Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni"

Transcript

1 Argomenti della lezione Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni

2 Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 2? Un numero è divisibile per 2 se e solo se la cifra delle unità è 0, 2, 4, 6, 8. Pertanto: il numero 821c è divisibile per 2 se c assume uno dei valori precedenti; il numero 82c1 ha la cifra delle unità uguale a 1. Di conseguenza non c è alcun valore di c che lo rende divisibile per 2.

3 Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 3? Un numero è divisibile per 3 se e solo se la somma delle sue cifre dà un numero divisibile per 3. La somma delle cifre vale, per entrambi i numeri c = 11 + c Affinché 11 + c, con c {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, sia un multiplo di 3 deve essere 11 + c = 12 c = = 1 oppure e infine 11 + c = 15 c = = c = 18 c = = 7 Altre possibilità non vi sono perché 11 + c = 21 dà c = = 10, valore non accettabile perché 10 non è una cifra. Quindi i numeri richiesti sono per 821c: 8211, 8214 e 8217; per 82c1: 8211, 8241 e 8271.

4 Determinare il M.C.D. (Massimo Comun Divisore) ed il m.c.m (minimo comune multiplo) dei numeri 36, 90, 100. L M.C.D. di un insieme di numeri naturali è il più grande numero che divide tutti i numeri dati. Il m.c.m. di un insieme di numeri naturali è il più piccolo numero che è multiplo di tutti i numeri dati. Determiniamo M.C.D. e m.c.m. usando la scomposizione (unica!) in fattori primi di ciascun numero. Abbiamo = = = Quindi è M.C.D.(36, 90, 100) = 2, m.c.m.(36, 90, 100) = perché per il M.C.D. si prendono solo i fattori comuni a tutti i numeri con l esponente più basso; per il m.c.m. si prendono tutti i fattori (comuni e non) a tutti i numeri con il grado più alto.

5 Determinare il M.C.D. (Massimo Comun Divisore) dei numeri e Sia k = M.C.D.(10002, 9999). Allora è = k n 1 e 9999 = k n 2 con n 1, n 2 N opportuni. Pertanto, effettuando la differenza tra i due numeri, risulta = k n 1 k n 2 3 = k (n 1 n 2 ) Quindi, dato che k N, k è un divisore di 3 ossia è k = 1 oppure k = 3. Ora, sia che 9999 sono divisibili per 3. Pertanto, M.C.D.(10002, 9999) = 3. Osservazione Due numeri naturali il cui M.C.D. sia 1 si dicono primi tra loro.

6 Sia H un insieme di numeri interi positivi. Se in H non c è alcun numero dispari, allora siamo certi che in H non c è alcun numero che sia [1] un multiplo di 3 [2] una potenza di 5 [3] divisibile per 7 e per 11 [4] il quadrato di un altro numero Poiché in H non ci sono numeri dispari vuol dire che ci sono solo numeri pari. H può contenere multipli di 3, tutti quelli pari (ad esempio, 6). Parimenti, H può contenere numeri divisibili per 7 e per 11 e che siano pari (ad esempio, 144 = ). H può contenere quadrati di altri numeri presenti in H oppure no (ad esempio, 16 = 4 2 ). Le potenze di 5, invece, terminano sempre per 5. Quindi sono numeri dispari e, pertanto, non possono stare in H. Pertanto, siamo certi che H non contiene potenze di 5.

7 Dimostrare che il numero N = n 3 n, n N è sempre divisibile per 6. Abbiamo N = n 3 n = n(n 2 1) = n(n 1)(n + 1) = (n 1) n (n + 1) Quindi N è il prodotto di tre interi consecutivi. Ne segue che almeno uno è pari; almeno uno è multiplo di tre. Perciò, N ha tra suoi fattori 2 e 3. Di conseguenza, ha anche il fattore 6 = 2 3. Quindi è divisibile per 6.

8 Siano m, n numeri naturali dispari. Allora (m + 1) n è un numero [1] pari [2] dispari [3] sia pari che dispari Poiché m è dispari m + 1 risulta pari. Quindi, 2 è sicuramente uno dei fattori di m + 1 e, di conseguenza, anche di (m + 1) n. Dunque, (m + 1) n è pari.

9 Siano m e n due numeri interi. Si supponga che 10 divida il prodotto m n. Allora [1] 10 divide m e n [2] 10 divide m o n [3] nessuna delle due precedenti risposte è corretta E vera la terza opzione. In generale, se un numero divide il prodotto di altri numeri non è detto che sia un divisore di qualcuno di essi (anche se potrebbe esserlo). Ad esempio, prendendo m = 2 ed n = 5 abbiamo 10 divide m n = 2 5 = non divide né m né n.

10 E data una sequenza di n numeri dispari consecutivi. Detto M il maggiore della sequenza ed m il minore, quale relazione è vera? [1] m = M n [2] m = M 2n [3] m = M 2n + 2 [4] m = M n + 1 Per qualche k N, gli n numeri dispari, essendo consecutivi, possono essere scritti come s 1 = 2k + 1, s 2 = 2k + 3, s 3 = 2k + 5, s 4 = 2k + 7,, s n = 2k + (2n 1) Quindi M = 2k + (2n 1) e m = 2k + 1 per cui M m = [2k + (2n 1)] [2k + 1] = 2n 2. Dunque risulta m = M 2n + 2.

11 Sia n un numero naturale; allora il numero n n 227 è [1] sempre pari [2] sempre dispari [3] sia pari che dispari Generalizziamo al caso n p + n q con p, q N. Distinguiamo due casi n pari: E n = 2 k, k N. Di conseguenza risulta n p = (2 k) p = 2 p k p n p pari n q = (2 k) q = 2 q k q n q pari ff n p + n q pari n dispari: E n = 2 k + 1, k N. Ricordiamo che se m, n, p N con n > m allora (n m) (n p m p ). Segue per m = 1 e tenendo conto che 1 p = 1 Pertanto abbiamo (n 1) (n p 1 p ) = n p 1 n 1 = 2k n 1 pari n 1 n p 1 2 n p 1 n p 1 pari n p = (n p 1) + 1 dispari Quindi, per p, q N e n dispari risulta n p ed n q dispari. Pertanto, n p + n q è pari. In conclusione, qualunque siano p, q, ed n, la somma n p + n q è sempre pari!

12 Qual è il valore della seguente espressione? [1] 1 6 [2] 5 9 [3] [4] 1 9 Abbiamo = = = «9 = 5 9

13 Scrivendo per esteso il numero decimale 17, , quale cifra si trova al quarto posto dopo la virgola? [1] 7 [2] 0 [3] 1 [4] 3 Dobbiamo spostare la virgola di 5 posizioni verso sinistra aggiungendo eventuali zeri. Risulta 17, = 0, Pertanto, al quarto posto si trova la cifra 1.

14 L espressione è uguale a [1] [2] [3] [4] Applicando la proprietà delle potenze risulta = = = ( 3) = =

15 L espressione è uguale a [1] 1 3 [2] 16 3 [3] 1 3 [4] 3 16 Abbiamo 2 2 = = = 1 3. Osserviamo che la risposta deve essere un numero negativo perché l espressione iniziale è il rapporto del numero negativo 2 2 e del numero positivo 3/4. Dunque, le risposte [1] e [2] sono escluse a priori.

16 Quale vale 12, ? [1] [2] [3] [4] [5] Applicando le proprietà delle potenze risulta subito 12, = 12, = 100, = = =

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

c) ogni numero ha infiniti multipli

c) ogni numero ha infiniti multipli Multipli e divisori Def: Si dice MULTIPLO di un numero naturale ogni numero che si ottiene moltiplicando tale numero per qualsiasi numero naturale. Es: è un multiplo di perché. Osservazioni: Es: b) ogni

Dettagli

Divisibilità per 5 Un numero è divisibile per 5 se termina con 0 o con 5. Esempi: 380, 125, 465 sono divisibili per non è divisibile per 5

Divisibilità per 5 Un numero è divisibile per 5 se termina con 0 o con 5. Esempi: 380, 125, 465 sono divisibili per non è divisibile per 5 Multipli e divisori Def: Si dice multiplo di un numero naturale ogni numero che si ottiene moltiplicando tale numero per qualsiasi numero naturale. 14 è un multiplo di 7 perché 7 2 = 14. Si dice che 14

Dettagli

DIVISORI E MULTIPLI DI UN NUMERO

DIVISORI E MULTIPLI DI UN NUMERO DIVISORI E MULTIPLI DI UN NUMERO CONSIDERIAMO LA DIVISIONE 15 : 5 SICCOME IL RESTO E ZERO DICIAMO: 15 E DIVISIBILE PER (cioè lo possiamo dividere per ) E DIVISORE DI 15 (cioe divide 15) MA PROPRIO PER

Dettagli

1^A - MATEMATICA compito n Calcola: MCD (216, 288); MCD (32, 27); mcm (72, 90); mcm (27, 81)

1^A - MATEMATICA compito n Calcola: MCD (216, 288); MCD (32, 27); mcm (72, 90); mcm (27, 81) 1^A - MATEMATICA compito n 1-2012-2013 1. Svolgi la seguente espressione nell'insieme Z : 5 3 2 :{4 5 [ 2 2 3 5 2 4 : 2 4 ] 2 : 3 2 3 5 2 } 2 1 5 5 2. Svolgi utilizzando le proprietà delle potenze: { 6

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Problemi tratti dalle gare degli anni passati

Problemi tratti dalle gare degli anni passati Problemi tratti dalle gare degli anni passati Gara 2016 Camilla è molto paziente e sta scrivendo, per esteso, l intero numero 1000 elevato alla 1000. Quante cifre deve scrivere in tutto? (A) 1000 (B) 3001

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

Ampliamento di N: le frazioni

Ampliamento di N: le frazioni L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato

Dettagli

1 Multipli di un numero

1 Multipli di un numero Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono

Dettagli

Insiemi numerici. Alcune definizioni. La retta dei numeri

Insiemi numerici. Alcune definizioni. La retta dei numeri Insiemi numerici Q Z N 0 1 1 1 4 4 N = 0,1,,,4, = insieme dei numeri naturali Z = insieme dei numeri interi (formato dall unione dei numeri naturali e dei numeri interi negativi) Q = insieme dei numeri

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Liceo Scientifico Gullace PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Aritmetica 014-15 1 Lezione 1 DIVISIBILITÀ, PRIMI E FATTORIZZAZIONE Definizioni DIVISIBILITÀ': dati due interi a e b, diciamo

Dettagli

1 Multipli e sottomultipli. Divisibilità

1 Multipli e sottomultipli. Divisibilità Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo

Dettagli

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di ESERCIZI Quando possiamo dire che un numero a è divisibile per un numero b? Quando possiamo dire che un numero a è sottomultiplo del numero b? Quando un numero si dice primo? Al posto dei puntini inserisci

Dettagli

Teoria dei numeri 2. Alberto Saracco. Università di Parma Udine, 18 ottobre 2015

Teoria dei numeri 2. Alberto Saracco. Università di Parma Udine, 18 ottobre 2015 Teoria dei numeri 2 Alberto Saracco Università di Parma alberto.saracco@unipr.it Udine, 18 ottobre 2015 Alberto Saracco Teoria dei numeri Udine, 18 ottobre 2015 1 / 16 Esercizio Es. 12 gara distrettuale

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da..., si dice che a è divisibile per b se... b) In N la divisione è possibile solo se... 2. Sostituisci

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

TEORIA DEI NUMERI. Progetto Giochi matematici. Mail:

TEORIA DEI NUMERI. Progetto Giochi matematici. Mail: TEORIA DEI NUMERI Progetto Giochi matematici Referente: prof. Antonio Fanelli Mail: fanelli.xy@gmail.com TEORIA DEI NUMERI Parte della Matematica che studia i numeri naturali ed interi e le relative proprietà.

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

Parte 1: tipi primitivi e istruzioni C

Parte 1: tipi primitivi e istruzioni C Parte 1: tipi primitivi e istruzioni C Esercizio 1 Scrivere un programma che stampa la somma di una sequenza di N numeri inseriti dall utente. Esercizio 2 Scrivere un programma che stampa la somma di una

Dettagli

Numeri e operazioni su di essi

Numeri e operazioni su di essi Numeri e operazioni su di essi Paolo Montanari Appunti di Matematica Numeri 1 Classificazione dei numeri Il primo obiettivo che ci si pone è quello di classificare i numeri, cioè conoscere i differenti

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Trovare il più piccolo multiplo di 15 formato dalle sole cifre 0 e 8 (in base 10). Il numero cercato dev'essere divisibile per 3 e per 5 quindi l'ultima cifra deve

Dettagli

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Vale la [1] perché per le proprietà delle potenze risulta a m a

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 2

Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base due sarà del tipo: c m c m-1... c 1 c 0 (le c i sono cifre

Dettagli

NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se

NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se ( a, b Z) (p ab = (p a p b). Teorema 1. Sia p Z, p ±1. Allora p è primo se e solo se ( a, b Z)

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

L insieme dei numeri naturali N Prof. Walter Pugliese

L insieme dei numeri naturali N Prof. Walter Pugliese L insieme dei numeri naturali N Prof. Walter Pugliese Che cosa sono i numeri naturali I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10, Sono chiamati così perché sono stati i primi numeri che abbiamo conosciuto,

Dettagli

1. (A1) Quali tra le seguenti uguaglianze sono vere? 2. (A1) Una sola delle seguenti affermazioni è vera. Quale?

1. (A1) Quali tra le seguenti uguaglianze sono vere? 2. (A1) Una sola delle seguenti affermazioni è vera. Quale? M ============= (A) Aritmetica ===================== rappresentazione dei numeri algebra dei numeri proprietà delle operazioni. (A) Quali tra le seguenti uguaglianze sono vere? e. 2 + 2 2 2 + = 2 2 + =

Dettagli

Esercizio L1 L2 L3. Il numero 1152 scomposto in fattori primi si scrive [1] [2] [3] 7 31 [4] Risposta

Esercizio L1 L2 L3. Il numero 1152 scomposto in fattori primi si scrive [1] [2] [3] 7 31 [4] Risposta Il numero 1152 scomposto in fattori primi si scrive [1] 2 7 3 2 [2] 2 5 11 [3] 7 31 [4] 1152 Il numero 1152 termina con la cifra 2 e, di conseguenza, è divisibile per 2. Questo significa che ha il numero

Dettagli

Un ripasso di aritmetica: Rappresentazione decimale - limitazioni

Un ripasso di aritmetica: Rappresentazione decimale - limitazioni Un ripasso di aritmetica: Rappresentazione decimale - limitazioni Consideriamo la base dieci: con tre cifre decimali si possono rappresentare i numeri compresi tra 0 e 999, il numero successivo (1000)

Dettagli

DISPENSA NUMERI MULTIPLI, DIVISORI, PRIMI, MCD E mcm DEFINIZIONI. Multiplo di un numero

DISPENSA NUMERI MULTIPLI, DIVISORI, PRIMI, MCD E mcm DEFINIZIONI. Multiplo di un numero DISPENSA NUMERI MULTIPLI, DIVISORI, PRIMI, MCD E DEFINIZIONI Multiplo di un numero Scegliendo un numero e moltiplicandolo per la serie di tutti i numeri naturali ottengo i suoi multipli. Es i multipli

Dettagli

Gli insiemi numerici. Operazioni e loro proprietà

Gli insiemi numerici. Operazioni e loro proprietà Gli insiemi numerici N= 0, 1,, 3 Insieme dei numeri naturali Z=, 1, 0, 1,, 3 Insieme dei numeri interi relativi Q= m/n mεz, nεz con n 0 Insieme dei numeri razionali Operazioni e loro proprietà ADDIZIONE

Dettagli

SCOMPOSIZIONE IN FATTORI PRIMI:

SCOMPOSIZIONE IN FATTORI PRIMI: SCOMPOSIZIONE IN FATTORI PRIMI: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da zero, si dice che a è divisibile per b se la divisione a : b è esatta, cioè ha resto 0 b) In

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

Scheda per il recupero 1

Scheda per il recupero 1 A Ripasso Le operazioni in N e le loro proprietà OPERAZIONE PROPRIETÀ ESEMPI Addizione Interna a N (ovvero la somma di due numeri naturali è sempre un numero naturale) Commutativa a þ b ¼ b þ a Associativa

Dettagli

Preparazione Olimpiadi della Matematica

Preparazione Olimpiadi della Matematica Preparazione Olimpiadi della Matematica Marco Vita Liceo Scientifico G. Galilei Ancona 18 novembre 2015 ( Liceo Scientifico G. Galilei Ancona) Preparazione Olimpiadi della Matematica 18 novembre 2015 1

Dettagli

ACCURATEZZA. L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE

ACCURATEZZA. L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE 2 ACCURATEZZA L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE La precisione descrive l accordo tra due o più misure replicate. 3 NOTAZIONE SCIENTIFICA

Dettagli

I monomi. ITIS Feltrinelli anno scolastico R. Folgieri

I monomi. ITIS Feltrinelli anno scolastico R. Folgieri I monomi ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 I monomi Abbiamo usato spesso le lettere al posto dei numeri quando dovevamo enunciare delle proprietà o delle regole generali.

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

623 = , 413 = , 210 = , 203 =

623 = , 413 = , 210 = , 203 = Elementi di Algebra e Logica 2008. 3. Aritmetica dei numeri interi. 1. Determinare tutti i numeri primi 100 p 120. Sol. :) :) :) 2. (i) Dimostrare che se n 2 non è primo, allora esiste un primo p che divide

Dettagli

La codifica dei numeri

La codifica dei numeri La codifica dei numeri La rappresentazione dei numeri con il sistema decimale può essere utilizzata come spunto per definire un metodo di codifica dei numeri all interno degli elaboratori: la sequenza

Dettagli

2/2/2019 Documento senza titolo - Documenti Google

2/2/2019 Documento senza titolo - Documenti Google 2/2/2019 Documento senza titolo - Documenti Google https://docs.google.com/document/d/1iypd_1q_iyggxdhq7cn4wnodk_78ggd97hc0h3wqsjg/edit 1/4 2/2/2019 Documento senza titolo - Documenti Google https://docs.google.com/document/d/1iypd_1q_iyggxdhq7cn4wnodk_78ggd97hc0h3wqsjg/edit

Dettagli

MONOMI. Donatella Candelo 13/11/2004 1

MONOMI. Donatella Candelo 13/11/2004 1 Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

1 L estrazione di radice

1 L estrazione di radice 1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice quadrata consiste nel chiedersi qual è quel numero x che elevato

Dettagli

1... phs s qkr r

1... phs s qkr r NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Teorema 1. (Teorema fondamentale dell Aritmetica) Sia n Z, n ±1. esistono s numeri primi p 1,..., p s e s interi naturali h 1,..., h s tali che 1... phs

Dettagli

64=8 radice perché 8 2 = 64

64=8 radice perché 8 2 = 64 RADICI E NUMERI IRRAZIONALI 1. Che cosa vuol dire estrarre la radice quadrata di un numero? Estrarre la radice quadrata di un numero vuol dire calcolare quel numero, che elevato al quadrato, dà per risultato

Dettagli

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n Il calcolatore ad orologio di Gauss ESERCITAZIONE N.8 18 novembre L aritmetica dell orologio di Gauss Operazioni e calcoli in Z n 1, 1, -11, sono tra loro equivalenti ( modulo 12 ) Rosalba Barattero Sono

Dettagli

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato. LICEO B. RUSSELL A.S. 2010/2011 DALLA TEORIA DEI NUMERI ALLE CONGRUENZE Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Dettagli

Logica matematica e ragionamento numerico

Logica matematica e ragionamento numerico 5 Logica matematica e ragionamento numerico Abilità di calcolo! I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici:

Dettagli

Minimo Comune multiplo

Minimo Comune multiplo Minimo Comune multiplo Il minimo comune multiplo (si scrive anche mcm) è il più piccolo numero che sia divisibile per tutti i numeri dati. Che significa? Se io ho tre numeri, il mcm è, tra i tanti possibili

Dettagli

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza LA RADICE QUADRATA I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza L estrazione di radice, l operazione che

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

Notazione scientifica e inversione di formule

Notazione scientifica e inversione di formule Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................

Dettagli

Università del Piemonte Orientale

Università del Piemonte Orientale Compito di Algebra del 13 Gennaio 2009 1) Trovare l ordine di [11] 112 in Z 112. Si dica poi per quali valori di k si ha [11] k 112 [34] 112 = [31] 112. Soluzione. L ordine di [11] 112 è 12. k 12 8. 2)

Dettagli

Multipli Divisori. { } =.

Multipli Divisori. { } =. Multipli Divisori. 1) I multipli di un numero. ( Teoria 31 31; Esercizi 117 120) M n = es. M 7 = = Definisci per elencazione i seguenti insiemi: M 4 = ; M 6 = ; = Alcune situazioni particolari: a) Definisci

Dettagli

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle

Dettagli

A lezione sono stati presentati i seguenti passi per risolvere un problema:

A lezione sono stati presentati i seguenti passi per risolvere un problema: Calcolo delle radici di un polinomio Problema: Dati i coefficienti a,b,c di un polinomio di 2 grado della forma: ax^2 + bx + c = 0, calcolare le radici. A lezione sono stati presentati i seguenti passi

Dettagli

Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA

Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme

Dettagli

Stage di preparazione olimpica - Lucca

Stage di preparazione olimpica - Lucca Stage di preparazione olimpica - Lucca Esercizi di Aritmetica - docente Luca Ghidelli - luca.ghidelli@sns.it 18 gennaio 2013 1 Diofantea risolubile Trovare tutti gli interi (relativi) x e y tali che xy

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

PROGRAMMA DI MATEMATICA Anno scolastico

PROGRAMMA DI MATEMATICA Anno scolastico PROGRAMMA DI MATEMATICA Anno scolastico 2011-2012 Aritmetica UNITÀ 1 - STRUMENTI DI BASE UTILIZZIAMO I NUMERI Numeri e operazioni in colonna Numeri e cifre Operazioni in colonna (addizione, sottrazione,

Dettagli

Esponente 32 = 9 Valore della potenza Base 9 = 3

Esponente 32 = 9 Valore della potenza Base 9 = 3 1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice consiste nel chiedersi qual è quel numero x che elevato alla

Dettagli

NUMERI PRIMI E CRITTOGRAFIA

NUMERI PRIMI E CRITTOGRAFIA NUMERI PRIMI E CRITTOGRAFIA Parte I. Crittografia a chiave simmetrica dall antichità all era del computer Parte II. Note della Teoria dei Numeri concetti ed algoritmi a supporto della Crittografia Parte

Dettagli

Un polinomio è un espressione algebrica data dalla somma di più monomi.

Un polinomio è un espressione algebrica data dalla somma di più monomi. 1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

I monomi Prof. Walter Pugliese

I monomi Prof. Walter Pugliese I monomi Prof. Walter Pugliese I monomi Def.: Il monomio è un espressione letterale in cui compaiono soltanto moltiplicazioni tra numeri e lettere. Gli esponenti delle lettere sono numeri naturali. Esempi:

Dettagli

Programma di Matematica Anno Scolastico 2014/2015 Classe IN

Programma di Matematica Anno Scolastico 2014/2015 Classe IN Programma di Matematica Anno Scolastico 04/05 Classe IN Modulo : Numeri naturali e numeri interi I numeri naturali N: Le operazioni in N: Potenza di un numero naturale. Numeri primi e numeri composti.

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Programma di Matematica Anno Scolastico 2014/2015 Classe IM

Programma di Matematica Anno Scolastico 2014/2015 Classe IM Programma di Matematica Anno Scolastico 04/05 Classe IM Modulo : Numeri naturali e numeri interi I numeri naturali N: Le operazioni in N: Potenza di un numero naturale. Numeri primi e numeri composti.

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA CALCOLO LETTERALE Dr. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può

Dettagli

Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 2015 (versione 1)

Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 2015 (versione 1) Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 015 (versione 1) Nome e Cognome: Numero di matricola: Esercizio 1 Esercizio Esercizio 3 Esercizio 4 Esercizio 5 Totale 4 6 6 8 6 Tutte

Dettagli

Programma di Matematica Anno Scolastico 2014/2015 Classe IQ

Programma di Matematica Anno Scolastico 2014/2015 Classe IQ Programma di Matematica Anno Scolastico 04/05 Classe IQ Modulo : Numeri naturali e numeri interi I numeri naturali N: Le operazioni in N: Potenza di un numero naturale. Numeri primi e numeri composti.

Dettagli

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può essere

Dettagli

DIVISIBILITÀ E FATTORIZZAZIONE. MULTIPLI E DIVISORI.

DIVISIBILITÀ E FATTORIZZAZIONE. MULTIPLI E DIVISORI. MULTIPLI E DIVISORI DIVISIBILITÀ E FATTORIZZAZIONE MCD e mcm per ripassare Multipli di un numero sono tutti i numeri che si ottengono moltiplicando il numero dato per la serie dei numeri naturali I multipli

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche MAPPA 1 Strumenti e rappresentazioni grafiche Tabella a doppia entrata Una tabella a doppia entrata è formata da righe e colonne. Per convenzione, si legge in senso orario (nel verso indicato dalla freccia).

Dettagli

EQUAZIONI DI II GRADO

EQUAZIONI DI II GRADO RICHIAMI SULLE EQUAZIONI DI PRIMO E SECONDO GRADO PROF.SSA ROSSELLA PISCOPO Indice 1 EQUAZIONI DI I GRADO --------------------------------------------------------------------------------------------------

Dettagli

Risposte non motivate non verranno giudicate

Risposte non motivate non verranno giudicate Istituzioni di Matematiche 12/01/2016 Ver.1 SECONDO PARZIALE Gli studenti della laurea quadriennale svolgono gli esercizi 1,2,3,5 e gli studenti della laurea quinquennale gli esercizi 1,2,3,4 1. 2. 3.

Dettagli

M 5 M 10 = {.. } Definisci per estensione i seguenti insiemi e rappresenta con il diagramma di Venn:

M 5 M 10 = {.. } Definisci per estensione i seguenti insiemi e rappresenta con il diagramma di Venn: Multipli Divisori. 1) I multipli di un numero. (Teoria 31 31; Esercizi 117 120) Mn = {x N x sia un multiplo di n} es. M7 = {x N x sia un multiplo di 7} = {.. } Definisci per elencazione i seguenti insiemi:

Dettagli

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25 RADICALI Termini x y a x = indice della radice y = esponente del radicando 25 = 5 perché 5 = 25 5 indica la radice quadrata di 5, non è un numero intero, è decimale, illimitato e non periodico. 16 = 2

Dettagli

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare: Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte

Dettagli

Hai imparato che la divisione non è un operazione interna nell insieme dei numeri naturali, per esempio possiamo avere:

Hai imparato che la divisione non è un operazione interna nell insieme dei numeri naturali, per esempio possiamo avere: DIVISORI E LA DIVISIBILITA Hai imparato che la divisione non è un operazione interna nell insieme dei numeri naturali, per esempio possiamo avere: 36: 3 = 12 divisione eseguibile in N 27: 2 divisione non

Dettagli

1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO

1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO 1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO L'estrazione della radice di un numero è una delle due operazioni inverse dell'operazione di elevamento a potenza attraverso la quale si calcola la

Dettagli

Esercizio 1. Esercizio 3 Calcola: -240 = [7] [0,06]

Esercizio 1. Esercizio 3 Calcola: -240 = [7] [0,06] Caro studente iscritto ad una classe prima per a.s. 0-0, puoi metterti alla prova con esercizi che riguardano gli insiemi numerici studiati (naturali, interi, razionali) se qualcuna di queste proposte

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Programma di Matematica Classe 1M Anno Scolastico 2015/2016

Programma di Matematica Classe 1M Anno Scolastico 2015/2016 Programma di Matematica Classe 1M Anno Scolastico 2015/2016 Modulo 1: Numeri naturali e numeri interi I numeri naturali N: Le operazioni in N: Potenza di un numero naturale. Numeri primi e numeri composti.

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

z =[a 4 a 3 a 2 a 1 a 0 ] 10

z =[a 4 a 3 a 2 a 1 a 0 ] 10 Esercizio 1. Sia z =[a 4 a 3 a 2 a 1 a 0 ] 10 un numero intero (la notazione significa che le cifre con cui rappresento z in base 10 sono a 4,..., a 0 {0, 1,..., 9}, ecioè z = a 4 10 4 + a 3 10 3 + a 2

Dettagli

1. Quanti sono i numeri naturali N che soddisfano la condizione 1 N <10? a. 10 b. 11 c. 9 d. infiniti e. nessuno

1. Quanti sono i numeri naturali N che soddisfano la condizione 1 N <10? a. 10 b. 11 c. 9 d. infiniti e. nessuno METTITI ALLA PROVA 1 1. Quanti sono i numeri naturali N che soddisfano la condizione 1 N

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli