LA FISICA DEL TEMPO. Sergio Luigi Cacciatori. Musei Civici di Como: Il Tempo nelle Scienze e nella Storia Como, 02 Febbraio 2011

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA FISICA DEL TEMPO. Sergio Luigi Cacciatori. Musei Civici di Como: Il Tempo nelle Scienze e nella Storia Como, 02 Febbraio 2011"

Transcript

1 LA FISICA DEL TEMPO Sergio Luigi Cacciatori DIPARTIMENTO DI FISICA E MATEMATICA, UNIVERSITÀ DELL INSUBRIA DI COMO Musei Civici di Como: Il Tempo nelle Scienze e nella Storia Como, 02 Febbraio 2011

2 IL TEMPO Agostino di Ippona e il tempo nelle Confessioni Che è dunque il tempo? Se nessuno me lo domanda, lo so; se voglio spiegarlo a chi me lo domanda, non lo so. [Agostino, Le Confessioni, Libro XI, Capo XIV, pag. 579] Ecco la mia risposta a chi chiede che cosa faceva Dio prima di creare il cielo e la terra. Non rispondo già come quel tale che, a quanto si racconta, eludendo scherzosamente la forte difficoltà della questione rispose: Dio preparava l inferno a coloro che vogliono scrutare le cose troppo profonde. Altro è capire, altro è scherzare: io non rispondo così. Preferirei rispondere di non sapere quello che non so, piuttosto di dare una risposta che mette in ridicolo chi ha posto una questione profonda e loda chi risponde con una falsità. [Agostino, Le Confessioni, Libro XI, Capo XII, pag. 574]

3 Edoardo Boncinelli, Tempo delle cose, tempo della vita, tempo dell anima, Roma-Bari, Laterza-Fondazione Sigma-Tau, Il tempo fisico, il tempo biologico, il tempo psicologico. IL TEMPO: è sufficiente misurarlo? ADESSO: in questo momento. Cosa significa? Cosa sta succedendo in questo momento a Milano, a Roma, sulla Luna, su Giove? Se costruiamo un orologio possiamo misurare il tempo, e gli intervalli di tempo tra gli istanti. Ma anche se tutti disponiamo di un orologio come si può individuare un istante?

4 SINCRONIZZARE GLI OROLOGI Come sincronizziamo gli orologi? L istante potrebbe essere l insieme degli eventi simultanei. Se il concetto di simultaneità è assoluto, deve esserci un modo assoluto di sincronizzare gli orologi. Assoluto: che non dipende dal sistema di riferimento.

5 Uso un campanello o un flash luminoso. Due orologi equidistanti saranno sincronizzati se segnano la stessa ora quando vengono raggiunti dal segnale luminoso o quello sonoro. Assumiamo che la luce o il suono si muovono con la stessa velocità in tutte le direzioni. Sincronizzo gli orologi due a due.

6 Li posso sincronizzare spostando ovunque la lampada-campanello. Ora sono soddisfatto: ho definito l istante in questo sistema di riferimento. Dunque ho definito la simultaneità. Nel dato sistema di riferimento.

7 SISTEMI INERZIALI Corpi materiali completamente isolati mantengono uno stato di quiete o di moto rettilineo uniforme. Si muovono rispetto a cosa? Ad un sistema di riferimento. Se esiste un sistema di riferimento in cui questa legge è vera per ogni corpo allora tale sistema lo chiameremo sistema di riferimento inerziale. Dato un sistema inerziale, ne esistono infiniti altri: uno per ogni possibile velocità. Qualunque sistema in moto rettilineo uniforme rispetto a un sistema inerziale vede valere la legge di inerzia. Esiste un sistema inerziale preferenziale? No!

8 OROLOGI IN MOVIMENTO IL SENSO COMUNE Possiamo considerare un sistema inerziale in moto rispetto al primo ad esempio costruito su un carrello che si muove con velocità costante v. Anche sul carrello uso una lampada per sincronizzare gli orologi. Posso avere due casi: Il mezzo in cui la luce si propaga (etere) è fermo rispetto al terreno. La luce si muove con velocità c rispetto al terreno. Se sono sul carrello vedrò la luce che si muove a velocità c-v in avanti e c+v all indietro. Ne devo tener conto per sincronizzare gli orologi ma vedo che i miei orologi sono sincronizzati se lo sono quelli fermi a terra. L etere in cui la luce si propaga viaggia con il carrello. La luce ha velocità c rispetto al carrello e velocità c+v in avanti e c-v all indietro rispetto a terra. È la situazione esattamente simmetrica rispetto a prima e di nuovo gli orologi sono sincronizzati sul treno in perfetto accordo con quelli a terra.

9

10 Abbiamo sincronizzato gli orologi in modo assoluto! I due sistemi di riferimento sono in perfetto accordo sulla sincronizzazione degli orologi. Sono in accordo sulla simultaneità degli eventi. I due sistemi di riferimento sono d accordo sulla lunghezza del carrello: come si misura la lunghezza del carrello in movimento? Si registra la posizione simultanea delle sue estremità. I due sistemi di riferimento sono sono in accordo sulla misura degli intervalli di tempo che intercorrono tra due eventi. Si può verificare il proprio stato di moto (rispetto all etere) dalla misura della velocità della luce.

11 VELOCITÀ LIMITE Al posto della luce sarebbe più comodo usare un segnale che si muove a velocità infinita ( ). ±v=. In questo caso i segnali sono visti simultaneamente da tutti gli orologi indipendentemente da v. È una situazione limite. La luce è però la cosa più veloce che conosciamo: studiamo meglio la luce.

12 IL PARADOSSO DI MICHELSON E MORLEY ESPERIMENTO DI MICHELSON E MORLEY Michelson (1881), Michelson-Morley (1887) Un osservatore a terra misura per la velocità della luce un valore c. Un osservatore sul carrello misura per la velocità della luce un valore c.????????????!!!!!!!!! È un paradosso!! È contrario al senso comune! C è qualcosa di sbagliato?

13 EINSTEIN NO! Non c è nessun errore. È un paradosso solo se interpretato con il senso comune. È sbagliato il senso comune! Nel medio evo la Terra tonda era un paradosso incompatibile con il senso comune dell alto e del basso assoluti! Il senso comune è un approssimazione!

14 RELATIVITÀ DELLA SIMULTANEITÀ ASSIOMA: La velocità della luce è assoluta, non dipende dal sistema inerziale in cui la si misura. Sul carrello mettiamo l orologio A in coda e l orologio B in testa ed al centro la lampada. La lampada manda un flash. Un osservatore seduto sul carrello vede la luce che si muove a velocità c sia in avanti che all indietro. I lampi arrivano in A e in B e questi segnano la stessa ora. Secondo l osservatore i due orologi sono perfettamente sincronizzati! Un osservatore a terra invece vede anch egli i due lampi che si muovono con la stessa velocità c sia in avanti che all indietro. Ma nel contempo vede il carrello muoversi in avanti con velocità v. Allora secondo lui la luce si muove con velocità c-v in avanti e c+v all indietro rispetto al carrello. Ne conclude che l osservatore sul carrello ha sbagliato a sincronizzare gli orologi: l orologio A riceve il lampo dopo rispetto a B, ma segnano la stessa ora perché non sono sincronizzati.

15

16 Chi dei due ha ragione? Entrambi! Ognuno ha ben definito il concetto di simultaneità nel proprio sistema di riferimento. Se si confrontano sono però in disaccordo perché il concetto di simultaneità è relativo e non più assoluto. Il fatto che ci sia una velocità limite finita (c) rende relativo il concetto di simultaneità e quindi di adesso, di istante. Il nostro senso comune era stato ingannato: Come la piattezza della Terra si manifesta errata quando ci si muove su distanze che si avvicinano al raggio terrestre, così l assolutezza della simultaneità si manifesta essere un errore quando ci si muove a velocità prossime a quelle della luce.

17 CONTRAZIONE DELLE LUNGHEZZE I due osservatori, quello sul carrello e quello a terra non sono più d accordo neppure sulla lunghezza del carrello (o di qualunque asta adagiata nella direzione del moto). Un omino sul carrello ne prenderà la misura osservando simultaneamente gli estremi e troverà una lunghezza L. L omino a terra vedrà che la posizione di B è invece stata presa successivamente a quella di A, dopo che il carrello si è un pò mosso in avanti e quindi dedurrà che la misura corretta è invece L<L. I due osservatori saranno d accordo sulla lunghezza di un righello perpendicolare alla direzione del moto. Un oggetto in movimento rispetto ad un osservatore inerziale appare contratto nella direzione del moto.

18

19 DILATAZIONE DEI TEMPI Sia O fermo al centro del carrello e P un perno sul carrello posto dietro a O. O è un osservatore fermo a terra. A T=T =0, O e O coincidono. Al tempo t (per O) l osservatore O incontra P. Secondo O, O ha percorso un tratto vt. In tale istante, per O, O è in ritardo essendo in testa: t <t (O dovrà percorrere un tratto maggiore di vt per segnare il tempo t). Un orologio messo in movimento rispetto ad un osservatore inerziale apparirà camminare più lentamente. Il tempo scorre in modo differente nei diversi sistemi di riferimento.

20

21 QUANTIFICHIAMO: Prendiamo una clessidra ottica di altezza h in cui un impulso luminoso rimbalza tra la base e il soffitto. Posiamola verticalmente sul carrello. Quanto tempo impiega la luce ad andare dalla base al soffitto? Sul carrello vedo che la luce è percorre h in un tempo t =h/c. Da terra vedo che la luce mentre percorre h verticalmente, percorre un tratto v t orizzontalmente: (v t) 2 + h 2 =c t. Eliminando h dalle due formule otteniamo t= t / 1 v 2 /c 2

22

23 Se invece la clessidra ottica la mettiamo in orizzontale come in figura: Sul carrello vedo che il tempo per andare e tornare è t =2h /c. Da terra vedrei che impiega h/(c-v) dalla base al soffitto e h/(c+v) per tornare alla base: t=h/(c-v)+h/(c+v). Usando la relazione di prima tra t e t troviamo h=h 1 v 2 /c 2.

24

25 CONCLUSIONI La fisica del tempo è non banale. La percezione del tempo assoluto è sbagliata. La simultaneità è un concetto relativo, come lo scorrere del tempo, non solo da un punto di vista psicologico ma anche fisico. Dobbiamo abbandonare il senso comune e rianalizzare il concetto di tempo, spazio e velocità: t= t / 1 v 2 /c 2 t, se v c L=L 1 v 2 /c 2 L, se v c, x=(x +vt )/ 1 v 2 /c 2 x +vt, t=(t +vx /c 2 )/ 1 v 2 /c 2 t, w=(v+w )/(1+vw /c 2 ) v+w, se v c se v c se v c, w=x/t, w =x /t.

La Teoria della Relatività Ristretta. Prof. Michele Barcellona

La Teoria della Relatività Ristretta. Prof. Michele Barcellona La Teoria della Relatività Ristretta Prof. Michele Barcellona I Postulati della Teoria della Relatività ristretta Per risolvere le contraddizioni tra Meccanica ed Elettromagnetismo Einstein propose una

Dettagli

Risolviamo un esercizio per illustrare il fenomeno in modo dettagliato anche se,in alcuni punti, semplificato.

Risolviamo un esercizio per illustrare il fenomeno in modo dettagliato anche se,in alcuni punti, semplificato. PARADOSSO DEI GEMELLI Il cosiddetto paradosso dei gemelli è forse una delle conseguenze più popolari della teoria della relatività di Einstein. In realtà non si tratta di un vero e proprio paradosso, bensì

Dettagli

PROBLEMA. L EFFETTO GEMELLI Adattamento da P.A. Tipler Invito alla Fisica 3 E.F.Taylor-J.A.Wheeler Fisica dello Spazio-Tempo Zanichelli

PROBLEMA. L EFFETTO GEMELLI Adattamento da P.A. Tipler Invito alla Fisica 3 E.F.Taylor-J.A.Wheeler Fisica dello Spazio-Tempo Zanichelli PROBLEMA. L EFFETTO GEMELLI Adattamento da P.A. Tipler Invito alla Fisica 3 E.F.Taylor-J.A.Wheeler Fisica dello Spazio-Tempo Zanichelli Obiettivi Presentare una soluzione semplificata del Paradosso dei

Dettagli

1 L'esperimento di Michelson-Morley

1 L'esperimento di Michelson-Morley 1 L'esperimento di Michelson-Morley La presentazione dell'esperimento di Michelson-Morley persegue il duplice scopo di: mostrare la metodologia seguita in sica nel suo processo di verica e estensione della

Dettagli

La velocità. Isabella Soletta - Liceo Fermi Documento riadattato da MyZanichelli.it

La velocità. Isabella Soletta - Liceo Fermi Documento riadattato da MyZanichelli.it La velocità Isabella Soletta - Liceo Fermi Documento riadattato da MyZanichelli.it Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA IL PARADOSSO Dei GEMELLI Adriana Lanza I.T:T. COLOMBO via Panisperna, 255 9 marzo 2016 IL PARADOSSO DEI GEMELLI Il cosiddetto paradosso dei gemelli è forse

Dettagli

Incontri di introduzione alla Relatività Generale

Incontri di introduzione alla Relatività Generale Incontri di introduzione alla Relatività Generale Prima parte La Torre del Sole - 11 Novembre 2015 Dr. Andrea Castelli, Ph.D. Università degli Studi di Bologna Struttura del corso PARTE PRIMA - 11 Novembre

Dettagli

Caduta di un corpo in un fluido

Caduta di un corpo in un fluido Come si muove un oggetto che cade in un fluido (acqua e sapone)? 1. Prendiamo delle sferette identiche tra loro e le lasciamo cadere all interno di un cilindro pieno di un fluido, ad esempio acqua e sapone...

Dettagli

Da un flash lontano partono lampi di luce che viaggiano nella stessa direzione e verso del missile.

Da un flash lontano partono lampi di luce che viaggiano nella stessa direzione e verso del missile. 1. Lampi di luce Confrontare le leggi della Relatività Classica e della Relatività Ristretta Riconoscere l influenza del postulato dell invarianza della velocità della luce sulla misura degli intervalli

Dettagli

I postulati di Einstein

I postulati di Einstein I postulati di Einstein La velocità della luce è la stessa per tutti gli osservatori Le leggi della natura hanno la stessa forma per tutti gli osservatori inerziali. Einstein quindi estende il principio

Dettagli

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Leggi della Dinamica Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Fisica con Elementi di Matematica 1 Leggi della Dinamica Perché i corpi cambiano il loro

Dettagli

Carlo Cosmelli. La visione del mondo della Relatività e della Meccanica Quantistica. Settimana 2 - La Teoria della Relatività speciale Lezione 2.

Carlo Cosmelli. La visione del mondo della Relatività e della Meccanica Quantistica. Settimana 2 - La Teoria della Relatività speciale Lezione 2. La visione del mondo della Relatività e della Meccanica Quantistica Settimana 2 - La Teoria della Relatività speciale Lezione 2.1 Carlo Cosmelli 1 Riassunto della lezione #1 Alla fine dell 800 abbiamo

Dettagli

4. I principi della meccanica

4. I principi della meccanica 1 Leggi del moto 4. I principi della meccanica Come si è visto la cinematica studia il moto dal punto di vista descrittivo, ma non si sofferma sulle cause di esso. Ciò è compito della dinamica. Alla base

Dettagli

Le caratteristiche del moto. Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo.

Le caratteristiche del moto. Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo. Il moto dei corpi Le caratteristiche del moto Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo. Le caratteristiche del moto Immagina di stare seduto

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con

Dettagli

Lezione 3: come si descrive il moto dei corpi

Lezione 3: come si descrive il moto dei corpi Lezione 3 - pag.1 Lezione 3: come si descrive il moto dei corpi 3.1. Correlare posizione e tempo Quando diciamo che un corpo si muove intendiamo dire che la sua posizione, misurata rispetto al sistema

Dettagli

Questo simbolo significa che è disponibile una scheda preparata per presentare l esperimento

Questo simbolo significa che è disponibile una scheda preparata per presentare l esperimento L accelerazione Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio Questo simbolo significa che l esperimento si può realizzare anche

Dettagli

3. Le coordinate geografiche: latitudine e longitudine

3. Le coordinate geografiche: latitudine e longitudine Introduzione 3. Le coordinate geografiche: latitudine e longitudine Ogni volta che vogliamo individuare un punto sulla superficie terrestre gli associamo due numeri, le coordinate geografiche: la latitudine

Dettagli

Introduzione alla relatività speciale

Introduzione alla relatività speciale Introduzione alla relatività speciale Da Ciaoidea. Elementi di relatività speciale La simmetria è presente in qualsiasi elemento naturale anche tra i più piccoli. Tutto ciò che osserviamo è simmetrico

Dettagli

QUATTRO PASSI NELLO SPAZIOTEMPO

QUATTRO PASSI NELLO SPAZIOTEMPO QUATTRO PASSI NELLO SPAZIOTEMPO! LA VISIONE DEL MONDO NELLA RELATIVITA DI EINSTEIN Giuseppe Tormen Dip. di Fisica e Astronomia G.Galilei Università di Padova!1 Lewis Carroll Epstein UN PO DI STORIA...

Dettagli

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac La DINAMICA è il ramo della meccanica che si occupa dello studio del moto dei corpi e delle sue cause o delle circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo

Dettagli

Lo spazio-tempo di Minkowski. prof.ssa Angela Donatiello

Lo spazio-tempo di Minkowski. prof.ssa Angela Donatiello Lo spazio-tempo di Minkowski Per meglio comprendere gli effetti relativistici dovuti all assunzione dei due postulati di Einstein, introduciamo un utile strumento geometrico noto con il nome di diagramma

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo L ' o r o l o g i o a l u c e e i l t e m p o p r o p r i o L'orologio a luce serve a connettere l'invarianza della velocità della luce col carattere non più assoluto

Dettagli

Problemi di relatività

Problemi di relatività Problemi di relatività Il paradosso delle due astronavi Immaginiamo di avere 2 astronavi, A e B, che viaggiano in direzioni opposte ciascuna a 200.000 Km/sec e che passano davanti all'osservatore Q che

Dettagli

INTRODUZIONE ALLA TEORIA DELLA RELATIVITÀ RISTRETTA

INTRODUZIONE ALLA TEORIA DELLA RELATIVITÀ RISTRETTA INTRODUZIONE ALLA TEORIA DELLA RELATIVITÀ RISTRETTA 1 Le leggi che reggono la fisica relativistica si applicano ai fenomeni che si svolgono a velocità molto elevate, dell ordine della velocità della luce.

Dettagli

1 di 5 12/02/ :23

1 di 5 12/02/ :23 Verifica: tibo5794_me08_test1 nome: classe: data: Esercizio 1. La traiettoria di un proiettile lanciato con velocità orizzontale da una certa altezza è: un segmento di retta obliqua percorso con accelerazione

Dettagli

La relatività generale. Lezioni d'autore

La relatività generale. Lezioni d'autore La relatività generale Lezioni d'autore Il GPS (RaiScienze) VIDEO Einstein e la teoria della relativita (History Channel) VIDEO Einstein: dimostrazione della teoria generale della gravità (History Channel))

Dettagli

Lezione 3. Principi generali della Meccanica Cinematica, Statica e Dinamica

Lezione 3. Principi generali della Meccanica Cinematica, Statica e Dinamica Lezione 3 Principi generali della Meccanica Cinematica, Statica e Dinamica Premessa L Universo in cui viviamo costituisce un sistema dinamico, cioè un sistema in evoluzione nel tempo secondo opportune

Dettagli

Come costruire una meridiana equatoriale

Come costruire una meridiana equatoriale Pagina 1 di 5 Come costruire una meridiana equatoriale La meridiana equatoriale è l'orologio solare più semplice da costruire. Per capire come funziona, supponiamo che la Terra sia disposta in modo che

Dettagli

Capire la Fisica Livello intermedio.

Capire la Fisica Livello intermedio. Capire la Fisica Livello intermedio. Quest opera è stata rilasciata con licenza Creative Commons ttribuzione - Non commerciale - Condividi allo stesso modo 3.0 Italia. Per leggere una copia della licenza

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo L ' e s p e r i m e n t o d i B r i a t o r e e L e s c h i u t t a Questo esperimento risale al 1975. Ci sono due orologi atomici, uno a Torino (1) e l'altro sul Plateau

Dettagli

Un esperienza di insegnamento della relatività speciale

Un esperienza di insegnamento della relatività speciale Un esperienza di insegnamento della relatività speciale AIF PAVIA - XXXVII corso di aggiornamento in fisica Brandolini Angela Pasi Giovanni Rognoni Daniela PAVIA - 3/12/2014 Breve ricostruzione storica

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento. 1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

FORMARSI AGGIORNARSI CONDIVIDERE. I webinar per gli insegnanti di matematica e scienze

FORMARSI AGGIORNARSI CONDIVIDERE. I webinar per gli insegnanti di matematica e scienze FORMARSI AGGIORNARSI CONDIVIDERE I webinar per gli insegnanti di matematica e scienze Insegnare la relatività Parte I 17 febbraio 016 Vincenzo Barone (Università del Piemonte Orientale e INFN) Preparare

Dettagli

Storia della dinamica

Storia della dinamica Storia della dinamica Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Lo studio del movimento e delle sue cause è stato oggetto di analisi da parte dei primi filosofi greci. Aristotele

Dettagli

URTI: Collisioni/scontro fra due corpi puntiformi (o particelle).

URTI: Collisioni/scontro fra due corpi puntiformi (o particelle). URTI: Collisioni/scontro fra due corpi puntiformi (o particelle). I fenomeni di collisione avvengono quando due corpi, provenendo da punti lontani l uno dall altro, entrano in interazione reciproca, e

Dettagli

La teoria della Relatività Ristretta

La teoria della Relatività Ristretta Liceo Classico Seneca La teoria della Relatività Ristretta Prof. E. Modica Alcune domande DOMANDE Come misurereste la durata dell oscillazione di un pendolo? Cosa intendete per intervallo di tempo? Cosa

Dettagli

Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo. Seconda lezione. Antonio Maggio. INAF Osservatorio Astronomico di Palermo

Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo. Seconda lezione. Antonio Maggio. INAF Osservatorio Astronomico di Palermo Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo Seconda lezione Antonio Maggio INAF Osservatorio Astronomico di Palermo Argomenti e concetti già introdotti Astrometria: posizione

Dettagli

Il gatto di Schroedinger: vivo, morto, o...?

Il gatto di Schroedinger: vivo, morto, o...? Il gatto di Schroedinger: vivo, morto, o...? Lorenzo Maccone Dip. Fisica, INFN Pavia, Universita' di Pavia www.qubit.it maccone@unipv.it Di cosa parlero? Di cosa parlero? Mostrero' come Stranezza della

Dettagli

Obiettivi del percorso

Obiettivi del percorso Obiettivi del percorso Il percorso didattico qui esposto ha come obiettivo quello di far acquisire allo studente il concetto di velocità, attraverso la proposta di esperienze significative, già ampiamente

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

Rispondete come potete alle seguenti domande insidiose. Potete consultare tutto quello che volete, anche internet e wikipedia...

Rispondete come potete alle seguenti domande insidiose. Potete consultare tutto quello che volete, anche internet e wikipedia... U n co m p ito in er te (o in er zi al e? ) Rispondete come potete alle seguenti domande insidiose. Potete consultare tutto quello che volete, anche internet e wikipedia... Ho controllato praticamente

Dettagli

TEORIA DELLA RELATIVITA RISTRETTA

TEORIA DELLA RELATIVITA RISTRETTA TEORIA DELLA RELATIVITA RISTRETTA EVOLUZIONE DELLE TEORIE FISICHE Meccanica Classica Principio di Relatività Galileiano Meccanica Newtoniana Gravitazione (Newton) Costante Universale G = 6,67*10^-11Nm^2/Kg^2

Dettagli

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Dinamica Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Cinematica Moto rettilineo uniforme s=s 0 +v(t-t 0 ) Moto uniformemente accelerato v=v 0 +a(t-t

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Pag. 1. Il tempo e lo spazio nella teoria della relatività

Pag. 1. Il tempo e lo spazio nella teoria della relatività Pag. 1 Il tempo e lo spazio nella teoria della relatività La fisica negli ultimi anni del 1800 si trovava a dover risolvere un dilemma inconciliabile con la teoria della meccanica classica. La relatività

Dettagli

I MOTI NEL PIANO. Vettore posizione e vettore spostamento

I MOTI NEL PIANO. Vettore posizione e vettore spostamento I MOTI NEL IANO Vettore posizione e vettore spostamento Si parla di moto in un piano quando lo spostamento non avviene lungo una retta, ma in un piano, e può essere descritto usando un sistema di riferimento

Dettagli

PERCORSI INNOVATIVI in Matematica e in Fisica. Conferenze

PERCORSI INNOVATIVI in Matematica e in Fisica. Conferenze PROGETTO DI ECCELLENZA 2014 PERCORSI INNOVATIVI in Matematica e in Fisica Conferenze I Paradossi di Zenone di Elea I Paradossi di Zenone di Elea I Paradossi di Zenone di Elea Alfredo MARZOCCHI I Paradossi

Dettagli

LABORATORIO 1: LE LEGGI DI NEWTON

LABORATORIO 1: LE LEGGI DI NEWTON LABORATORIO 1: LE LEGGI DI NEWTON In questo laboratorio vogliamo fare in modo che i ragazzi familiarizzino con la prima e la seconda legge della dinamica. Utilizzeremo un disco metallico con base molto

Dettagli

Ricerca Di Fisica La Teoria della Relatività

Ricerca Di Fisica La Teoria della Relatività Liceo Scientifico L. Da Vinci. Ricerca Di Fisica La Teoria della Relatività Romeo Marika VH A.S. 2004/2005. La teoria della relatività. Nel 1905, Albert Einstein, allora impiegato all'ufficio Brevetti

Dettagli

Lezione 5 MOTO CIRCOLARE UNIFORME

Lezione 5 MOTO CIRCOLARE UNIFORME Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 MOTO CIRCOLARE UNIFORME 2 Per descrivere un moto curvilineo occorrono due assi cartesiani ortogonali ed un orologio.

Dettagli

Il suono è dovuto alla vibrazione di un corpo elastico Le vibrazioni sono rapidi movimenti di oscillazione del corpo intorno ad una posizione di

Il suono è dovuto alla vibrazione di un corpo elastico Le vibrazioni sono rapidi movimenti di oscillazione del corpo intorno ad una posizione di IL SUONO Il suono è dovuto alla vibrazione di un corpo elastico Le vibrazioni sono rapidi movimenti di oscillazione del corpo intorno ad una posizione di equilibrio Un corpo elastico è un corpo che può

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3 Serway, Jewett Principi di Fisica IV Ed. Capitolo 3 Moti in due dimensioni Caso bidimensionale: tutte le grandezze viste fino ad ora (posizione, velocità, accelerazione devono essere trattate come vettori).

Dettagli

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali Forza gravitazionale e forza peso massa e peso, peso apparente Forze normali Moto circolare

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

Il GPS e la Relatività

Il GPS e la Relatività Il GPS e la Relatività Il sistema GPS Qualche idea sulla Relatività Ristretta e sulla Relatività Generale Il GPS non funzionerebbe se non si conoscessero entrambe 1 Il sistema GPS: Global Positioning System

Dettagli

prof. Antonio Marino a.s Liceo Zucchi Monza Il moto circolare uniforme

prof. Antonio Marino a.s Liceo Zucchi Monza Il moto circolare uniforme Il moto circolare uniforme 1. Definizione di moto circolare uniforme Un punto P si muove di moto circolare uniforme 1 se percorre una circonferenza con velocità scalare costante. Pertanto, il modulo della

Dettagli

Moto Rettilineo Uniformemente Accelerato

Moto Rettilineo Uniformemente Accelerato Moto Rettilineo Uniformemente Accelerato E il moto rettilineo con accelerazione costante. Per definizione: a(t) a Velocità e legge oraria sono: v(t)at+v 0 s(t)½at +v 0 t+s 0 (v 0 è la velocità iniziale

Dettagli

Anima e tempo secondo Agostino

Anima e tempo secondo Agostino Anima e tempo secondo Agostino A cura di Marta Lai, Marco Panini, Gael Sirello e Simone Vallery Liceo «Chiabrera - Martini» Savona, 20 maggio 2011 «Posso affermare con sicurezza di sapere che se nulla

Dettagli

Esperienza Moti Rotatori

Esperienza Moti Rotatori Esperienza Moti Rotatori Obiettivo: Misura Momento di Inerzia di solidi Verifica della legge di Steiner Verifica della legge di conservazione del momento angolare Apparato Sperimentale Sito Corso Manuale

Dettagli

ESERCIZI CINEMATICA UNIDIMENSIONALE. Dott.ssa Silvia Rainò

ESERCIZI CINEMATICA UNIDIMENSIONALE. Dott.ssa Silvia Rainò 1 ESERCIZI CINEMATICA UNIDIMENSIONALE Dott.ssa Silvia Rainò CALCOLO DIMENSIONALE 2 Una grandezza G in fisica dimensionalmente si scrive [G] = [M a L b T g K d ] Ove a,b,g,d sono opportuni esponenti. Ad

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

Pieralberto Marchetti

Pieralberto Marchetti PADOVA, Master 2014 Pieralberto Marchetti Universita di Padova Dipartimento G. Galilei di Fisica e Astronomia Galilei a Padova, 1592-1610 - "Li diciotto anni migliori di tutta la mia età". Introduzione

Dettagli

Appendice A Grafici elementari

Appendice A Grafici elementari UNIVR Facoltà di Economia Corso di Matematica Sede di Vicenza Appendice A Grafici elementari In questa appendice espongo alcune tecniche utili per ottenere grafici di funzioni che sono semplici trasformazioni

Dettagli

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE LICEO SCIENTIFICO GIUDICI SAETTA E LIVATINO RAVANUSA ANNO SCOLASTICO 2013-2014 CLASSE 3 D CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE 20 esercizi per restare in forma 1) Un corpo di

Dettagli

Mariana Margarint PROBLEMI DI FISICA. Per i giovani studenti. Manuale

Mariana Margarint PROBLEMI DI FISICA. Per i giovani studenti. Manuale Mariana Margarint PROBLEMI DI FISICA Per i giovani studenti Manuale www.booksprintedizioni.it Copyright 2014 Mariana Margarint Grafici realizzati dall autrice Tutti i diritti riservati PRESENTAZIONE Lo

Dettagli

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO ISTITUTO D ISTRUZIONE SUPERIORE Enrico Mattei ISTITUTO TECNICO COMMERCIALE LICEO SCIENTIFICO LICEO dellescienze UMANE Via delle Rimembranze, 26 40068 San Lazzaro di Savena BO Tel. 051 464510 464545 fax

Dettagli

LA RIVOLUZIONE QUANTISTICA

LA RIVOLUZIONE QUANTISTICA LA RIVOLUZIONE QUANTISTICA Franco Prati Università dell Insubria - Como NINDA URUK Il pane dei Sumeri Ricerca scientifica ed epistemologia 5 dicembre 2012 Congresso Internazionale dei Fisici in onore di

Dettagli

Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti

Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti Kangourou della Matematica 0 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio 0 Quesiti. umeri di quest anno Quanti numeri interi positivi n sono tali che entrambi i numeri n 0 e n + 0 siano

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

Sulla nascita di questo libro. Introduzione 1

Sulla nascita di questo libro. Introduzione 1 Indice Sulla nascita di questo libro V Introduzione 1 1 Luce e materia 7 Che cos è veramente la luce? 7 Ma qui che cosa oscilla? 9 Che cosa sono la frequenza e la lunghezza d onda della luce? 11 Che cos

Dettagli

Armanda Ferrarini. Università dell Insubria IC Zonca, Treviolo (BG)

Armanda Ferrarini. Università dell Insubria IC Zonca, Treviolo (BG) Armanda Ferrarini Università dell Insubria IC Zonca, Treviolo (BG) LINEE-GUIDA PER LA VALUTAZIONE NEL PROGETTO PRO.VA.RE Valutazione orientata alle conoscenze/ abilità Verifiche scritte ed orali di tipo

Dettagli

, conservaz del mom della quant di moto, in cui abbiamo 3 cost scalari.

, conservaz del mom della quant di moto, in cui abbiamo 3 cost scalari. Il probl degli N corpi consiste nello studio del moto di un sistema di n punti di massa, soggetti alle mutue interazioni gravitaz descritte dalla legge newtoniana. L obiettivo è quello di identificare

Dettagli

10 7 metri Il nostro pianeta, la Terra, vista da una distanza di chilometri dalla sua superficie.

10 7 metri Il nostro pianeta, la Terra, vista da una distanza di chilometri dalla sua superficie. 10 2 metri Qui parte il sentiero che vi porterà dal centro di Bologna, fino ai confini più estremi dell Universo visibile. Il nostro punto di partenza è a 100 metri di altezza su Piazza Maggiore. 10 3

Dettagli

58. La forza centrifuga non si manifesta nel vuoto assoluto, ma solamente nello spazio ponderale fluido; ergo, essa dimostra l esistenza di questo.

58. La forza centrifuga non si manifesta nel vuoto assoluto, ma solamente nello spazio ponderale fluido; ergo, essa dimostra l esistenza di questo. LO SPAZIO LE VARIE CONCEZIONI DELLO SPAZIO ATTRAVERSO I SECOLI TRIDIMENSIONALITA E DISCONTINUITA DELLO SPAZIO IL MISTERO DELLA SUA COSTITUZIONE SVELATO LE PROVE SPERIMENTALI DELLA SUA PONDERABILITA, FLUIDITA

Dettagli

MODULO BIMESTRALE N.1:Le Grandezze in Fisica

MODULO BIMESTRALE N.1:Le Grandezze in Fisica CLASSE PRIMAFISICA MODULO BIMESTRALE N.1:Le Grandezze in Fisica Conoscere il concetto di grandezza, di misura, di unità di misura, di equivalenza e gli strumenti matematici per valutare le grandezze. ABILITA

Dettagli

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA 1) Descrivi, per quanto possibile, il moto rappresentato in ciascuno dei seguenti grafici: s a v t t t S(m) 2) Il moto di un punto è rappresentato

Dettagli

Sistemi ottici come sistemi lineari

Sistemi ottici come sistemi lineari Sistemi ottici come sistemi lineari Corso di Principi e Modelli della Percezione! Prof. Giuseppe Boccignone! Dipartimento di Informatica Università di Milano! boccignone@di.unimi.it http://boccignone.di.unimi.it/pmp_2014.html

Dettagli

Vettore forza. che si chiamano Newton. Oppure in gr cm /s. che si chiamano dine. Ovviamente 1 N = 10 5 dine. F i = m a F i j = F j i

Vettore forza. che si chiamano Newton. Oppure in gr cm /s. che si chiamano dine. Ovviamente 1 N = 10 5 dine. F i = m a F i j = F j i Dinamica Mi occupo delle cause del moto Ogni volta che un oggetto viene disturbato dico che agisce una forza La forza è caratterizzata da direzione e verso. Non basta per dire che è un vettore ma è una

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

1 che tende alla perfezione.

1 che tende alla perfezione. La fisica di Aristotele [384-322 a.c.].] Punti fondamentali Esistenza di nature qualitativamente determinate. Esistenza di un Cosmo: la credenza cioè nell esistenza di principi di ordine, in virtù dei

Dettagli

Misure di velocità con la guidovia a cuscino d aria (1)

Misure di velocità con la guidovia a cuscino d aria (1) Misure di velocità con la guidovia a cuscino d aria (1) Obiettivo: Riprodurre un moto con velocità costante utilizzando la guidovia a cuscino d aria. Ricavare la tabella oraria e il grafico orario (grafico

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

Esercizio (tratto dal Problema 1.6 del Mazzoldi)

Esercizio (tratto dal Problema 1.6 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.6 del Mazzoldi) Una particella si muove lungo l asse x nel verso positivo con accelerazione costante a 1 = 3.1 m/s 2. All istante t = 0 la particella si trova nell origine

Dettagli

Fisica applicata Lezione 5

Fisica applicata Lezione 5 Fisica applicata Lezione 5 Maurizio Tomasi maurizio.tomasi@unimi.it Dipartimento di Fisica Università degli studi di Milano 8 Novembre 2016 Parte I Lavoro ed energia Definizione di lavoro Il lavoro L compiuto

Dettagli

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto IISS Enzo Ferrari, Roma Plesso Vallauri, Liceo delle Scienze Applicate Programma svolto ANNO SCOLASTICO: 2015-2016 DISCIPLINA: FISICA CLASSE: 2ª F DOCENTE: MICHAEL ROTONDO Richiami sulle grandezze fisiche,

Dettagli

=50 1. Lo spazio percorso in 15 è = =50 15 = =45000 =45.

=50 1. Lo spazio percorso in 15 è = =50 15 = =45000 =45. MOTO RETTILINEO UNIFORME Esercizi Problema 1 Un auto viaggia alla velocità di 50. Determinare la velocità in h e lo spazio percorso in 15 minuti. La trasformazione della velocità in h è : 50 1 50 1000

Dettagli

Note di relatività speciale

Note di relatività speciale Note di relatività speciale Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, marzo 2015. 1 Indice 1 Tempo e simultaneità 2 1.1 Definizione di simultaneità............................

Dettagli

Lezione 7: Prima e seconda legge del moto

Lezione 7: Prima e seconda legge del moto Lezione 7 - pag.1 Lezione 7: Prima e seconda legge del moto 7.1. Salita, discesa, pianura Abbiamo visto, nella lezione precedente, che un corpo che scende per un piano inclinato acquista velocità lungo

Dettagli

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 QUANTITA DI MOTO DEFINIZIONE(1) m v Si chiama quantità di moto di un punto materiale il prodotto della sua massa per la sua velocità p = m v La quantità di moto è una grandezza vettoriale La dimensione

Dettagli

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL 27-03-2014 ESERCIZIO 1 Un ragazzo, in un parco divertimenti, entra in un rotor. Il rotor è una stanza cilindrica che può essere messa in rotazione attorno al

Dettagli

Claudio Citrini - Dipartimento di Matematica - Politecnico di Milano 10/5/2008 Matematica senza frontiere

Claudio Citrini - Dipartimento di Matematica - Politecnico di Milano 10/5/2008 Matematica senza frontiere Giochi d acqua Claudio Citrini - Dipartimento di Matematica - Politecnico di Milano 10/5/2008 Matematica senza frontiere Da tempo seguo la stesura di tesi di Specializzazione in Didattica. Tra queste,

Dettagli

Compito di Fisica Generale (Meccanica) 25/01/2011

Compito di Fisica Generale (Meccanica) 25/01/2011 Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida

Dettagli

Quantità di moto. p=m v

Quantità di moto. p=m v Quantità di moto Come l'energia, ha una legge di conservazione che semplifica lo studio dei problemi Ha più moto un treno che si muove a 20 Km/h o una lepre alla stessa velocità? Ha piu' moto una lepre

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Anno Accademico 2015-2016 Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli