Divisibilità per 4. Riprendiamo il nostro numero. se e solo se

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Divisibilità per 4. Riprendiamo il nostro numero. se e solo se"

Transcript

1 Divisibilità per 4 Riprendiamo il nostro numero N = a n 10 n + a n 1 10 n a a a 0 Osserviamo che le potenze di dieci sono divisibili per 4 a partire da 10 2 e quindi tutti gli addendi a n 10 n, a n 1 10 n 1,, a sono sicuramente congrui a zero modulo 4, mentre non possiamo sapere a priori nulla su a a 0. Quindi a n 10 n + a n 1 10 n a a a 0 0 mod 4 se e solo se a a 0 0 mod 4

2 Criterio di divisibilità per 4 Un numero è divisibile per 4 se e solo se il numero rappresentato dalle ultime due cifre è divisibile per è divisibile per 4 sse 42 0 mod 4. Poiché 42 0 mod 4, il numero non è divisibile per è divisibile per 4? è divisibile per 4? è divisibile per 4? è divisibile per 4?

3 Divisibilità per 3 Osserviamo che 10 1 mod 3 e per la P2 a 1 10 a 1 mod 3 Per la proprietà P mod 3 e per la P2 a a 2 mod mod 3 e per la P2 a a 3 mod 3 10 n 1 mod 3 e per la P2 a n 10 n a n mod 3

4 Riconsideriamo il nostro N = a n 10 n + + a a a a 0 Per le osservazioni precedenti e per la P1 a n 10 n + + a a a a 0 a n + + a 3 + a 2 + a 1 + a 0 mod 3 Quindi N è divisibile per 3 se e solo se a n + a n a 2 + a 1 + a 0 0 mod 3

5 Un esempio Studio la divisibilità per 3 di = = = So che 6 6 mod mod 3 e quindi mod 3, cioè mod mod 3 e quindi mod mod 3 e quindi mod 3 Allora posso dire che 3246= mod 3 Poiché =15 0 mod 3 (è divisibile per 3), anche mod 3, cioè è divisibile per 3.

6 Criterio di divisibilità per 3 Un numero è divisibile per 3 se e solo se la somma delle sue cifre è divisibile per mod mod 3 e quindi mod 3, cioè è divisibile per 3

7 Divisibilità per 9 Rifacendo il ragionamento precedente per la congruenza modulo 9 anziché modulo 3, si ottiene il seguente Criterio di divisibilità per 9 Un numero è divisibile per 9 se e solo se la somma delle sue cifre è divisibile per 9 Il numero è divisibile per 9?

8 Osserviamo che Divisibilità per mod 11 e quindi a 1 10 a 1 mod mod 11 e quindi a a 2 mod mod 11 e quindi a a 3 mod n 1 mod 11 quindi a n 10 n a n mod 11 se n è dispari 10 n 1 mod 11 quindi a n 10 n a n mod 11 se n è pari Quindi.

9 a n 10 n + a n 1 10 n a a a 0 a 0 a 1 + a 2 a 3 + a 4 a 5 mod 11 Quindi un numero è divisibile per 11 se e solo se a 0 a 1 + a 2 a 3 + a 4 a 5 0 mod mod mod 11 NON è divisibile per 11 E divisibile per 11 il numero ?

10 Criterio di divisibilità per 11 Un numero è divisibile per 11 se e solo se la somma a segno alterno delle sue cifre è divisibile per 9

11 La prova del 9 Analizziamo, basandoci su un esempio, cosa facciamo quando mettiamo in atto la «prova del 9» Moltiplichiamo 8297 (il numero a) per 3583 (il numero b) e otteniamo il prodotto (il numero c).

12 Per fare le prova del 9 1. Sommiamo le cifre del moltiplicando finché non otteniamo un unica cifra =26 e poi 2+6= 8 2. Sommiamo le cifre del moltiplicatore finché non otteniamo un unica cifra =19 e poi 1+9= 10 e ancora 1+0 = 1 3. Moltiplichiamo i due numeri ottenuti in precedenza, cioè 8 x 1= 8 4. Sommiamo le cifre del prodotto finché non otteniamo un unica cifra =35 e poi 3+5=8 5. Confrontiamo i numeri ottenuti al passo 3 e al passo 4. Se sono uguali concludiamo (sbagliando!! Ma vedremo poi perché.) che l operazione è stata svolta correttamente.

13 Rivediamo gli stessi passi alla luce delle congruenze modulo 9 1. Consideriamo il numero a una cifra congruo modulo 9 del moltiplicando mod 9 e 26 8 mod 9 2. Consideriamo il numero a una cifra congruo modulo 9 del moltiplicatore mod 9 e mod 9 e 10 1 mod 9 3. Dall essere mod mod 9 Segue che mod 9 per la proprietà P3 4. A questo punto dobbiamo solo verificare che il prodotto sia congruo a 8 modulo mod 9 cioè 35 8 mod 9 5. concludiamo (sbagliando!! Ma vedremo poi perché.) che l operazione è stata svolta correttamente.

14 Riassumendo Quando si moltiplicano a e b e si ottiene il prodotto c si considera il fatto che, dall uguaglianza Segue ab=c ab c mod m Dove m è un numero qualsiasi. Nella prova del 9 si considera che m sia 9 (ma se fosse 3, cambierebbe qualcosa nella prova???? Stiamo facendo forse anche «una prova del 3»??)

15 Allora Per la P3 so che a a 1 mod 9 b b 1 mod 9 ab a 1 b 1 mod 9 E quindi, se ab=c deve essere c a 1 b 1 mod 9 Nota bene: E vero che la prova deve lavorare per ogni m, ma la congruenza modulo 9 e modulo 3 è semplice perché si riduce alla somma delle cifre. In alternativa, si potrebbe formulare la «prova dell 11» ricorrendo alla somma alternata.

16 Osservazioni La prova del 9 lavora solo sulle moltiplicazioni o anche su addizione e sottrazione? Funziona su tutte!!! (ma limitiamoci ad addizione e sottrazione) Consideriamo la somma a+b=c a a 1 mod 9 b b 1 mod 9 Per la P1 so che a + b a 1 + b 1 mod 9 E quindi, se a+b=c deve essere c a 1 + b 1 mod 9

17 Esempio = mod mod mod 9 Devo verificare che la somma sia congrua a mod 9 Perché posso «ignorare» le cifre uguali a 9 o le somme uguali a 9? Nel caso precedente (6+3)+(8+1)+4

18 Una situazione possibile Un vostro allievo vi presenta la seguente moltiplicazione = 5856 dicendo che il risultato è corretto perché la prova del 9 «torna» e in effetti «torna», ma il risultato non è corretto. Come reagite? A. Dite di rifare la moltiplicazione glissando sulla correttezza della prova del 9 B. Cogliete la palla al balzo per illustrare come si deve usare la prova del 9

19 Il risultato corretto della precedente moltiplicazione è 5865 e non A noi però interessa la somma e se cambia l ordine degli addendi, la somma rimane la stessa, ma cambia il numero che viene rappresentato = ma !!! Se l allievo avesse paradossalmente ottenuto il risultato 3399, 6000, 1230 la prova del 9 avrebbe sempre dato esito positivo perché la somma delle cifre avrebbe sempre dato 6

20 Ma allora la prova del 9 non funziona? La prova del 9 deve essere interpretata in questo modo: se dà esito negativo, la moltiplicazione è sbagliata, ma se dà esito positivo non è detto che la moltiplicazione sia giusta. In termini più formali, se la moltiplicazione è svolta correttamente la prova del 9 dà esito positivo, ma l esito positivo non è sufficiente per garantire l esattezza della moltiplicazione: si tratta cioè di una condizione necessaria ma non sufficiente

21 Ci sono prove più affidabili? Per coniugare semplicità e maggiore (ma non totale) affidabilità si potrebbe usare la prova dell 11, perché il fatto di dover sommare con segno alternato evita il problema della permutazione di due cifre adiacenti x 2591 = (corretto ) mod 9 e mod mod 9 e mod x mod x mod mod mod 11 La prova del 9 non «sente» l errore, mentre la prova dell 11 se ne accorge!

22 Materiali per la didattica Sito dell Unione Matematica Italiana (UMI) In fondo, nella sezione Materiali per la Scuola, scaricare il file pdf corrispondente a Matematica Contiene proposte didattiche relative a «numero, spazio e figure, relazioni, dati e previsioni, argomentare, misurare, problemi»

23 Esperienze didattiche sul numero Tratte da Matematica 2001 Introduzione e schema delle proposte didattiche e Proposte didattiche

Ancora sui criteri di divisibilità di Marco Bono

Ancora sui criteri di divisibilità di Marco Bono Ancora sui criteri di divisibilità di Talvolta può essere utile conoscere i divisori di un numero senza effettuare le divisioni, anche se la diffusione delle calcolatrici elettroniche, sotto varie forme,

Dettagli

Aritmetica modulare. Veronica Gavagna

Aritmetica modulare. Veronica Gavagna Aritmetica modulare Veronica Gavagna Aritmetica modulare o Aritmetica dell orologio Da http://proooof.blogspot.it/2010/04/alice-bob-e-eva-lorologio.html Alice, Bob e Eva L'orologio Che ore saranno tra

Dettagli

35 è congruo a 11 modulo 12

35 è congruo a 11 modulo 12 ARITMETICA MODULARE Scegliamo un numero m che chiameremo MODULO Identifichiamo ogni altro numero con il suo resto nella divisione per m Tutti i numeri col medesimo resto si trovano insieme nella classe

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π 2 3 11

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

SISTEMI DI NUMERAZIONE POSIZIONALI

SISTEMI DI NUMERAZIONE POSIZIONALI SISTEMI DI NUMERAZIONE POSIZIONALI I numeri sono entità matematiche astratte e vanno distinti dalla loro rappresentazione. Definiamo con sistema di numerazione un sistema utilizzato per esprimere i numeri

Dettagli

L insieme dei numeri naturali N Prof. Walter Pugliese

L insieme dei numeri naturali N Prof. Walter Pugliese L insieme dei numeri naturali N Prof. Walter Pugliese Che cosa sono i numeri naturali I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10, Sono chiamati così perché sono stati i primi numeri che abbiamo conosciuto,

Dettagli

Le operazioni fondamentali con i numeri relativi

Le operazioni fondamentali con i numeri relativi SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma

Dettagli

Congruenze. Classi resto

Congruenze. Classi resto Congruenze. Classi resto Congruenze modulo un intero DEFINIZIONE Siano a e b due numeri interi relativi; fissato un intero m si dice che a è congruo a b modulo m se la differenza a b è multipla di m, e

Dettagli

L insieme dei numeri Relativi

L insieme dei numeri Relativi L insieme dei numeri Relativi ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Ampliamento di N e Q: i relativi Nell insieme N non possiamo fare operazioni quali -1 perché il risultato non

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

Unità aritmetica e logica

Unità aritmetica e logica Aritmetica del calcolatore Capitolo 9 Unità aritmetica e logica n Esegue le operazioni aritmetiche e logiche n Ogni altra componente nel calcolatore serve questa unità n Gestisce gli interi n Può gestire

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli

Preparazione Olimpiadi della Matematica

Preparazione Olimpiadi della Matematica Preparazione Olimpiadi della Matematica Marco Vita Liceo Scientifico G. Galilei Ancona 18 novembre 2015 ( Liceo Scientifico G. Galilei Ancona) Preparazione Olimpiadi della Matematica 18 novembre 2015 1

Dettagli

ESERCIZI DI MATEMATICA

ESERCIZI DI MATEMATICA DI MATEMATICA PER GLI STUDENTI IN INGRESSO ALLA CLASSE PRIMA Rev. Luglio 2019 Pag. 1 di 18 NUMERI NATURALI L insieme dei numeri naturali si indica con N. TABELLA DEI NUMERI PRIMI DIVISIBILITÀ E MULTIPLI

Dettagli

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI

Dettagli

1.2 MONOMI E OPERAZIONI CON I MONOMI

1.2 MONOMI E OPERAZIONI CON I MONOMI Matematica C Algebra. Le basi del calcolo letterale. Monomi e operazioni con i monomi. MONOMI E OPERAZIONI CON I MONOMI... L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in

Dettagli

Gli insiemi numerici. Operazioni e loro proprietà

Gli insiemi numerici. Operazioni e loro proprietà Gli insiemi numerici N= 0, 1,, 3 Insieme dei numeri naturali Z=, 1, 0, 1,, 3 Insieme dei numeri interi relativi Q= m/n mεz, nεz con n 0 Insieme dei numeri razionali Operazioni e loro proprietà ADDIZIONE

Dettagli

Equazioni di primo grado

Equazioni di primo grado Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il

Dettagli

LA TRASMISSIONE DELLE INFORMAZIONI SECONDA PARTE 1

LA TRASMISSIONE DELLE INFORMAZIONI SECONDA PARTE 1 LA TRASMISSIONE DELLE INFORMAZIONI SECONDA PARTE 1 La rappresentazione dei numeri con la virgola 1 Conversione da decimale in altre basi di numeri con virgola 2 La moltiplicazione in binario 9 Divisione

Dettagli

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

c) ogni numero ha infiniti multipli

c) ogni numero ha infiniti multipli Multipli e divisori Def: Si dice MULTIPLO di un numero naturale ogni numero che si ottiene moltiplicando tale numero per qualsiasi numero naturale. Es: è un multiplo di perché. Osservazioni: Es: b) ogni

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Informazione binaria: - rappresentazione dei numeri naturali e interi relativi -

Informazione binaria: - rappresentazione dei numeri naturali e interi relativi - Informazione binaria: - rappresentazione dei numeri naturali e interi relativi - Percorso di Preparazione agli Studi di Ingegneria Università degli Studi di Brescia Docente: Massimiliano Giacomin Tipologie

Dettagli

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Argomenti della lezione Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 2? Un numero

Dettagli

Logica matematica e ragionamento numerico

Logica matematica e ragionamento numerico 5 Logica matematica e ragionamento numerico Abilità di calcolo! I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici:

Dettagli

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA

Dettagli

Questo file è solo un anteprima, la tavola sinottica completa la puoi acquistare cliccando qui

Questo file è solo un anteprima, la tavola sinottica completa la puoi acquistare cliccando qui Ragionamento numerico CONCORSO ALLIEVI CARABINIERI 2019 Introduzione Questo file è solo un anteprima, la tavola sinottica completa la puoi acquistare cliccando qui 1 Ragionamento numerico CONCORSO ALLIEVI

Dettagli

0ROWLSOLFD]LRQHH'LYLVLRQH WUDQXPHULUHODWLYL

0ROWLSOLFD]LRQHH'LYLVLRQH WUDQXPHULUHODWLYL 0ROWLSOLFD]LRQHH'LYLVLRQH WUDQXPHULUHODWLYL Salvatore Orlando & Marta Simeoni Arch. Elab. - S. Orlando 1 0ROWLSOLFD]LRQHWUDQXPHULLQWHUL Oltre ai circuiti per realizzare somme e sottrazioni di interi, è

Dettagli

Criteri di divisibilità

Criteri di divisibilità Criteri di divisibilità Criterio di divisibilità per 9. Supponiamo, ad esempio, di voler dividere 2365 palline a 9 persone. Sappiamo che per stabilire se un numero è divisibile per 9 occorre sommare tutte

Dettagli

Polinomi Definizioni fondamentali

Polinomi Definizioni fondamentali Polinomi. Definizioni fondamentali Definizione.. Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi. Esempio.. Sono polinomi: 6a + b, 5a b + 3b, 6x 5y x, 7ab

Dettagli

Rappresentazione di numeri interi

Rappresentazione di numeri interi Corso di Calcolatori Elettronici I Esercizi Rappresentazione di numeri interi ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Interi senza segno Qual è l intervallo di rappresentazione

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

Soluzioni della verifica scritta 1 B Scientifico 24/01/2009

Soluzioni della verifica scritta 1 B Scientifico 24/01/2009 Soluzioni della verifica scritta 1 B Scientifico 4/01/009 Esercizio 1. Il polinomio x +x 4 5 xy + y non èordinatoné rispetto a x nè rispetto a y. E completo rispetto a y ma non rispetto a x. Nonè omogeneo.

Dettagli

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto Rappresentazione di numeri relativi (interi con segno) E possibile estendere in modo naturale la rappresentazione dei numeri naturali ai numeri relativi. I numeri relativi sono numeri naturali preceduti

Dettagli

Numeri interi relativi

Numeri interi relativi Numeri interi relativi 2 2.1 I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande

Dettagli

Notazione scientifica e inversione di formule

Notazione scientifica e inversione di formule Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I numeri naturali Quali sono i numeri naturali? I numeri naturali sono : 0,1,,3,4,5,6,7,8,9,10,11 I numeri naturali hanno un ordine cioè dati due numeri naturali distinti a e b si può sempre stabilire

Dettagli

Anno 1. Divisione fra polinomi

Anno 1. Divisione fra polinomi Anno 1 Divisione fra polinomi 1 Introduzione In questa lezione impareremo a eseguire la divisione fra polinomi. In questo modo completiamo il quadro delle 4 operazioni con i polinomi. Al termine di questa

Dettagli

Insiemi numerici. Alcune definizioni. La retta dei numeri

Insiemi numerici. Alcune definizioni. La retta dei numeri Insiemi numerici Q Z N 0 1 1 1 4 4 N = 0,1,,,4, = insieme dei numeri naturali Z = insieme dei numeri interi (formato dall unione dei numeri naturali e dei numeri interi negativi) Q = insieme dei numeri

Dettagli

Poiché in queste pagine verranno utilizzati differenti simboli matematici, è bene elencarne subito i principali.

Poiché in queste pagine verranno utilizzati differenti simboli matematici, è bene elencarne subito i principali. Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF3 / PS-MF3 I Lezione SIMBOLOGIA E INSIEMI NUMERICI Dr. E. Modica erasmo@galois.it SIMBOLI MATEMATICI Poiché in queste pagine verranno

Dettagli

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato. LICEO B. RUSSELL A.S. 2010/2011 DALLA TEORIA DEI NUMERI ALLE CONGRUENZE Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Dettagli

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. ..3. Prodotti notevoli Per quanto visto in precedenza, in generale per moltiplicare un polinomio di m termini per uno di n termini devono effettuarsi m n moltiplicazioni, così per esempio per moltiplicare

Dettagli

DEFINIZIONE. Si dicono numeri relativi tutti i numeri interi, razionali e irrazionali dotati di segno (positivo o negativo).

DEFINIZIONE. Si dicono numeri relativi tutti i numeri interi, razionali e irrazionali dotati di segno (positivo o negativo). 1 I numeri relativi DEFINIZIONE. Si dicono numeri relativi tutti i numeri interi, razionali e irrazionali dotati di segno (positivo o negativo). ESEMPI +1 4 +317 + 3 4 + 1 410 Numeri interi relativi 3,716

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della

LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della regola che spiega la progressione di una certa sequenza

Dettagli

Firmware Division. Sommario

Firmware Division. Sommario Firmware Division Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: 3.4, 3.5 1/34 Sommario Divisione

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali Def: Si dice l operazione con la quale si calcola la ; i numeri da addizionare si dicono e il risultato si dice o. a + b = S a = ADDENDO b = ADDENDO S = SOMMA o TOTALE

Dettagli

Un monomio è un espressione algebrica che si presenta come prodotto tra un numero e un gruppo di lettere.

Un monomio è un espressione algebrica che si presenta come prodotto tra un numero e un gruppo di lettere. I MONOMI Un monomio è un espressione algebrica che si presenta come prodotto tra un numero e un gruppo di lettere. +2x 3 y 7 z 4 4 5 a4 bc 3 coefficiente parte letterale Attenzione gli esponenti delle

Dettagli

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n Il calcolatore ad orologio di Gauss ESERCITAZIONE N.8 18 novembre L aritmetica dell orologio di Gauss Operazioni e calcoli in Z n 1, 1, -11, sono tra loro equivalenti ( modulo 12 ) Rosalba Barattero Sono

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali Def: Si dice l operazione con la quale si calcola la ; i numeri da addizionare si dicono e il risultato si dice o. a + b = S a = ADDENDO b = ADDENDO S = SOMMA o TOTALE

Dettagli

CONVERSIONE DA DECIMALE A BINARIO

CONVERSIONE DA DECIMALE A BINARIO CONVERSIONE DA DECIMALE A BINARIO Il procedimento per convertire in forma binaria un certo numero decimale n consiste nello scrivere, andando da destra verso sinistra, le cifre oppure seguendo delle determinate

Dettagli

I polinomi. 5c + 5b + 6m. Prof.ssa Maddalena Dominijanni

I polinomi. 5c + 5b + 6m. Prof.ssa Maddalena Dominijanni I polinomi 2c + 4b + 9m + 3c + 1b - 3m + + 5c 5b 5c + 5b + 6m 6m Polinomi Si dice polinomio la somma algebrica di più monomi. I singoli monomi che figurano nel polinomio si chiamano termini del polinomio.

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

Monomi. 9.1 L insieme dei monomi

Monomi. 9.1 L insieme dei monomi Monomi 9 9.1 L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in cui compare l operazione di moltiplicazione, tralasceremo il puntino fin qui usato per evidenziare l operazione.

Dettagli

Moltiplicazione e Divisione tra numeri relativi

Moltiplicazione e Divisione tra numeri relativi Moltiplicazione e Divisione tra numeri relativi Salvatore Orlando & Marta Simeoni Arch. Elab.A M. Simeoni 1 Moltiplicazione tra numeri interi Oltre ai circuiti per realizzare somme e sottrazioni di interi,

Dettagli

Moltiplicazione tra numeri interi. Moltiplicazione e Divisione tra numeri relativi. Moltiplicazione: algoritmo carta e penna (base 2)

Moltiplicazione tra numeri interi. Moltiplicazione e Divisione tra numeri relativi. Moltiplicazione: algoritmo carta e penna (base 2) Arch. Elab.A M. Simeoni 1 Moltiplicazione tra numeri interi Moltiplicazione e Divisione tra numeri relativi Salvatore Orlando & Marta Simeoni Oltre ai circuiti per realizzare somme e sottrazioni di interi,

Dettagli

FRAZIO I N O I LE F RAZIO I N O I I SON O O O DIV I IS I IO I N O I I IN I CUI

FRAZIO I N O I LE F RAZIO I N O I I SON O O O DIV I IS I IO I N O I I IN I CUI FRAZIONI LE FRAZIONI SONO DIVISIONI IN CUI IL RISULTATO E UN NUMERO CON LA VIRGOLA CHE VIENE CHIAMATO : RAZIONALE ASSOLUTO E INDICATO CON Q(a) NUMERO RAZIONALE ASSOLUTO 0,75 MA PERCHE 0,75? 0,75 PERCHE

Dettagli

ELEMENTARI CONGRUENZE

ELEMENTARI CONGRUENZE ELEMENTARI CONGRUENZE 1. Che giorno della settimana sarà Sant Anna? Se lavoriamo con i numeri naturali (= interi positivi), non ci sono numeri decimali. Semplicemente 10/7 = 1 + resto 3. Addizioni e moltiplicazioni

Dettagli

Divisibilità per 5 Un numero è divisibile per 5 se termina con 0 o con 5. Esempi: 380, 125, 465 sono divisibili per non è divisibile per 5

Divisibilità per 5 Un numero è divisibile per 5 se termina con 0 o con 5. Esempi: 380, 125, 465 sono divisibili per non è divisibile per 5 Multipli e divisori Def: Si dice multiplo di un numero naturale ogni numero che si ottiene moltiplicando tale numero per qualsiasi numero naturale. 14 è un multiplo di 7 perché 7 2 = 14. Si dice che 14

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

1. Esistono numeri della forma , ottenuti cioè ripetendo le cifre 2006 un certo numero di volte, che siano quadrati perfetti?

1. Esistono numeri della forma , ottenuti cioè ripetendo le cifre 2006 un certo numero di volte, che siano quadrati perfetti? 1 Congruenze 1. Esistono numeri della forma 200620062006...2006, ottenuti cioè ripetendo le cifre 2006 un certo numero di volte, che siano quadrati perfetti? No, in quanto tutti questi numeri sono congrui

Dettagli

1. DOMANDA SULLA CONGRUENZA E IL TEOREMA DI FERMAT : (MOD 23)

1. DOMANDA SULLA CONGRUENZA E IL TEOREMA DI FERMAT : (MOD 23) Avvertenza: Le domande e a volte le risposte, sono tratte dal corpo del messaggio delle mails in cui non si ha a disposizione un editor matematico e quindi presentano una simbologia non corretta, ma comprensibile

Dettagli

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Liceo Scientifico Gullace PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Aritmetica 014-15 1 Lezione 1 DIVISIBILITÀ, PRIMI E FATTORIZZAZIONE Definizioni DIVISIBILITÀ': dati due interi a e b, diciamo

Dettagli

2.1 Numeri naturali, interi relativi, razionali

2.1 Numeri naturali, interi relativi, razionali 2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non

Dettagli

Operatori di confronto:

Operatori di confronto: Operatori di confronto: confrontano tra loro due numeri e come risultato danno come risposta o operatore si legge esempio risposta = uguale a diverso da > maggiore di < minore di maggiore o uguale a minore

Dettagli

Firmware Division & Floating pointer adder

Firmware Division & Floating pointer adder Firmware Division & Floating pointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5 1/47

Dettagli

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a RADICALI E PROPRIETÀ DEI RADICALI I radicali in Matematica sono numeri definiti mediante radici con indice intero. I radicali possono essere espressi sotto forma di potenze con esponente fratto mediante

Dettagli

Il calcolo letterale

Il calcolo letterale Il calcolo letterale Si dice ESPRESSIONE ALGEBRICA LETTERALE (o semplicemente espressione algebrica) un espressione in cui compaiono lettere che rappresentano numeri. Esempio: OSS: QUANDO non c è nessuna

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 4 2016 GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π

Dettagli

Numeri con segno ed in virgola

Numeri con segno ed in virgola Numeri con segno ed in virgola Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 20 Marzo 2016 Obiettivi Complemento a due Numeri in virgola 2 Rappresentazione dei numeri In realtà,

Dettagli

Esempi di insiemi infiniti. Un numero p 1 si dice primo se è divisibile solo per 1 e per se stesso.

Esempi di insiemi infiniti. Un numero p 1 si dice primo se è divisibile solo per 1 e per se stesso. Lezione 2 1 Esempi di insiemi infiniti L insieme dei numeri pari P = {p N p = 2n, n N} L insieme dei numeri primi P = {p N p è primo} Un numero p 1 si dice primo se è divisibile solo per 1 e per se stesso.

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli

Conclusione? Verifica la proprietà commutativa per le altre operazioni.

Conclusione? Verifica la proprietà commutativa per le altre operazioni. Le proprietà delle operazioni.( teoria / esercizi pag. 15 24) Proprietà: Sono delle regole che permettono di svolgere dei calcoli più semplicemente. Operazioni: Tu conosci le operazioni numeriche:, 1)

Dettagli

Le equazioni di primo grado

Le equazioni di primo grado Le equazioni di primo grado Definiamo prima di tutto cosa è una identità. Definizione : un identità è un uguaglianza, dove compaiono espressioni letterali, verificata per qualunque valore attribuito alle

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi:

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi: Gli argomenti di oggi: Le operazioni matematiche con i numeri INTERI RELATIVI Come facciamo a fare la ADDIZIONE con i numeri interi relativi? Consideriamo un esempio: (+5) + (+7) =? Come potrei fare? Prova

Dettagli

Le operazioni fondamentali in R L ADDIZIONE

Le operazioni fondamentali in R L ADDIZIONE Le operazioni fondamentali in R REGOLA DEI SEGNI + per + dà + per dà + + per dà per + dà (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3) = 5 + 3 = 2 L ADDIZIONE

Dettagli

LEZIONE 1. del 10 ottobre 2011

LEZIONE 1. del 10 ottobre 2011 LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente

Dettagli

NUMERI. Nome e cognome:

NUMERI. Nome e cognome: NUMERI Nome e cognome: Data: 1. Spiega cosa è per te: a] un numero naturale Dopo il confronto nel gruppo Finale b] un numero intero c] un numero razionale d] un numero irrazionale e] un numero reale Per

Dettagli

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di ESERCIZI Quando possiamo dire che un numero a è divisibile per un numero b? Quando possiamo dire che un numero a è sottomultiplo del numero b? Quando un numero si dice primo? Al posto dei puntini inserisci

Dettagli

Rappresentazione numeri con e senza segno ([PH] par. 2.4) Giovedì 1 ottobre 2015 (ore 9-13)

Rappresentazione numeri con e senza segno ([PH] par. 2.4) Giovedì 1 ottobre 2015 (ore 9-13) Rappresentazione numeri con e senza segno ([PH] par. 2.4) Giovedì 1 ottobre 2015 (ore 9-13) Punto della situazione Abbiamo visto: la rappresentazione dei numeri positivi con e senza virgola nel sistema

Dettagli

Numeri e operazioni su di essi

Numeri e operazioni su di essi Numeri e operazioni su di essi Paolo Montanari Appunti di Matematica Numeri 1 Classificazione dei numeri Il primo obiettivo che ci si pone è quello di classificare i numeri, cioè conoscere i differenti

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

Teoria dei Numeri. Lezione del 15/12/2009. Stage di Treviso Progetto Olimpiadi

Teoria dei Numeri. Lezione del 15/12/2009. Stage di Treviso Progetto Olimpiadi Teoria dei Numeri Lezione del 15/12/2009 Stage di Treviso Progetto Olimpiadi Criteri di Divisibilità 2: ultima cifra pari 3: somma (o somma della somma) delle cifre divisibile per 3 4: ultima due cifre

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori Moltiplicazione e divisione tra numeri interi: algoritmi e circuiti slide a cura di Salvatore Orlando, Marta Simeoni, Andrea Torsello Operazioni aritmetiche e logiche Abbiamo visto che le ALU sono in grado

Dettagli

Tutorato architettura degli elaboratori modulo I (lezione 1)

Tutorato architettura degli elaboratori modulo I (lezione 1) Tutorato architettura degli elaboratori modulo I (lezione 1) Moretto Tommaso 13 October 2017 1 Conversione 1.1 Conversione da base b a base 10 Prima di tutto ricordiamo che dato un numero di n cifre espresso

Dettagli

Il monomio è un espressione algebrica letterale che non contiene né addizioni né sottrazioni.

Il monomio è un espressione algebrica letterale che non contiene né addizioni né sottrazioni. Monomi Calcolo letterale Abbiamo usato spesso le lettere al posto dei numeri quando dovevamo enunciare delle proprietà o delle regole generali. Le lettere sono dunque comode perché ci permettono di svolgere

Dettagli

ARITMETICA BINARIA. La somma viene eseguita secondo le regole per la somma di due bit, di seguito riportate:

ARITMETICA BINARIA. La somma viene eseguita secondo le regole per la somma di due bit, di seguito riportate: ARITMETICA BINARIA Le operazioni che possono essere fatte sui numeri binari, sono le stesse che vengono effettuate sui numeri decimali. Due numeri binari possono essere quindi sommati, sottratti, moltiplicati

Dettagli

Seconda lezione. Rivediamo un po di definizioni principali Proseguiremo con nuovi codici

Seconda lezione. Rivediamo un po di definizioni principali Proseguiremo con nuovi codici Seconda lezione Rivediamo un po di definizioni principali Proseguiremo con nuovi codici 1 Libri di testo Struttura, Organizzazione e progetto dei calcolatori, Patterson e Hennessy, (Jackson Libri) consigliato

Dettagli

Conversione binario-ottale/esadecimale. Conversione binario-ottale/esadecimale. Rappresentazione di Numeri Interi Positivi (numeri naturali)

Conversione binario-ottale/esadecimale. Conversione binario-ottale/esadecimale. Rappresentazione di Numeri Interi Positivi (numeri naturali) Conversione binario-ottale/esadecimale Conversione binario-ottale/esadecimale Nella rappresentazione ottale (B=8) si usano gli 8 simboli,, 2, 3, 4, 5, 6, 7 In quella esadecimale (B=6) i 6 simboli,, 2,

Dettagli

( ) ( ) ( ) individua un nuovo tipo di oggetto algebrico che prende il nome di frazione algebrica. Per esempio, A= 3x+ 1,

( ) ( ) ( ) individua un nuovo tipo di oggetto algebrico che prende il nome di frazione algebrica. Per esempio, A= 3x+ 1, .5 Divisione tra due polinomi. Divisione esatta di due polinomi Allo stesso modo in cui la divisione tra due numeri interi non sempre dà un numero intero, anche la divisione tra due polinomi non sempre

Dettagli

Dott. Marta Ruspa 0321/ /

Dott. Marta Ruspa 0321/ / FISICA APPLICATA Dott. Marta Ruspa ruspa@med.unipmn.it 0321/660669 011/6707310 Lezione I 1 CORSO INTEGRATO DI SCIENZE FISICHE e STATISTICHE Discipline: FISICA APPLICATA STATISTICA INFORMATICA Lezione I

Dettagli