5 mt SOLUZIONE. La velocità di ingresso del protone nel campo magnetico si trova uguagliando il lavoro del campo elettrico all energia cinetica acquisita dalla particella: Come ricavato nell eserciio 1, per il raggio del moto del protone vale la relaione E6. La fora che si esercita su uno ione He + (carica e = C, massa m 4 uma) in moto con velocità v = 10 5 m/s in un campo magnetico di modulo = 0.8 T perpendicolare alla direione del moto vale (A) 9.8(10 7 ) N ().56(10 14 ) N (C)3.(10 14 ) N (D).05(10 14 )N (E).6(10 9 )N

3 SOLUZIONE. Utiliiamo l espressione della fora di Lorent: E7. Uno ione diretto lungo l asse non viene deflesso in una regione dello spaio in cui vi è un campo elettrico di modulo E = 1.37 kv /cm nella direione e un campo magnetico di modulo = 0.14 T lungo. La velocità dello ione è di circa (A) 8.8(10 15 ) m/s () 3.43(10 3 ) m/s (C) 980 km/s (D) 550 km/s (E) SOLUZIONE. La situaione è rappresentata in figura nel caso di uno ione positivo. Lo ione è sottoposto alla fora di Coulomb F C e alla fora di Lorent F L che hanno la stessa direione ma versi opposti e, dato che la particella non viene deflessa, devono essere uguali in modulo: F C v E F L INDUZIONE ELETTROMAGNETICA E8. Una spira rettangolare di altea l 40 cm è = 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante v 3 m/s. Se il piano della 3 m/s spira è perpendicolare a un campo d induione magnetica 40 cm 3 uniforme di modulo 0. T e la resistena complessiva della spira è R 3, la fora necessaria per spostare il contatto mobile è pari a: (A) 0.4 N () 0.08 N (C) 3.14 mn (D) 6.40 mn (E) 9.80 mn SOLUZIONE. L aumento di flusso del campo magnetico attraverso la superficie chiusa delimitata dalla spira e dal contatto mobile genera nel circuito una f.e.m. pari a lv. La corrente indotta nella spira, in senso antiorario, è Il contatto mobile è quindi sottoposto a una fora ( l) v (0.40.) 3 F Il 6.40 mn R 3 con la stessa direione del suo moto ma verso opposto, che rappresenta la fora necessaria per spostarlo. 3

4 E9. Per rivelare le vibraioni di un macchinario si collega a questo un avvolgimento quadrato, lato medio L 5 cm, costituito da N 1000 spire e posto per circa la metà tra i poli di un magnete permanente dove 0.3 T. Se i terminali dell avvolgimento vanno a un oscilloscopio che consente di stimare al minimo una f.e.m. di 0.5 mv, qual è approssimativamente la minima velocità di spostamento rilevabile? (A) 1 m/s () 33 mm/s (C) 1 mm/s (D) 33 m/s (E) 10 m/s SOLUZIONE. La f.e.m. indotta nell avvolgimento e letta dall oscilloscopio vale NLv dove v è la velocità dell avvolgimento dovuta alle vibraioni del macchinario. Perché questa f.e.m. sia letta dall oscilloscopio, è necessario che si abbia: f.e.m. 0.5 mv N L v 510 v 33.3μm/s. N L E10. Un avvolgimento quadrato di N = 300 spire di lato L = 0 cm è fatto ruotare con velocità angolare costante attorno a una sua diagonale in un campo uniforme che forma un angolo di = 30 con l asse di rotaione. Se = 0.7 T e ai capi dell avvolgimento si misura una f.e.m. alternata sinusoidale con un valore efficace V eff =.97 V, la velocità angolare di rotaione è (A) 0 rad/s () 0.5 rad/s (C) 1.0 rad/s (D).0 rad/s (E) indeterminata SOLUZIONE. Possiamo scegliere il sistema di riferimento della figura, con l asse di rotaione dell avvolgimento coincidente con l asse. In questo sistema, le componenti di e di n sono rispettivamente: { { e il flusso di attraverso l avvolgimento vale La fora elettromotrice indotta nell avvolgimento è perciò: d ( ) V N S sin( ) sin( t) dt il cui valore efficace è Vma 1 V eff N S sin( ) La velocità angolare di rotaione dell avvolgimento è quindi: Veff.97 N S sin( ) rad/s n ϑ I E11. Un solenoide di N = 300 spire avvolte su un cilindro di ferro ( r = 600), lungo L = 40 cm e con una seione S = 8 cm, porta una corrente I = 1. A. Il flusso di attraverso una seione del solenoide vale circa: (A) 0.90 Wb ().84 Wb (C) 6.5 Wb (D) 170 Wb (E) 543 Wb 4 L S

5 SOLUZIONE. Il campo magnetico all interno del solenoide vale in modulo e il suo flusso attraverso una qualunque seione vale E1. Un filo d argento è avvolto su di un cilindro isolante vuoto e chiuso tra i punti Z e Y come in figura. Una barra di rame, iniialmente a destra del cilindro, è spinta con velocità costante attraverso il cilindro finché emerge completamente a sinistra. Durante questo moto: (A) degli elettroni passano da Y a Z e dopo da Z ad Y () degli elettroni passano da Z ad Y e dopo da Y a Z (C) non vi è corrente tra Y e Z (D) degli elettroni passano da Y a Z (E) degli elettroni passano da Z a Y Z Y SOLUZIONE. Il passaggio della barra di rame nel solenoide non causa in alcun caso un cambio del flusso di concatenato dal filo d argento del solenoide essendo la permeabilità magnetica del rame praticamente uguale a 1. Non si eccita è perciò alcuna f.e.m. e alcuna corrente. E13. La candela di un motore a scoppio è alimentata attraverso un avvolgimento, di resistena trascurabile, costituito da N = 7000 spire avvolte su un cilindro ferroso di raggio r 1 cm in cui il campo d induione magnetica viene portato da 1 T a 0.1 T in t 0. ms. Il valore medio della differena di poteniale ai capi dell avvolgimento è di circa: (A) 1.4 V () 10 V (C) 100 V (D) 10 3 V (E) 10 4 V SOLUZIONE. Il valore medio della f.e.m. indotta nell avvolgimento a causa della variaione di intensità del campo magnetico è E14. Un solenoide lungo L = 0 cm consiste di N = 400 fili avvolti su di un cilindro di alluminio di diametro D = 6 cm. Se l avvolgimento è percorso da una corrente oscillante sinusoidalmente con valore massimo I 0 = A e periodo T = 0 ms, la differena di poteniale massima misurata ai capi di una spira interrotta posta attorno al solenoide vale circa (A) 0.45 mv () 1.1 mv (C) 1.79 mv (D) 4.5 mv (E) SOLUZIONE. La corrente che percorre l avvolgimento oscilla secondo la legge Poichè l alluminio è un materiale paramagnetico, r 1 e il campo all interno dell avvolgimento vale in modulo I f.e.m. D 5

6 Poiché il modulo del campo magnetico varia nel tempo e tutto il flusso di è concatenato con la spira interrotta posta attorno al solenoide, in quest ultima si induce una f.e.m. pari in modulo a il cui valor massimo è E15. Una bobina di N = 100 spire e area S = 150 cm il cui asse è parallelo a si trova iniialmente nel campo magnetico uniforme di componenti cartesiane = 0.3 T, = 0.4 T, = 0.5 T. Il campo magnetico viene portato a ero con velocità di cambio costante in un tempo t = 0. s. In tale intervallo di tempo, il valore medio della fora elettromotrice indotta nella bobina vale circa (A) 1.0 V () 1.15 V (C) 1. V (D) 3.75 V (E) SOLUZIONE. Le componenti e di non contribuiscono al flusso del campo magnetico attraverso la bobina. Si ha pertanto: Il valor medio della f.e.m. indotta è uguale al suo valore istantaneo, che è costante nell intervallo di tempo t e pari a quello sopra ricavato perchè il problema specifica che il campo magnetico viene portato a ero con velocità di cambio costante. E16. Un avvolgimento circolare (raggio R = 10 cm) di N = 150 spire al tempo t = 0 si trova nel piano con centro coincidente con l origine e in presena di un campo magnetico costante = k con = 0.3 T. Se l avvolgimento ruota con velocità angolare costante π /T avendo come asse di rotaione l asse delle e il massimo voltaggio misurato ai capi dell avvolgimento è V 0 = 88.8 V, il periodo T di rotaione dell avvolgimento è di circa (A) 50 ms () 70 ms (C) 100 ms (D) 167 ms (E) SOLUZIONE. Il flusso del campo attraverso l avvolgimento varia secondo la legge La f.e.m. indotta nell avvolgimento dalla sua rotaione vale pertanto E e il suo valor massimo è pari a 6

7 E17. Una bobina è costituita da N = 100 spire di diametro D = 1. cm e ha una resistena pari a R = 00. Nell intervallo di tempo t la bobina viene estratta completamente da un campo magnetico parallelo all asse della bobina, e in tale intervallo attraverso la bobina passa in media una carica Q = 3 C. Il modulo di vale (A) 0.83 T () T (C) T (D) T (E) 1.13 T SOLUZIONE. Il flusso iniiale attraverso la bobina vale Poiché la bobina viene estratta completamente dal campo Per la legge di Ohm deve essere e poiché la carica Q che attraversa la bobina è pari a si ha E18. Un lungo solenoide con diametro d = 50 cm è costituito da N sol = 000 spire/metro e percorso da corrente I sol = 15 A. Al centro del solenoide sono avvolti n = 15 giri di un filamento di costantana chiusi su se stessi e con resistena complessiva R = 3 (il diametro dell avvolgimento di costantana è uguale a quello del solenoide). Se la corrente nel solenoide viene spenta in un tempo t = ms, la corrente media che percorre il circuito di costantana durante lo spegnimento vale (A) 3.46 A () 10.1 A (C) 15.1 A (D) 18.5 A (E) 40.4 A SOLUZIONE. Il campo all interno del solenoide vale in modulo mentre il flusso iniiale di attraverso il filamento di costantana vale Poiché la corrente nel solenoide viene spenta si ha Per la legge di Ohm deve essere 7

8 E19. Una spira metallica circolare di raggio r = 10 cm e massa m = 50 g con resistena elettrica R = 50 m ha giacitura oriontale (piano ) e scende per gravità lungo la verticale () verso il polo Nord di una barra magnetica verticale. In una ona limitata in prossimità della sommità della barra ( = 0), le componenti di sono rappresentabili analiticamente da A ; A ; A con A = 9 T/m e 0 0 = 0.5 T. Se nel punto C = 10 cm la spira scende con velocità v C =9.8 m/s, la corrente indotta che circola nella spira vale (A) 11.1 A (). A (C) 33.3 A (D) 44.3 A (E) 55.4 A C O v C SOLUZIONE. Il flusso di attraverso la spira in prossimità della somma della barra vale con buona approssimaione e la sua derivata rispetto al tempo vale, nel punto C : Per la legge di Ohm deve essere E0. Con riferimento al problema precedente, la fora magnetica che in C spinge la spira in su vale circa (A) N () N (C) 5.64 N (D).51 N (E) 0.63 N SOLUZIONE. Utiliando la regola della mano destra si comprende che la fora magnetica che spinge la spira in su è dovuta alle componenti del campo magnetico complanari alla spira, cioè al modulo della somma vettoriale : La fora magnetica che si oppone al moto della spira vale dunque, in C : r + E1. Con riferimento ai problemi precedenti, la carica complessiva Q che circola nella spira nel tempo in cui passa da un punto dell asse molto distante dalla barra magnetica al punto O sulla barra vale circa (A) 0.63 C () 0.31 C (C) 0.94 C (D) 1.6 C (E) 1.57 C SOLUZIONE. In un punto dell asse molto distante dalla barra magnetica, e relativo flusso attraverso la spira sono all incirca nulli; il flusso finale attraverso la spira è pertanto uguale alla variaione del flusso stesso dalla posiione iniiale a quella finale. Deve quindi essere 8

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

(a) ;

(a) ; Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili

Dettagli

= 0 B = 0 perché la corrente

= 0 B = 0 perché la corrente CALCOLO DEL CAMPO LEGGE D AMPÈRE Da. Un conduttore cilindrico cavo, di raggio esterno a. cm e raggio interno b.6 cm, è percorso da una corrente A, distribuita uniormemente sulla sua sezione. Calcolare

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente

Dettagli

Dr. Stefano Sarti Dipartimento di Fisica

Dr. Stefano Sarti Dipartimento di Fisica UNIVERSITÀ DI ROMA LA SAPIENZA FACOLTÀ DI INGEGNERIA Corso di Laurea in Ingegneria per l Ambiente e il Territorio ESAME DI FISICA GENERALE II DM 270) Data: 8/9/202. In un disco uniformemente carico di

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 5 CAMPO MAGNETICO B LEGGE DI AMPÈRE

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 5 CAMPO MAGNETICO B LEGGE DI AMPÈRE Fisica Generale Modulo di Fisica A.A. 5-6 CAMPO MAGNETCO LEGGE D AMPÈRE Da. Sei ili conduttori entrano perpendicolarmente nel oglio come in igura. Ogni ilo è attraversato, nella direzione speciicata in

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

Fisica II. 7 Esercitazioni

Fisica II. 7 Esercitazioni Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

CAMPO MAGNETICO E FORZA DI LORENTZ

CAMPO MAGNETICO E FORZA DI LORENTZ QUESITI 1 CAMPO MAGNETICO E FORZA DI LORENTZ 1. (Da Medicina e Odontoiatria 2013) Un cavo percorso da corrente in un campo magnetico può subire una forza dovuta al campo. Perché tale forza non sia nulla

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzione elettromagnetica Una corrente elettrica produce un campo magnetico Un campo magnetico esercita una forza sui circuiti percorsi da corrente È possibile generare correnti per mezzo di campi magnetici?

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

Campo magnetico terrestre

Campo magnetico terrestre Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come

Dettagli

Campo magnetico e forza di Lorentz (II)

Campo magnetico e forza di Lorentz (II) Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro Moto di una particella

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

Corso di Fisica Per Informatica Esercitazioni 2009

Corso di Fisica Per Informatica Esercitazioni 2009 Coordinate Esercitatore: Stefano Argirò stefano.argiro@unito.it tel 011670-7372 Ricevimento: su appuntamento tramite e-mail http://www.to.infn.it/ argiro 1 Esercitazioni di Fisica - Vettori 1. Dato un

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

UNIVERSITA degli STUDI del SANNIO

UNIVERSITA degli STUDI del SANNIO UNIVERSITA degli STUDI del SANNIO FACOLTA di INGEGNERIA CORSO di LAUREA in INGEGNERIA TRACCE DI FISICA II (aggiornato al luglio 9) Calcolare, per una sfera di raggio R, l energia del campo elettrostatico

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb ELETTROTECNICA Livello 13 Elettromagnetismo Andrea Ros sdb Livello 13 Elettromagnetismo Sezione 1 Campi magnetici e correnti elettriche Nel 1820 il fisico Oersted scoprì che il passaggio di una corrente

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

Compito di Fisica II del 14/09/2009

Compito di Fisica II del 14/09/2009 Compito di Fisica II del 14/09/2009 Prof. G. Zavattini Una sbarretta conduttrice omogenea di massa m = 1g, lunghezza d = 10 cm e resistenza trascurabile è incernierata perpendicolarmente a due guide rettilinee

Dettagli

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico:

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico: Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico; l'importante

Dettagli

Campi Elettromagnetici Stazionari - a.a

Campi Elettromagnetici Stazionari - a.a Campi Elettromagnetici Stazionari - a.a. 2005-06 I Compitino - 17 Novembre 2005 Due anelli di raggio a=1 cm e sezione trascurabile, disposte come in Figura 1, coassiali tra loro e con l'asse x, in posizione

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il capo agnetico 1. Fenoeni agnetici 2. Calcolo del capo agnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Prof. Giovanni Ianne 1/21 Fenoeni agnetici La agnetite è un inerale

Dettagli

Il magnetismo magnetismo magnetite

Il magnetismo magnetismo magnetite Magnetismo Il magnetismo Fenomeno noto fin dall antichità. Il termine magnetismo deriva da Magnesia città dell Asia Minore dove si era notato che un minerale, la magnetite, attirava a sé i corpi ferrosi.

Dettagli

Temi di elettromagnetismo

Temi di elettromagnetismo Temi di elettromagnetismo Prova scritta del 12/04/1995 1) Una carica puntiforme q 1 = 5 µc e' fissata nell'origine ed una seconda carica q 2 = -2µC e' posta sull'asse x, a una distanza d = 3 m, come in

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

rdr = 1 2!Bl2 = 0:5 V:

rdr = 1 2!Bl2 = 0:5 V: Lauree in Ing. Gest. dell Inform. e Industr. e Ing. Ambientale A.A. 2010/2011 Corso di Fisica Generale II_con Lab. 28 Gilberto Giugliarelli 4.1 Una sbarretta conduttrice di lunghezza l = 10 cm ruota con

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

Compitino di Fisica II 15 Aprile 2011

Compitino di Fisica II 15 Aprile 2011 Compitino di Fisica II 15 Aprile 2011 Alcune cariche elettriche q sono disposte ai vertici di un quadrato di lato a come mostrato in figura. Si calcoli: +2q y +q a) il momento di dipolo del sistema; b)

Dettagli

I poli magnetici isolati non esistono

I poli magnetici isolati non esistono Il campo magnetico Le prime osservazioni dei fenomeni magnetici risalgono all antichità Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro Un ago magnetico libero

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

Nome Cognome...Classe Data.. 1

Nome Cognome...Classe Data.. 1 Esercitazione in preparazione al compito di fisica 1 Una spira rettangolare di filo di rame di lati, rispettivamente, di 2,0 cm e 4,0 cm è percorsa da 0,5 ma di corrente e viene immersa in un campo magnetico

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE Fisica generale II, a.a. 01/014 OND LTTROMAGNTICH 10.1. Si consideri un onda elettromagnetica piana sinusoidale che si propaga nel vuoto nella direzione positiva dell asse x. La lunghezza d onda è = 50.0

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

FENOMENI MAGNETICI NATURALI

FENOMENI MAGNETICI NATURALI MAGNETISMO l Il magnetismo è una caratteristica di certi corpi, detti magneti, grazie alla quale essi esercitano una forza a distanza su sostanze come il ferro, attirandole. FENOMENI MAGNETICI NATURALI

Dettagli

I MOTI NEL PIANO. Vettore posizione e vettore spostamento

I MOTI NEL PIANO. Vettore posizione e vettore spostamento I MOTI NEL IANO Vettore posizione e vettore spostamento Si parla di moto in un piano quando lo spostamento non avviene lungo una retta, ma in un piano, e può essere descritto usando un sistema di riferimento

Dettagli

Soluzioni della prova scritta di Fisica Generale

Soluzioni della prova scritta di Fisica Generale Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 1 Febbraio 2011 Parte 1 Esercizio 1 Un punto parte dall origine dell asse x con velocità v 0 positiva. Il punto viaggia

Dettagli

Quesiti dell Indirizzo Tecnologico

Quesiti dell Indirizzo Tecnologico Quesiti dell Indirizzo Tecnologico 1) Sapendo che la massa di Marte é 1/10 della massa della Terra e che il suo raggio é ½ di quello della Terra l accelerazione di gravità su Marte è: a) 1/10 di quella

Dettagli

Elettromagnetismo

Elettromagnetismo Elettromagnetismo 1. Una bolla di sapone di raggio r = 7.0 cm è caricata al potenziale V 1 = 150 V. La parete della bolla ha spessore s = 5.2 x 10-6 cm. Se si fa scoppiare la bolla e si suppone di raccogliere

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in uiete a una istanza = 100 µm a un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti el campo E in un generico punto P el semispazio

Dettagli

Cosa è la dinamo? dinamo

Cosa è la dinamo? dinamo La dinamo Cosa è la dinamo? La dinamo è una macchina elettrica rotante per la trasformazione di lavoro meccanico in energia elettrica, sotto forma di corrente continua (DC, per gli inglesi, direct current).

Dettagli

SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA

SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROBLEMA 1. PROVA DI AMMISSIONE A.A.:2007-2008 SOLUZIONE DELLA PROVA SCRITTA DI FISICA a) da g = GM segue: M = gr2 R 2 G b) La forza centripeta che fa descrivere

Dettagli

FISICA (modulo 1) PROVA SCRITTA 23/06/2014

FISICA (modulo 1) PROVA SCRITTA 23/06/2014 FISICA (modulo 1) PROVA SCRITTA 23/06/2014 ESERCIZI E1. Un corpo puntiforme di massa m = 2 Kg si muove su un percorso che ha la forma di un quarto di circonferenza di raggio R = 50 cm ed è disposta su

Dettagli

ITN DUCA DEGLI ABRUZZI di Catania Compito di elettrotecnica ed elettronica.

ITN DUCA DEGLI ABRUZZI di Catania Compito di elettrotecnica ed elettronica. TN DUCA DEGL ABRUZZ di Catania Compito di elettrotecnica ed elettronica. Cognome.. Nome... Classe. Data / / Quesiti Dalla 1 alla 15 16 17 18 19 0 tot Punteggio totale previsto 45 3 10 4 6 70 Esatte. x3

Dettagli

1.2 Moto di cariche in campo elettrico

1.2 Moto di cariche in campo elettrico 1.2 Moto di cariche in campo elettrico Capitolo 1 Elettrostatica 1.2 Moto di cariche in campo elettrico Esercizio 11 Una carica puntiforme q = 2.0 10 7 C, massa m = 2 10 6 kg, viene attratta da una carica

Dettagli

Lezione 5 MOTO CIRCOLARE UNIFORME

Lezione 5 MOTO CIRCOLARE UNIFORME Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 MOTO CIRCOLARE UNIFORME 2 Per descrivere un moto curvilineo occorrono due assi cartesiani ortogonali ed un orologio.

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

df = I dl B df = dq v B

df = I dl B df = dq v B Forza Magnetica su un conduttore Forza magnetica agente su un filo percorso da corrente Consideriamo un filo percorso da una corrente in presenza di un campo magnetico. Agirà una forza su ciascuna delle

Dettagli

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino Esercitazione 1 Matteo Luca Ruggiero 1 1 Dipartimento di Fisica del Politecnico di Torino Anno Accademico 2010/2011 ML Ruggiero (DIFIS) Esercitazione 1: Elettrostatica E1.2010/2011 1 / 29 Sommario 1 Riferimenti

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

Misura del campo magnetico terrestre con le bobine di Helmholtz

Misura del campo magnetico terrestre con le bobine di Helmholtz Misura del campo magnetico terrestre con le bobine di Helmholtz Le bobine di Helmholtz sono una coppia di bobine con alcune caratteristiche particolari: hanno entrambe raggio ; hanno una lunghezza L molto

Dettagli

di ogni particella carica che raggiunge con velocità v la regione in cui è presente campo 2 m

di ogni particella carica che raggiunge con velocità v la regione in cui è presente campo 2 m íîñôéøúïôúî ùôðôñüïî oôç üúîñét ôïöøöïøëôüüøëîêíüãôüñø ôüííøññîùô ÔÊÔÚÜêÍØËÔÐØÏÉÜÑØ ü û öôèêéô ÔÚÜËØ ÑØ ËÔÊÍÎÊÉØ ØÊÚËÔÇØËØ ÔÏ ÐÎÙÎ ÚÕÔÜËÎ ØÑØÖÖÔÛÔÑØ êîêéôéèôëø ÔÇÜÑÎËÔ ÏÈÐØËÔÚÔ ÊÎÑÎ ÜÑÑÜ ÔÏØ ÙÎÍÎ ÜÇØË

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI IOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

LA PRODUZIONE DI CORRENTE ELETTRICA ALTERNATA

LA PRODUZIONE DI CORRENTE ELETTRICA ALTERNATA Magnetismo LA PRODUZIONE DI CORRENTE ELETTRICA ALTERNATA Il magnetismo è la proprietà di alcuni corpi di attirare oggetti di natura ferrosa. I corpi che hanno questa proprietà sono detti magneti o calamite

Dettagli

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici:

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: C A M P O M A G N E T I C O N E L L ' A R I A L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: 1] Intensità

Dettagli

Generatori di tensione

Generatori di tensione Correnti alternate Generatori di tensione Sinora come generatore di forza elettromotrice abbiamo preso in considerazione soltanto la pila elettrica. Questo generatore ha la caratteristica di fornire sempre

Dettagli

1b. Un triangolo isoscele ABC di base AB = 5 cm è inscritto in un cerchio di raggio

1b. Un triangolo isoscele ABC di base AB = 5 cm è inscritto in un cerchio di raggio 1a. Un triangolo isoscele AB di base AB = 5 cm è inscritto in un cerchio di raggio R = 5 cm e centro in O. In A e B sono poste due cariche positive uguali q A = q B = 6 ; la carica in, q, è tale che il

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

17. Elettromagnetismo

17. Elettromagnetismo 1 quaioni di Mawell 17. lettromagnetismo Nelle leioni precedenti abbiamo considerato i campi elettrico e magnetico statici, cioè abbiamo considerato fenomeni indipendenti dal tempo. I campi elettrico e

Dettagli

Dottorato in Fisica XIV ciclo n.s. 21 gennaio 2013 Prova scritta n.1

Dottorato in Fisica XIV ciclo n.s. 21 gennaio 2013 Prova scritta n.1 Dottorato in Fisica XIV ciclo n.s. 1 gennaio 013 Prova scritta n.1 Compito 1. I processi oscillatori in fisica. Conseguenze della corrente di spostamento nelle equazioni di Maxwell. Un cilindro di raggio

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Cognome Nome Matricola DOCENTE Energetica Biomedica DM 270 Elettronica Informazione Informatica DM509 Problema 1 Nel circuito di figura (a) i resistori hanno valori tali che R 1 / = 2 e i condensatori

Dettagli

Esercitazione VI - Leggi della dinamica III

Esercitazione VI - Leggi della dinamica III Esercitazione VI - Leggi della dinamica III Esercizio 1 I corpi 1, 2 e 3 rispettivamente di massa m 1 = 2kg, m 2 = 3kg ed m 3 = 4kg sono collegati come in figura tramite un filo inestensibile. Trascurando

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

INTERPRETAZIONE CINEMATICA DELLA DERIVATA INTERPRETAZIONE CINEMATICA DELLA DERIVATA Consideriamo un punto mobile sopra una qualsiasi linea Fissiamo su tale linea un punto O, come origine degli archi, e un verso di percorrenza come verso positivo;

Dettagli

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche Campi Elettrici e Magnetici ELETTROSTATICA Cariche Elettriche e Forze Elettriche Esperienza ==> Forza tra cariche SI INTRODUCE UNA NUOVA GRANDEZZA FONDAMENTALE: LA CARICA ELETTRICA UNITÀ DI MISURA NEL

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE

MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE Lavoro svolto da Laura Bianchettin - Flavio Ciprani Premessa Il campo magnetico terrestre è rappresentato da un vettore generalmente

Dettagli

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! ì Docente: Claudio Melis, Ricercatore a tempo determinato presso il Dipartimento di Fisica! Email: claudio.melis@dsf.unica.it!! Telefono

Dettagli

LEZIONI ED ESERCITAZIONI DI FISICA Prof. Francesco Marchi 1 Appunti su: corrente elettrica, leggi di Ohm, circuiti 29 novembre 2010 1 Per altri materiali didattici o per contattarmi: Blog personale: http://francescomarchi.wordpress.com/

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileana 014-015 Problema 1 Nella regione di spazio interna alla sfera S 1, centrata in O 1 e di raggio R 1, è presente una densità di carica di volume

Dettagli

Paradosso di Feynman

Paradosso di Feynman Paradosso di Feynman David Marzocca 27 luglio 2007 Paradosso di Feynman [] Immaginiamo di avere una bobina fissata coassialmente ad un disco di materiale isolante. Sul bordo di questo disco, a distanza

Dettagli

Concorso Progetto Lauree Scientifiche - Fisica Università degli Studi di Milano - Bicocca

Concorso Progetto Lauree Scientifiche - Fisica Università degli Studi di Milano - Bicocca Concorso Progetto Lauree Scientifiche - Fisica Università degli Studi di Milano - Bicocca A cura di Bugliari A., Fontanesi S. e Leidi A. Classe 5^I Liceo Scientifico Statale L.Mascheroni - Bergamo Il fatto

Dettagli