CORSO di AGGIORNAMENTO di FISICA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO di AGGIORNAMENTO di FISICA"

Transcript

1 MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA IL PARADOSSO Dei GEMELLI Adriana Lanza I.T:T. COLOMBO via Panisperna, marzo 2016

2 IL PARADOSSO DEI GEMELLI Il cosiddetto paradosso dei gemelli è forse una delle conseguenze più popolari della teoria della relatività di Einstein. In realtà non si tratta di un vero e proprio paradosso, bensì di un esperimento ideale volto ad illustrare come alcuni aspetti della teoria di Einstein siano contrari al senso comune, ma trovano ugualmente una spiegazione nell ambito della teoria.

3 L'esperimento ideale è il seguente: sulla terra vi sono due gemelli, uno parte per un viaggio interstellare di andata e ritorno per una stella lontana, mentre l'altro rimane ad aspettarlo sulla terra. Assumendo che il viaggio interstellare possa essere compiuto a velocità prossime a quelle della luce, la teoria prevede che, al ritorno sulla terra, il gemello ``viaggiatore sia invecchiato molto meno di quello ``terrestre. L'aspetto che forse può sembrare paradossale nella storia dei due gemelli è l'apparente simmetria del sistema: scegliendo l'astronave come sistema di riferimento è la terra che si allontana o si avvicina a velocità prossime a quelle della luce. Dunque perché alla fine del viaggio c'è una differenza tra i tempi misurati dai due gemelli? La soluzione è molto semplice: i due sistemi di riferimento, la terra e l'astronave, NON sono equivalenti

4 Esperimento di Hafele Keating da Notiamo che, nonostante l'apparente irrealizzabilità, il paradosso dei gemelli è stato verificato sperimentalmente! Questo grazie a degli orologi atomici collocati a bordo di due aerei che volavano in direzioni opposte rispetto al pianeta: l'aereo che viaggia in direzione est somma la sua velocità a quella di rotazione della terra, dunque viaggia più velocemente di quello che viaggia in direzione ovest, e quindi deve segnare un tempo inferiore di alcune frazioni di secondo. Un'altra verifica sperimentale fu invece eseguita nel 1966 in un acceleratore di particelle al CERN a Ginevra.iI questo caso i viaggiatori erano muoni, fatti correre per mezzo di campi magnetici lungo percorsi circolari con velocità pari al 99,6% della velocità della luce. Si trovò che al loro ritorno i muoni erano più giovani, perché erano decaduti più lentamente dei muoni in quiete nel laboratorio

5 L'interpretazione di questi risultati non è elementare, richiede nozioni sia sulla relatività speciale, sia sulla relatività generale. : Relatività speciale: la dilatazione temporale è dovuta alla velocità relativa. Secondo la relatività generale, la dilatazione gravitazionale del tempo è collegata all'esistenza di un sistema di riferimento non inerziale Relatività generale:. La differenza di potenziale gravitazionale terrestre introduce inoltre un ritardo tra gli orologi a bordo e l'orologio a terra. Per il principio di equivalenza, tutti i sistemi di riferimento accelerati sono fisicamente equivalenti a un campo gravitazionale della stessa forza... Un caso particolare, ma di attualità, sono i sistemi di navigazione satellitare come il Global Position System (GPS), che è fondato su misure d intervallo di tempo tra osservatori a terra ed orologi atomici su satelliti. Affinché il GPS funzioni in modo corretto è necessario tener conto degli effetti relativistici

6 Illustriamo il fenomeno con un esempio, spiegando i risultati in modo dettagliato, anche se in alcuni punti semplificato. O e O sono due gemelli O rimane a terra mentre O si muove con velocità 4c /5 e raggiunge una stella lontana 8 anni luce (8c) dalla terra (b = 4/5 g= 5/3) La durata del viaggio di andata è pari a 8c/v = 10 anni (tempo improprio) rispetto ad O e 10/ g = 6 anni (tempo proprio ) rispetto ad O Se O ritorna sulla terra con la stessa velocità, la durata complessiva del viaggio dovrebbe essere pari a 20 anni rispetto ad O e 12 anni rispetto ad O. O si ritrova, pertanto, di 8 anni più vecchio di O.

7 Per il Principio di Relatività si può considerare O fermo ed O, assieme alla terra, in moto rispetto ad O. Quando O incontra la stella sono passati 6 anni. Nel frattempo O si è spostato di 4,8c, ma rispetto agli orologi del riferimento di O, l orologio di O ritarda e misura 6*3/5 = 3,6 anni. Quando i due gemelli si ritroveranno, O dovrebbe essere invecchiato solo di 7,2 anni, quindi risulterebbe più giovane di O. Come si risolve il paradosso?

8 PROBLEMA I due gemelli Oreste e Omero hanno accettato di partecipare ad un esperimento per verificare l EFFETTO GEMELLI: <<Se O fa un lungo viaggio di andata e ritorno, a velocità confrontabile con quella della luce, mentre il suo gemello O resta a terra, al suo ritorno trova il gemello molto più invecchiato rispetto a lui. Il risultato non contraddice il Principio di Relatività in quanto i sistemi di riferimento di O e O non sono equivalenti: O, nel momento che inverte il suo moto, non è più un osservatore inerziale.>> Oreste rimane a terra ( riferimento Ω) mentre Omero intraprende un viaggio con un astronave che si muove con velocità 4c/5, raggiunge una stella lontana dalla terra 8 anni luce (8c) e torna subito indietro ripercorrendo la stessa distanza con la stessa velocità. L orologio di Oreste è sincronizzato con quelli della terra. I due gemelli sincronizzano i loro orologi in modo che segnino il valore 0 nell istante in cui Omero inizia il suo viaggio (Evento A ) Continua

9 a) Dal punto di vista di Oreste e secondo le leggi della Relatività speciale, dopo quanti anni Omero tornerà sulla terra? di quanto sarà invecchiato? Ciascuno di loro fa da origine al proprio riferimento spaziale,e saranno indicati con O e O rispettivamente Su ciascuno dei riferimenti spaziali sono posti sistemi di orologi tra loro sincronizzati. Orologi sincronizzati in un riferimento non lo sono nell altro se ciascun riferimento si muove rispetto all altro

10 VIAGGIO DI ANDATA DATI: Distanza OS a riposo = 8c Velocità relativa tra i due riferimenti 4/5 c EVENTI Punto di vista di ORESTE Punto di vista di Omero

11 Misura della distanza temporale: tra i due eventi S Ricordiamo che un osservatore ῼ può misurare nel suo riferimento, la distanza temporale tra due eventi con un solo orologio solo se gli eventi hanno la stessa coordinata spaziale di ῼ con due orologi se avvengono in luoghi diversi; in quest ultimo caso i due orologi devono essere tra loro sincronizzati, pertanto devono essere solidali con ῼ, x

12 ORESTE O è in quiete rispetto alla retta OS, quindi può calcolare tranquillamente la distanza temporale dividendo 8c/v = 10 anni Può anche leggere sul suo orologio l istante di partenza e far leggere ad un suo collaboratore, sull orologio di S, l orario di arrivo. L orologio di S segnerà 10 anni. L orologio di O invece segna 6 anni c

13 QUALI SARANNO LE MISURE EFFETTUATE DA OMERO? I risultati essere coerenti con le leggi della relatività ristretta

14 Legge di dilatazione del tempo To = T/ g Contrazione delle lunghezze L= Lo/ g Lunghezza propria = g lunghezza impropria Tempo improprio = g tempo proprio tempo proprio = 10 * 3/5 = 6 Infatti il tempo proprio è quello misurato con un solo orologio, quindi da O, il quale assiste ai due eventi sempre nello stesso luogo Il tempo improprio è quello misurato da O, con due orologi, in quanto i due eventi avvengono, per lui, ad una distanza di 8c. lunghezza impropria = 8c *3/5 =4,8 c in quanto il segmento OS è in moto rispetto a O Ovvero la misura del tempo proprio permette ad O e di misurare la lunghezza del segmento OS nel suo riferimento 6* v= 6* 4/5 c= 4,8 c

15 I risultati sono in accordo con le trasformazioni di Lorentz

16 Punto di vista di Oreste Quando O giunge in S, gli orologi del riferimento di O segnano tutti 10 anni. L orologio di S rileva che invece l orologio di O segna 6 anni. Oreste conclude che L orologio di Omero ritarda rispetto ai suoi Omero è invecchiato solo di 6 anni, mentre sulla terra sono passati 10 anni E verificata la legge di dilatazione del tempo

17 Punto di vista di Omero Di quanto si è spostato O, rispetto ad O, e in quanto tempo, secondo il riferimento Ω 1? Verifica che la distanza spazio-temporale tra i due eventi A{O O} e B{ O S} è la stessa in entrambi i riferimenti

18 OMERO O può usare solo il suo orologio Nell istante in cui sta affiancato con O il suo orologio segna 0 Nell istante in cui è affiancato con S l suo orologio segna 6 anni Nel frattempo O ha percorso una distanza pari a 6*v= 6*4/5 c = 4,8 c Quale valore segna l orologio di O? O 6 S 10 O 4,8c?

19 Legge di dilatazione del tempo Contrazione delle lunghezze tempo improprio = g tempo proprio tempo proprio = 6* 3/5 = 3,6 Infatti il tempo proprio è quello misurato con un solo orologio, quindi da O, il quale assiste ai due eventi sempre nello stesso luogo Il tempo improprio è quello misurato da O, con due orologi, in quanto i due eventi avvengono, per lui, ad una distanza di 4,8c. lunghezza propria = g lunghezza impropria lunghezza impropria = 4,8c *3/5 =2,88 c in quanto il segmento O S è in moto rispetto a O Ovvero La misura del tempo proprio permette ad O di misurare anche la lunghezza del segmento O S nel suo riferimento 3,6* v= 3,6* 4/5 c= 2,88 c

20 O 6 S 10 Nell istante in cui l orologio di O segna 6 anni, O è affiancato ad S il cui orologio segna 10 anni. Se vuol sapere dov è O e di quanto è invecchiato,ha bisogno di un altro orologio. 4,8c Nel riferimento di O possono esserci infiniti orologi, tra loro sincronizzati,che segnano 6 anni. Tra questi ce ne sarà uno, S, che si trova affiancato ad O. O S 6 3,6 S si trova a distanza -4,8 c da O e rileva che l orologio di O segna 3,6 anni x

21 . Secondo il riferimento Ω 1 gli orologi di S e di O non sono sincronizzati Quale orologio anticipa e quale ritarda? Qual è la differenza fra i tempi segnati dai due orologi?

22 Relatività della Simultaneità L evento B { O incontra S} è simultaneo dell evento { l orologio di O in O segna 10} nel riferimento di O invece è simultaneo dell evento {l orologio di O, a distanza -4,8 c, segna 3,6} nel riferimento di O

23 In relazione agli eventi A e B Disegna, in un riferimento xot, la linea universo e la linea di simultaneità di O la linea universo e la linea di simultaneità di O la linea universo e la linea di simultaneità di S In relazione all evento B calcola le coordinate del punto S o in cui la linea di simultaneità di S incontra la linea universo di O le coordinate del punto S 1 in cui la linea di simultaneità di O incontra la linea universo di O Commenta i risultati alla luce della relatività della simultaneità

24 Linea universo e linea di simultaneità Nel riferimento xot, avendo posto c=1, solidale con O, la linea universo di O è la retta x=0 La linea universo di S è la retta x=8 Le rette di simultaneità sono rette parallele all asse x (t=costante)

25 Linea universo e linea di simultaneità Nel riferimento xot, avendo posto c=1, solidale con O, la linea universo di O è la retta t=x/v La linea universo di un raggio di luce che parte da O è la retta t=x (linea-luce) Le rette di simultaneità di O sono rette simmetriche rispetto alle corrispondenti linee-luce, cioè aventi coefficiente angolare uguale a v ( t = costante)

26 Diagramma spazio-temporale ANDATA (c=1)

27

28 Confronto tra gli eventi B B incontro tra Omero e la Stella A incontro tra Oreste e l orologio S

29 Punto di vista di Omero Quando O giunge in S, il suo orologio segna 6, l orologio di S segna 10 e l orologio di O segna 3,6 ( come gli comunica S ) Omero conclude che L orologio di O ritarda rispetto ai suoi O è invecchiato solo di 3,6 anni, mentre per lui sono passati 6 anni Gli orologi del riferimento di O sono tra loro desincronizzati di 6,4 anni. Quello di S è in anticipo e quello di O in ritardo

30 CHI HA RAGIONE? Se il moto relativo, di O rispetto ad O e viceversa, continua in modo rettilineo e uniforme, i due riferimenti sono equivalenti per il Principio di relatività Le misure effettuate in ciascun riferimento sono coerenti con le leggi della Relatività Ristretta

31 Che succede, però se Omero fa una virata e torna indietro? Non appena inizia la virata, O si trasferisce in un riferimento che si allontana dalla terra che utilizza un altro sistema di orologi! In questo nuovo riferimento Omero non sarà indicato con O, bensì con O

32 Che succede, però se Omero fa una virata e torna indietro? d)appena raggiunge S, O inverte il suo moto istantaneamente. Un altra serie di stazioni spaziali affianca l astronave di O e costituisce un riferimento spaziale ad essa solidale che indicheremo con Ω 2. Disegna nel piano xot, In relazione all evento B la nuova linea-universo e la nuova linea di simultaneità di O e determina i punti R e S 2 in cui ciascuna di esse incontra la linea universo di O. Cosa rappresentano le coordinate di ciascuno di questi punti?

33 Omero diventa O Cambia la sua linea universo, ma anche la sua linea di simultaneità! Linea universo di O t-10= - (x-8)/v Linea di simultaneità di O t-10= -v(x-8) La nuova linea universo incontra la linea universo di O nel punto di ordinata 20 ( evento R: Omero ritorna da Oreste) La nuova linea di simultaneità, di O, incontra la linea universo di O nel punto S 2 di ordinata 16,4. Nel periodo di tempo, trascurabile per Omero, dell inversione di marcia, sulla terra sono passati 16,4-3,6 = 12,8 anni che, aggiunti ai 7,2 anni, danno come risultato 20.

34 Diagramma spazio temporale-ritorno (c=1)

35 RITORNO Non appena inizia la virata, Omero si trasferisce in un riferimento per cui gli orologi della terra sono in anticipo di 6,4 anni rispetto a quelli della stella! Tutti gli eventi appartenenti al segmento S 1 S 2, prima della virata erano al di sopra della retta di simultaneità di O, cioè nel futuro di O. Dopo la virata passano al di sotto della retta di simultaneità, cioè nel passato Questo fatto è sorprendente ma non paradossale. I suddetti eventi dovevano ancora essere registrati dagli orologi del primo riferimento di O ( quello del viaggio di andata) mentre erano stati già registrati dagli orologi del riferimento di O, quello su cui Omero si trasferisce nel viaggio di ritorno.

36 Dal punto di vista di Omero, di quanto è invecchiato Oreste quando si ricongiungono? Quando si ricongiungono i due gemelli concordano sul fatto che: Oreste è invecchiato di 20 anni e Omero è invecchiato di 12 anni.

37 PROBLEMA. L EFFETTO GEMELLI Adattamento da P.A. Tipler Invito alla Fisica 3 E.F.Taylor-J.A.Wheeler Fisica dello Spazio-Tempo Zanichelli Obiettivi Presentare una soluzione semplificata del Paradosso dei Gemelli Utilizzare in modo consapevole le trasformazioni di Lorentz e i diagrammi spazio-temporali Riconoscere il carattere relativo della simultaneità Utilizzare il concetto di tempo proprio, distanza propria, intervallo Spazio-temporale I due gemelli Oreste e Omero hanno accettato di partecipare ad un esperimento per verificare l EFFETTO GEMELLI: <<Se O fa un lungo viaggio di andata e ritorno, a velocità confrontabile con quella della luce, mentre il suo gemello O resta a terra, al suo ritorno trova il gemello molto più invecchiato rispetto a lui. Il risultato non contraddice il Principio di Relatività in quanto i sistemi di riferimento di O e O non sono equivalenti: O, nel momento che inverte il suo moto, non è più un osservatore inerziale.>> Oreste rimane a terra ( riferimento Ω) mentre Omero intraprende un viaggio con un astronave che si muove con velocità 4 c, raggiunge una stella 5 lontana dalla terra 8 anni luce (8c) e torna subito indietro ripercorrendo la stessa distanza con la stessa velocità. L orologio di Oreste è sincronizzato con quelli della terra. I due gemelli sincronizzano i loro orologi in modo che segnino il valore 0 nell istante in cui Omero inizia il suo viaggio (Evento A ) a) Dal punto di vista di Oreste e secondo le leggi della Relatività speciale, dopo quanti anni Omero tornerà sulla terra? di quanto sarà invecchiato? b) Una serie di stazioni di guardia affianca l astronave di Omero e costituisce un riferimento spaziale,ad essa solidale, che indicheremo con Ω 1. I due riferimenti hanno l origine in comune, nel punto in cui Omero è partito. Le stazioni sono munite di orologi tra loro sincronizzati. Indicheremo Oreste,Omero e la stella con O, O, S rispettivamente. Quando è affiancato a S, O confronta il tempo del suo orologio con quello di S.

38 Una delle stazioni spaziali, S, registra il passaggio della Terra e confronta il tempo del suo orologio con quello dell orologio di O. Di quanto si è spostato O, rispetto ad O, e in quanto tempo, secondo il riferimento Ω 1? Verifica che la distanza spazio-temporale tra i due eventi A{O O} e B{ O S} è la stessa in entrambi i riferimenti Secondo il riferimento Ω 1 gli orologi di S e di O non sono sincronizzati. Quale orologio anticipa e quale ritarda? Qual è la differenza fra i tempi segnati dai due orologi? c) In relazione agli eventi A e B Disegna, in un riferimento xot, la linea universo e la linea di simultaneità di O la linea universo e la linea di simultaneità di O la linea universo e la linea di simultaneità di S In relazione all evento B calcola le coordinate del punto S o in cui la linea di simultaneità di S incontra la linea universo di O le coordinate del punto S 1 in cui la linea di simultaneità di O incontra la linea universo di O Commenta i risultati alla luce della relatività della simultaneità

39 d)appena raggiunge S, O inverte il suo moto istantaneamente. Un altra serie di stazioni spaziali affianca l astronave di O e costituisce un riferimento spaziale ad essa solidale che indicheremo con Ω 2. Disegna nel piano xot, In relazione all evento B la nuova linea-universo e la nuova linea di simultaneità di O e determina i punti R e S 2 in cui ciascuna di esse incontra la linea universo di O. Cosa rappresentano le coordinate di ciascuno di questi punti? Dal punto di vista di Omero, di quanto è invecchiato Oreste quando si ricongiungono?

Risolviamo un esercizio per illustrare il fenomeno in modo dettagliato anche se,in alcuni punti, semplificato.

Risolviamo un esercizio per illustrare il fenomeno in modo dettagliato anche se,in alcuni punti, semplificato. PARADOSSO DEI GEMELLI Il cosiddetto paradosso dei gemelli è forse una delle conseguenze più popolari della teoria della relatività di Einstein. In realtà non si tratta di un vero e proprio paradosso, bensì

Dettagli

PROBLEMA. L EFFETTO GEMELLI Adattamento da P.A. Tipler Invito alla Fisica 3 E.F.Taylor-J.A.Wheeler Fisica dello Spazio-Tempo Zanichelli

PROBLEMA. L EFFETTO GEMELLI Adattamento da P.A. Tipler Invito alla Fisica 3 E.F.Taylor-J.A.Wheeler Fisica dello Spazio-Tempo Zanichelli PROBLEMA. L EFFETTO GEMELLI Adattamento da P.A. Tipler Invito alla Fisica 3 E.F.Taylor-J.A.Wheeler Fisica dello Spazio-Tempo Zanichelli Obiettivi Presentare una soluzione semplificata del Paradosso dei

Dettagli

La Teoria della Relatività Ristretta. Prof. Michele Barcellona

La Teoria della Relatività Ristretta. Prof. Michele Barcellona La Teoria della Relatività Ristretta Prof. Michele Barcellona I Postulati della Teoria della Relatività ristretta Per risolvere le contraddizioni tra Meccanica ed Elettromagnetismo Einstein propose una

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo L ' o r o l o g i o a l u c e e i l t e m p o p r o p r i o L'orologio a luce serve a connettere l'invarianza della velocità della luce col carattere non più assoluto

Dettagli

Fisica delle cose banali Parte II

Fisica delle cose banali Parte II Fisica delle cose banali Parte II Giovanni Organtini Sapienza Università di Roma & INFN-Sez. di Roma Fisica quotidiana la teoria della relatività al lavoro Giovanni Organtini Sapienza Università di Roma

Dettagli

FORMARSI AGGIORNARSI CONDIVIDERE. I webinar per gli insegnanti di matematica e scienze

FORMARSI AGGIORNARSI CONDIVIDERE. I webinar per gli insegnanti di matematica e scienze FORMARSI AGGIORNARSI CONDIVIDERE I webinar per gli insegnanti di matematica e scienze Insegnare la relatività Parte I 17 febbraio 016 Vincenzo Barone (Università del Piemonte Orientale e INFN) Preparare

Dettagli

QUATTRO PASSI NELLO SPAZIOTEMPO

QUATTRO PASSI NELLO SPAZIOTEMPO QUATTRO PASSI NELLO SPAZIOTEMPO! LA VISIONE DEL MONDO NELLA RELATIVITA DI EINSTEIN Giuseppe Tormen Dip. di Fisica e Astronomia G.Galilei Università di Padova!1 Lewis Carroll Epstein UN PO DI STORIA...

Dettagli

Il GPS e la Relatività

Il GPS e la Relatività Il GPS e la Relatività Il sistema GPS Qualche idea sulla Relatività Ristretta e sulla Relatività Generale Il GPS non funzionerebbe se non si conoscessero entrambe 1 Il sistema GPS: Global Positioning System

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHSIS _ ROMA CORSO di AGGIORNAMNTO di FISICA LTTRROMAGNTISMO RLATIVITA Adriana Lanza I.T:T. COLOMBO via Panisperna, 255 16 marzo 2016 Conseguenze del passaggio dalle trasformazioni di Galileo alle trasformazioni

Dettagli

3. Le coordinate geografiche: latitudine e longitudine

3. Le coordinate geografiche: latitudine e longitudine Introduzione 3. Le coordinate geografiche: latitudine e longitudine Ogni volta che vogliamo individuare un punto sulla superficie terrestre gli associamo due numeri, le coordinate geografiche: la latitudine

Dettagli

TEORIA DELLA RELATIVITA RISTRETTA

TEORIA DELLA RELATIVITA RISTRETTA TEORIA DELLA RELATIVITA RISTRETTA EVOLUZIONE DELLE TEORIE FISICHE Meccanica Classica Principio di Relatività Galileiano Meccanica Newtoniana Gravitazione (Newton) Costante Universale G = 6,67*10^-11Nm^2/Kg^2

Dettagli

Theory Italiano (Italy)

Theory Italiano (Italy) Q3-1 Large Hadron Collider (10 punti) Prima di iniziare questo problema, leggi le istruzioni generali nella busta a parte. In questo problema è discussa la fisica dell acceleratore di particelle del CERN

Dettagli

La velocità. Isabella Soletta - Liceo Fermi Documento riadattato da MyZanichelli.it

La velocità. Isabella Soletta - Liceo Fermi Documento riadattato da MyZanichelli.it La velocità Isabella Soletta - Liceo Fermi Documento riadattato da MyZanichelli.it Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Il presente documento individua le conoscenze, abilità e competenze che lo studente dovrà aver acquisito al termine

Dettagli

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm. 1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo

Dettagli

LA FISICA DEL TEMPO. Sergio Luigi Cacciatori. Musei Civici di Como: Il Tempo nelle Scienze e nella Storia Como, 02 Febbraio 2011

LA FISICA DEL TEMPO. Sergio Luigi Cacciatori. Musei Civici di Como: Il Tempo nelle Scienze e nella Storia Como, 02 Febbraio 2011 LA FISICA DEL TEMPO Sergio Luigi Cacciatori DIPARTIMENTO DI FISICA E MATEMATICA, UNIVERSITÀ DELL INSUBRIA DI COMO Musei Civici di Como: Il Tempo nelle Scienze e nella Storia Como, 02 Febbraio 2011 IL TEMPO

Dettagli

Incontri di introduzione alla Relatività Generale

Incontri di introduzione alla Relatività Generale Incontri di introduzione alla Relatività Generale Prima parte La Torre del Sole - 11 Novembre 2015 Dr. Andrea Castelli, Ph.D. Università degli Studi di Bologna Struttura del corso PARTE PRIMA - 11 Novembre

Dettagli

Programma di Matematica - 5A

Programma di Matematica - 5A Programma di Matematica - 5A U.D.1 U.D.2 U.D.3 U.D.4 Premesse all'analisi infinitesimale: Intervalli numerici limitati e illimitati, massimo e minimo, estremo superiore e inferiore. Punto di accumulazione

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

Carlo Cosmelli. La visione del mondo della Relatività e della Meccanica Quantistica. Settimana 2 - La Teoria della Relatività speciale Lezione 2.

Carlo Cosmelli. La visione del mondo della Relatività e della Meccanica Quantistica. Settimana 2 - La Teoria della Relatività speciale Lezione 2. La visione del mondo della Relatività e della Meccanica Quantistica Settimana 2 - La Teoria della Relatività speciale Lezione 2.1 Carlo Cosmelli 1 Riassunto della lezione #1 Alla fine dell 800 abbiamo

Dettagli

Trasformazioni di Lorentz

Trasformazioni di Lorentz Trasformazioni di Lorentz Regole di trasformazione fra un sistema inerziale S (descritto da x, y, z, t) ed uno S (descritto da x, y, z, t ) che viaggia a velocità V lungo x rispetto a S: x = γ(x V t) y

Dettagli

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali Forza gravitazionale e forza peso massa e peso, peso apparente Forze normali Moto circolare

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

Questo simbolo significa che è disponibile una scheda preparata per presentare l esperimento

Questo simbolo significa che è disponibile una scheda preparata per presentare l esperimento L accelerazione Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio Questo simbolo significa che l esperimento si può realizzare anche

Dettagli

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema

Dettagli

I MOTI NEL PIANO. Vettore posizione e vettore spostamento

I MOTI NEL PIANO. Vettore posizione e vettore spostamento I MOTI NEL IANO Vettore posizione e vettore spostamento Si parla di moto in un piano quando lo spostamento non avviene lungo una retta, ma in un piano, e può essere descritto usando un sistema di riferimento

Dettagli

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica Bilancio di energia: il Primo Principio della Termodinamica Termodinamica dell Ingegneria Chimica 1 I Sistemi termodinamici Un sistema è definito da una superficie di controllo, reale o immaginaria, che

Dettagli

1 di 5 12/02/ :23

1 di 5 12/02/ :23 Verifica: tibo5794_me08_test1 nome: classe: data: Esercizio 1. La traiettoria di un proiettile lanciato con velocità orizzontale da una certa altezza è: un segmento di retta obliqua percorso con accelerazione

Dettagli

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento. 1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1 7 Una molla ideale di costante elastica k 48 N/m, inizialmente compressa di una quantità d 5 cm rispetto alla sua posizione a riposo, spinge una massa m 75 g inizialmente ferma, su un piano orizzontale

Dettagli

Problemi di relatività

Problemi di relatività Problemi di relatività Il paradosso delle due astronavi Immaginiamo di avere 2 astronavi, A e B, che viaggiano in direzioni opposte ciascuna a 200.000 Km/sec e che passano davanti all'osservatore Q che

Dettagli

LA GRAVITAZIONE. Legge di Gravitazione Universale 08/04/2015 =6, /

LA GRAVITAZIONE. Legge di Gravitazione Universale 08/04/2015 =6, / LA GRAVITAZIONE Definizione (forza di attrazione gravitazionale) Due corpi puntiformi di massa e si attraggono vicendevolmente con una forza (forza che il corpo A esercita sul corpo B), o (forza che il

Dettagli

Campo magnetico terrestre

Campo magnetico terrestre Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA ELETTROMAGNETISMO LEZIONE N. 2 RELATORE : SERGIO SAVARINO I.T:T. COLOMBO via Panisperna, 255 24 febbraio 2016 Campo magnetico Forza di Lorentz: F=i l B

Dettagli

(a) ;

(a) ; Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili

Dettagli

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a [1] Un asta rigida omogenea di lunghezza l = 1.20 m e massa m = 2.5 kg reca ai due estremi due corpi puntiformi di massa pari a 0.2 kg ciascuno. Tale sistema è in rotazione in un piano orizzontale attorno

Dettagli

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe VB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 FORZA E CAMPI ELETTRICI (Richiami) Teoria sui vettori I

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

CORSO DI TEORIA DELLA RELATIVITA I. PROF. LIVIO PIZZOCCHERO

CORSO DI TEORIA DELLA RELATIVITA I. PROF. LIVIO PIZZOCCHERO CORSO DI TEORIA DELLA RELATIVITA I. PROF. LIVIO PIZZOCCHERO Il corso, per la laurea magistrale in Matematica, enfatizza gli aspetti matematici e fondazionali della teoria della relatività; può essere seguito

Dettagli

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Leggi della Dinamica Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Fisica con Elementi di Matematica 1 Leggi della Dinamica Perché i corpi cambiano il loro

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

Come introdurre la relatività. nella scuola secondaria superiore

Come introdurre la relatività. nella scuola secondaria superiore Come introdurre la relatività nella scuola secondaria superiore Considerazioni generali 1. È necessario pensare alla relatività come parte integrante della fisica, e quindi non appiccicarla alla fine,

Dettagli

Il sistema di posizionamento Satellitare GPS

Il sistema di posizionamento Satellitare GPS Latitudine 0 +90 Nord - 0 +90 Sud A partire dall equatore Longitudine 0 +180 Est - 0 +180 Ovest A partire dal meridiiano di Greenwich La nostra posizione a uale è, secondo il WGS84 39 12.430 N 009 06.840

Dettagli

1. Traiettorie Determiniamo le equazioni delle due rette su cui si muove ciascuna nave. ( )

1. Traiettorie Determiniamo le equazioni delle due rette su cui si muove ciascuna nave. ( ) PROBLEMA Sei il responsabile del controllo della navigazione della nave indicata in figura con il punto P. Nel sistema di riferimento cartesiano Oxy le posizioni della nave P, misurate negli istanti t

Dettagli

Relazione di fisica ESPERIMENTO N 1

Relazione di fisica ESPERIMENTO N 1 ISTITUTO SUPERIORE "B. RUSSELL" DI ROMA Relazione di fisica ESPERIMENTO N 1 1.TITOLO Misurazione indiretta della massa di un cilindretto metallico mediante i metodi della tara di J.C. Borda e della doppia

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

Topografia e orientamento

Topografia e orientamento CAI - ALPINISMO GIOVANILE Secondo Corso Di Avvicinamento Alla Montagna 2012 Topografia e orientamento C A I B o r g o m a n e r o A l p i n i s m o G i o v a n i l e 2 0 1 2 Pagina 1 Introduzione Per un

Dettagli

Lezione 3: come si descrive il moto dei corpi

Lezione 3: come si descrive il moto dei corpi Lezione 3 - pag.1 Lezione 3: come si descrive il moto dei corpi 3.1. Correlare posizione e tempo Quando diciamo che un corpo si muove intendiamo dire che la sua posizione, misurata rispetto al sistema

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileana 014-015 Problema 1 Nella regione di spazio interna alla sfera S 1, centrata in O 1 e di raggio R 1, è presente una densità di carica di volume

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

Dinamica. Prof. Paolo Biondi Dipartimento GEMINI

Dinamica. Prof. Paolo Biondi Dipartimento GEMINI Dinamica Prof. Paolo Biondi Dipartimento GEMINI Dinamica: studio delle cause che determinano il moto dei corpi Forza = massa per accelerazione Unità di misura Newton (N): forza che applicata al chilogrammo

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

PIANO DI STUDIO D ISTITUTO

PIANO DI STUDIO D ISTITUTO PIANO DI STUDIO D ISTITUTO Materia: FISICA Casse 2 1 Quadrimestre Modulo 1 - RIPASSO INIZIALE Rappresentare graficamente nel piano cartesiano i risultati di un esperimento. Distinguere fra massa e peso

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

Campo magnetico e forza di Lorentz (I)

Campo magnetico e forza di Lorentz (I) Campo magnetico e forza di Lorentz (I) Fatti sperimentali (Oersted e Ampere) Legge di Gauss per il campo magnetico Forza di Lorentz Definizione del campo magnetico Magnetismo Noto fin dall antichita` (VI

Dettagli

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE LICEO SCIENTIFICO GIUDICI SAETTA E LIVATINO RAVANUSA ANNO SCOLASTICO 2013-2014 CLASSE 3 D CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE 20 esercizi per restare in forma 1) Un corpo di

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Moto circolare uniforme

Moto circolare uniforme Moto circolare uniforme Un oggetto si muove lungo una circonferenza con velocità costante T, il tempo che impiega a tornare al punto di partenza, è il periodo f = 1/T è la frequenza (s 1 o Hertz (Hz))

Dettagli

Funzioni elementari. Funzioni lineari. 13. Funzioni elementari. Funzioni lineari.

Funzioni elementari. Funzioni lineari. 13. Funzioni elementari. Funzioni lineari. Funzioni elementari. Funzioni lineari. Funzioni elementari Per potere determinare le proprietà e quindi il grafico di una qualsiasi funzione a partire dalla sua espressione analitica, dobbiamo prima di

Dettagli

Campo magnetico e forza di Lorentz (I)

Campo magnetico e forza di Lorentz (I) Campo magnetico e forza di Lorentz (I) Fatti sperimentali (Oersted e Ampere) Legge di Gauss per il campo magnetico Forza di Lorentz Definizione del campo magnetico Magnetismo Noto fin dall antichita` (VI

Dettagli

Tempi Moduli Unità /Segmenti. 2.1 La conservazione dell energia meccanica

Tempi Moduli Unità /Segmenti. 2.1 La conservazione dell energia meccanica PERCORSO FORMATIVO DEL 3 ANNO - CLASSE 3 A L LSSA A. S. 2015/2016 Tempi Moduli Unità /Segmenti MODULO 0: Ripasso e consolidamento di argomenti del biennio MODULO 1: Il moto dei corpi e le forze. (Seconda

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

SCHEDA N 8 DEL LABORATORIO DI FISICA

SCHEDA N 8 DEL LABORATORIO DI FISICA SCHEDA N 1 IL PENDOLO SEMPLICE SCHEDA N 8 DEL LABORATORIO DI FISICA Scopo dell'esperimento. Determinare il periodo di oscillazione di un pendolo semplice. Applicare le nozioni sugli errori di una grandezza

Dettagli

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1. L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze

Dettagli

Moti della Terra: Rotazione, Rivoluzione, Moti millenari

Moti della Terra: Rotazione, Rivoluzione, Moti millenari Moti della Terra: Rotazione, Rivoluzione, Moti millenari moto di rotazione giorno sidereo: 23h 56m 4s velocità di rotazione moto di rotazione: conseguenze Alternarsi del dì e della notte Moto apparente

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Esercizi di Geometria Analitica

Esercizi di Geometria Analitica Esercizi di Geometria Analitica Lucia Perissinotto I.T.I.S. V.Volterra San Donà di Piave Beatrice Hitthaler I.T.I.S. V.Volterra San Donà di Piave 10 settembre 2012 Capitolo 1 Esercizi di geometria analitica

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

Esercizi sul moto circolare uniforme

Esercizi sul moto circolare uniforme Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 2 marzo 20 Esercizi sul moto circolare uniforme Esercizio. Un corpo percorre a velocità costante una circonferenza di raggio =6m in

Dettagli

http://www.infinitoteatrodelcosmo.it/2015/04/08/le-basi-della-relativita-ristretta-o-speciale/

http://www.infinitoteatrodelcosmo.it/2015/04/08/le-basi-della-relativita-ristretta-o-speciale/ Salve a tutti è un po che vedo e leggo su internet discussioni infinite sulla RR e sul paradosso dei gemelli, ma alla fine si gira sempre intorno al problema senza mai risolverlo e capirlo. Io non sono

Dettagli

OSSERVARE E MISURARE

OSSERVARE E MISURARE OSSERVARE E MISURARE Per essere degli scienziati precisi dobbiamo poter descrivere i fenomeni che avvengono intorno a noi non soltanto con le parole (quindi in maniera qualitativa) ma anche in maniera

Dettagli

f s m s n f s =f s,max =m s n f d =m d n

f s m s n f s =f s,max =m s n f d =m d n Serway, Jewett Principi di Fisica IV Ed. Capitolo 5 Sperimentalmente: f s m s n Con m s costante di attrito statico; n=modulo della forza normale. L uguaglianza vale quando (in condizioni di moto imminente):

Dettagli

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto IISS Enzo Ferrari, Roma Plesso Vallauri, Liceo delle Scienze Applicate Programma svolto ANNO SCOLASTICO: 2015-2016 DISCIPLINA: FISICA CLASSE: 2ª F DOCENTE: MICHAEL ROTONDO Richiami sulle grandezze fisiche,

Dettagli

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza?

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza? ESERCIZI SUL MOTO Un'automobile compie un viaggio di 100 km in tre tappe: 20 km a 60 km/h, 40 km a 80 km/h e 40 km a 30 km/h. Calcolare il tempo impiegato nel viaggio e la velocità media dell'automobile.

Dettagli

Coordinate e Sistemi di Riferimento

Coordinate e Sistemi di Riferimento Coordinate e Sistemi di Riferimento Sistemi di riferimento Quando vogliamo approcciare un problema per risolverlo quantitativamente, dobbiamo per prima cosa stabilire in che sistema di riferimento vogliamo

Dettagli

Ricerca Di Fisica La Teoria della Relatività

Ricerca Di Fisica La Teoria della Relatività Liceo Scientifico L. Da Vinci. Ricerca Di Fisica La Teoria della Relatività Romeo Marika VH A.S. 2004/2005. La teoria della relatività. Nel 1905, Albert Einstein, allora impiegato all'ufficio Brevetti

Dettagli

Misure di longitudine con le lune di Giove di Lucia Corbo

Misure di longitudine con le lune di Giove di Lucia Corbo Misure di longitudine con le lune di Giove di Lucia Corbo Nel 1610 Galilei scoprì col suo cannocchiale che intorno al Pianeta Giove ruotavano quattro satelliti, scomparendo e ricomparendo continuamente.

Dettagli

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Misura del rapporto carica massa dell elettrone

Misura del rapporto carica massa dell elettrone Relazione di: Pietro Ghiglio, Tommaso Lorenzon Laboratorio di fisica del Liceo Scientifico L. da Vinci - Gallarate Misura del rapporto carica massa dell elettrone Lezioni di maggio 2015 Lo scopo dell esperienza

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

How to compute the sun vector for path planning

How to compute the sun vector for path planning How to compute the sun vector for path planning 1 Calcolo dell illuminazione delle celle solari Si consideri la Fig. 1. Il rover si sposta sulla mappa, variando nel tempo la sua posizione p = ( x y z )

Dettagli

Gli indizi a favore di questa ipotesi erano molteplici:

Gli indizi a favore di questa ipotesi erano molteplici: La forma della Terra Nell antichità la forma della Terra è stata oggetto di numerose ipotesi. Nonostante la limitatezza degli strumenti di osservazione di allora, già gli antichi svilupparono l idea che

Dettagli

Esercitazione XII - Elettrostatica e magnetismo

Esercitazione XII - Elettrostatica e magnetismo Esercitazione XII - Elettrostatica e magnetismo Esercizio 1 Una particella di massa m = 10g e carica negativa q = 1mC viene posta fra le armature di un condensatore a piatti piani e paralleli, ed è inoltre

Dettagli

Istituto Professionale di Stato Maffeo Pantaleoni di Frascati SCHEDA PROGRAMMAZIONE DIDATTICA DISCIPLINARE

Istituto Professionale di Stato Maffeo Pantaleoni di Frascati SCHEDA PROGRAMMAZIONE DIDATTICA DISCIPLINARE Istituto Professionale di Stato Maffeo Pantaleoni di Frascati SCHEDA PROGRAMMAZIONE DIDATTICA DISCIPLINARE ANNO SCOLASTICO 2013/2014 CLASSI 1 sez, A B C D E F G H MATERIA DOCENTEScienze Integrate: FISICA

Dettagli