Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro."

Transcript

1 MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro. Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate poli.

2 MAGNETISMO Le caratteristiche magnetiche presentano molte affinità con quelle elettriche, ma esistono anche sostanziali differenze. Non è possibile isolare i poli magnetici.

3 CAMPO MAGNETICO (1) Un magnete crea nello spazio circostante un campo magnetico, così come una carica elettrica crea un campo elettrico.

4 CAMPO MAGNETICO () All interno di un corpo i magneti elementari sono disposti disordinatamente per cui è nullo il campo magnetico risultante prodotto da essi.

5 CAMPO MAGNETICO (3) Se i magneti elementari sono anche parzialmente ordinati (temporaneamente o permanentemente), essi producono un campo magnetico risultante non nullo.

6 CAMPO MAGNETICO (4) Anche il campo magnetico può essere visualizzato mediante le linee di forza, come accade per il campo elettrico.

7 CAMPO MAGNETICO (5) Il campo magnetico B può essere misurato dall azione che esercita su una carica q in moto con velocità v. F qv B F qvb senα α è l angolo che il vettore velocità forma con il vettore campo magnetico.

8 CAMPO MAGNETICO (6) La direzione della forza di Lorentz F B è ortogonale al piano individuato da v e B

9 CAMPO MAGNETICO (7) Due particelle di carica opposta che si muovono con la stessa velocità all interno di un campo magnetico, sperimentano due forze di eguale intensità, direzione e versi opposti.

10 CAMPO MAGNETICO (8) L unità di misura del campo magnetico nel S.I. si chiama tesla (T). Altra unità di misura il gauss (G). [1G10-4 T] Il campo magnetico di 1 T esercita la forza di 1 N sulla carica elettrica di 1 C, che si muove con velocità di 1 m/s nella direzione del campo magnetico. La Terra produce un campo magnetico di ~0.5 G

11 CAMPO MAGNETICO (9) Una carica elettrica che si muove con una velocità perpendicolare ad un campo magnetico uniforme compie una traettoria circolare. Supponiamo (come in figura) che il campo B sia ortogonale al foglio, allora la carica subisce l azione di una forza F B costante in modulo e sempre ortogonale alla velocità ed a B, cioè una forza centripeta F B qv B ma centripeta qvb m r v r mv qb

12 CAMPO MAGNETICO (10) Moto di una carica elettrica in un campo magnetico.

13 TEOREMA DELLA CIRCUITAZIONE (1) Il teorema della circuitazione del campo magnetico B (detto anche Legge di Ampère) dice che l integrale di linea di B lungo una qualsiasi linea chiusa C è eguale alla somma algebrica delle correnti concatenate con la linea chiusa moltiplicata per la costante di permeabilità magnetica del vuoto µ 0 ds C B µ 0 n i n µ π 10 T m A

14 TEOREMA DELLA CIRCUITAZIONE () Consideriamo un filo rettilineo percorso da una corrente i. Esso genera, sperimentalmente, un campo magnetico le cui linee di forza sono dei cerchi concentrici intorno al filo (in figura il filo entra nel piano del foglio). Per definizione di linee di forza il campo B è tangente ad esse e per ragioni di simmetria costante in modulo, quindi su di un cerchio di raggio r B ds B ds B ds B π r µ 0 i C B C µ π i r C 0 Legge di Biot-Savart

15 INDUZIONE ELETTROMAGNETICA (1) Il fenomeno dell induzione elettromagnetica è descritto dalla legge di Faraday-Neumann. Consideriamo una spira di superficie S ed un campo magnetico B, possiamo calcolare il flusso del campo attraverso la superficie della spira, come Φ S ( B ) B S ds

16 INDUZIONE ELETTROMAGNETICA () Legge di Faraday-Neumann dφ ( B) S dt V La variazione nel tempo del flusso del campo magnetico attravreso una spira produce una d.d.p indotta nella spira stessa. È importante notare come un campo magnetico costante non dia origine al fenomeno dell'induzione. È necessario che il magnete o il circuito vengano mossi, consumando energia meccanica. i

17 INDUZIONE ELETTROMAGNETICA (3) Il segno meno della legge di Faraday-Neumann indica la d.d.p. produce una corrente che a sua volta produce un campo magnetico indotto tale da opporsi alla causa che lo ha prodotto. dφ ( B) S dt V i

18 INDUZIONE ELETTROMAGNETICA (4) Questo fatto rispetta il principio di conservazione dell'energia. Se il circuito è aperto, non si ha flusso di corrente e non si ha dissipazione di energia per effetto Joule. Per lo stesso motivo non si ha una forza di reazione alla variazione di campo magnetico ed il movimento del magnete o del circuito non compie lavoro. Se invece si ha una circolazione di corrente nel circuito con dissipazione di energia, la variazione di campo magnetico subirà una resistenza e richiede di compiere un lavoro per attuarsi. In base a questo principio un generatore consuma tanta energia meccanica quant'è l'energia elettrica in uscita (trascurando le perdite per attrito ed effetto Joule).

19 La guerra delle correnti La cosiddetta guerra delle correnti (elettriche) è stata una competizione economica di mercato del XIX secolo, per il controllo dell'allora crescente mercato mondiale dell'energia elettrica. Dopo l'esposizione Mondiale di Parigi del 1881 e la presentazione della lampada di Edison, i nuovi sistemi d'illuminazione elettrica acquisirono sempre maggiore importanza. Nelle città europee e americane, le centrali elettriche si moltiplicarono, basate sul disegno di Pearl Street, la centrale elettrica (a corrente continua) che Edison fondò nel 188 a New York. Fu la prima azienda elettrica commerciale ad essere impiantata e anche se disponeva di spazi molto grandi, poteva produrre e distribuire elettricità solamente fino a circa 330 ettari di Manhattan.

20 La guerra delle correnti La domanda di elettricità presto condusse al desiderio di costruire centrali elettriche più grandi, e a porsi il problema del trasporto dell'energia su maggiori distanze. Inoltre, la rapida diffusione di motori elettrici industriali, provocò una forte domanda verso una tensione di esercizio diversa dai 110 V, allora utilizzati per l'illuminazione con lampade Edison a 100 V. Il sistema di Edison, che utilizzava la corrente continua, era poco adeguato per rispondere alle esigenze che si andarono delineando. Il problema del trasporto era poi ancora più difficile, dato che la trasmissione interurbana di grandi quantità di corrente continua da 110 V era molto costosa perché soffriva di enormi perdite per dissipazione, sotto forma di calore.

21 La guerra delle correnti Nel 1886, George Westinghouse, fondò la Westinghouse Electric per competere con la General Electric di Edison. La Westinghouse Electric si basò sulle scoperte e le invenzioni brevettate da Nikola Tesla, il quale credeva nell'indiscussa superiorità della corrente alternata. La sua convinzione si basava sul fatto che le perdite nella trasmissione dell'elettricità dipendono dalla tensione: ad una maggiore tensione corrispondono minori perdite. Per questo motivo, a differenza della corrente continua, era possibile trasportare corrente alternata per lunghe distanze, con pochissime dispersioni, alzandone la tensione semplicemente tramite un trasformatore; poi, prima di provvedere alla distribuzione diretta ai clienti, la tensione si faceva tornare a livelli sicuri, più bassi.

22 Alternatore L alternatori sono i generatori di corrente alternata (la corrente di rete). Concettualmente si tratta di far ruotare, con velocità angolare costante ω, una spira di superficie S all interno di un campo magnetico costante B. i ( B) Φ S BS d V BS cosωt ( cosωt) dt BS ( ω sinωt) V i ( t) BSω sin ωt V V R sin ( ) 0 t sin ωt i sin t 0 0 ω ωt

23 Autoinduzione Si consideri una semplice spira percorsa da una corrente i variabile nel tempo: la corrente produce un campo magnetico, e quindi un flusso di campo all interno della spira. Ai capi della spira si produce allora una f.e.m. che si oppone alla variazione della corrente: se, ad esempio, la corrente diminuisce in modulo, la f.e.m. prodotta tende a farla aumentare, se invece aumenta, tende a farla diminuire. La f.e.m. è proporzionale alla derivata del campo B, mentre quest ultimo è proporzionale alla corrente che scorre nella spira. Si ha in definitiva una relazione del tipo: f. e. m. L di( t) dt La costante L si chiama induttanza e dipende solo dalla geometria del circuito.

24 Autoinduzione Nel sistema MKS il campo magnetico si misura in Tesla (T). Il flusso si misura in Weber, corrispondente ad 1 Tesla x 1 metro quadro. L induttanza si misura allora in Weber/Ampere, unità di misura cui si dà il nome di Henry (H). Nella pratica, l unità più utilizzata è il mh: le induttanze utilizzate nei circuiti, acquistabili commercialmente, hanno induttanze di qualche centinaio di mh. Per aumentare l induttanza, si usa avvolgere la bobina intorno ad un nucleo di metallo: in questo caso l induttanza viene ad aumentare di un fattore µ r, una costante tipica del metallo utilizzato, detta permeabilità magnetica relativa, che può valere anche

25 INDUTTANZA Il simbolo dell induttanza è il seguente: La caratteristica tensione-corrente di una induttanza, in base alla legge di Faraday, è data da: V V B V A L di( t) dt Quasi sempre, però, conviene porre in evidenza la resistenza interna r del filo che costituisce l induttanza: in questo caso il simbolo si modifica: V di( t) VB VA L + dt ri

26 Circuito RL Si consideri il circuito di figura (analogo della carica del condensatore): Quando l interruttore si trova collegato alla batteria nella posizione 1, possiamo scrivere di( t) L + ri ε ε 1 e t L / r i dt r Quando l interruttore viene portato nella posizione si ha invece: di( t) L + i dt ( r + R) 0 c.i. i(0)0 c.i. i(0)ε/r i ε e r L / t ( r+ R)

27 Circuito RL: andamento della corrente i ε e r L / t ( r+ R) ε 1 e r t L / r i

28 Extracorrenti ed extratensioni Come si può vedere, anche dopo la sconnessione del generatore, la corrente continua a scorrere nel circuito. L induttanza si oppone alla variazione della corrente. La tensione ai capi dell induttanza e della resistenza R è data da V Ri. Se R è molto grande (ovvero, se l interruttore anziché chiudersi su un carico viene lasciato aperto) la corrente scende molto rapidamente e la tensione assume valori molto grandi, al punto da poter danneggiare il circuito. Si parla allora di extracorrenti ed extratensioni di apertura. Analogamente, la differenza tra la corrente a regime e quella reale si dice extracorrente di chiusura.

29 Energia immagazzinata La potenza fornita da una induttanza è data da: di d 1 P ( VB VA ) i L i Li dt dt Si può osservare che: se la corrente aumenta in modulo, P è negativa: l induttanza assorbe energia; se la corrente diminuisce in modulo, P è positiva: l induttanza fornisce energia. L energia immagazzinata U in una induttanza è: 1 U Li Dal punto di vista energetico, l induttanza è un serbatoio di energia, associata alla corrente che vi scorre (in analogia con il condensatore, in cui l energia è associata alla carica immagazzinata).

30 Circuito RLC Si consideri il circuito di figura (c.i. q(0)q 0 e [dq(0)/dt]0): Per il circuito possiamo scrivere In conclusione avremo q di ri L 0 C dt dq i dt q C + r dq dt + L d q dt 0 d q dt + r L dq dt + q LC 0

31 Circuito RLC Per le soluzioni dell equazione abbiamo r 1 < L LC A e ϕ sono determinate dalle c.i. d q dt + r L q( t) Ae L τ r dq dt t τ e cos + q LC ( ωt + ϕ) ω πf 0 1 LC r L r 1 > L LC A 1 e A sono determinate dalle c.i. q( t) λ 1, A e 1 λ t 1 r L + A e λ t r L 1 LC q( t) ( A1 + At ) r 1 L LC A 1 e A sono determinate dalle c.i. r λ L e λt

32 ONDE ELETTROMAGNETICHE (1) Così come un campo magnetico variabile crea un campo elettrico indotto, un campo elettrico variabile crea un campo magnetico indotto. Ad esempio, una carica oscillante lungo un antenna produce un onda elettromagnetica.

33 ONDE ELETTROMAGNETICHE () Un onda elettromagnetica è costituita dalla propagazione di un campo elettrico e di un campo magnetico, variabili ed accoppiati. Essi sono fra di loro perpendicolari fra loro e perpendicolari entrambi alla direzione di propagazione.

34 ONDE ELETTROMAGNETICHE (3) Partendo dalle leggi dell elettromagnetismo J.C. Maxwell fu in grado di prevedere l esistenza delle onde elettromagnetiche, calcolandone la velocità nel vuoto mediante le costanti dell elettromagnetismo. c λν m s -1 ε 0 µ 0 lunghezza d onda frequenza Questo è indipendente dal sistema di riferimento e quindi non soddisfa la relatività galileiana

35 Che fare? Si aprono varie possibilità: (1) la teoria dell elettromagnetisno è sbagliata () la meccanica newtoniana è sbagliata

36 Che fare?... Storicamente, all inizio del 1900 si sono confrontate le due possibilità (1) la teoria dell elettromagnetisno è sbagliata (4) la meccanica newtoniana è sbagliata La totalità dei fisici teorici e sperimentali europei si concentrarono sulla possibilità (1) costruendo così, dal punto di vista sperimentale, un poderoso insieme di misure ed esperimenti che confermavano, con precisioni per l epoca assai spinte, l elettromagnetismo.

37 Che fare?... Accettando il verdetto dell esperimento Albert Einstein ( ) si convinse che il modello elettromagnetico era giusto e scrisse una relatività funzionante per esso Relatività Ristretta e al contempo affermò quindi che la Meccanica Classica, modello perfettamente funzionante dalla fine del 1600, era sbagliata.

38 t t V V V relativa ' ' energia cinetica riposo energia a 0 impulso 0 m P E E mv P temporale dilatazione contrazione dellelunghezze 1 1 ' ' γ γ γ t t l l c V relativa energia cinetica riposo energia a impulso 0 0 E E mc E mv P γ γ

Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro.

Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro. MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro. Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate poli. MAGNETISMO Le caratteristiche

Dettagli

q t i = C s CORRENTE ELETTRICA CORRENTE ELETTRICA LEGGI DI OHM

q t i = C s CORRENTE ELETTRICA CORRENTE ELETTRICA LEGGI DI OHM CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce una corrente elettrica. Il verso della corrente è quello del moto delle cariche positive (opposto a quello delle cariche

Dettagli

Dissociazione elettrolitica Elettrolisi ed elettroforesi Norme di sicurezza Campo Magnetico Onde elettromagnetiche

Dissociazione elettrolitica Elettrolisi ed elettroforesi Norme di sicurezza Campo Magnetico Onde elettromagnetiche CORRENTE ELETTRICA Dissociazione elettrolitica Elettrolisi ed elettroforesi Norme di sicurezza Campo Magnetico Onde elettromagnetiche 1 DISSOCIAZIONE ELETTROLITICA legame ionico (forza di Coulomb) I :

Dettagli

S N S N S N N S MAGNETISMO

S N S N S N N S MAGNETISMO MAGNETISMO Esistono forze che si manifestano tra particolari materiali (ad es. la magnetite, il ferro) anche privi di carica elettrica. Queste forze possono essere sia attrattive che repulsive, analogamente

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

Circuiti RC. Resistenza. Capacità. Interruttore. Batteria

Circuiti RC. Resistenza. Capacità. Interruttore. Batteria Circuiti RC Finora abbiamo analizzato circuiti nei quali la corrente è costante nel tempo, ma nei circuiti contenenti condensatori, la corrente varia nel tempo. Resistenza Capacità Il più semplice circuito

Dettagli

Elementi di Fisica 2CFU

Elementi di Fisica 2CFU Elementi di Fisica 2CFU III parte - Elettromagnetismo Andrea Susa MAGNETISMO 1 Magnete Alcune sostanze naturali, come ad esempio la magnetite, hanno la proprietà di attirare pezzetti di ferro, e per questo

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

I.S.I.S.S. A. Giordano Venafro (IS) Appunti di Fisica n. 3

I.S.I.S.S. A. Giordano Venafro (IS) Appunti di Fisica n. 3 I.S.I.S.S. A. Giordano Venafro (IS) 1 Fenomeni Magnetici prof. Valerio D Andrea VB ST - A.S. 2017/2018 Appunti di Fisica n. 3 In natura esiste un minerale che è in grado di attirare oggetti di ferro: la

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

Induzione Elettromagnetica

Induzione Elettromagnetica Induzione Elettromagnetica Abbiamo visto che una corrente elettrica produce sempre un campo magnetico. Un campo magnetico è in grado di produrre una corrente? (se sì esso produrrà anche una ddp ed un campo

Dettagli

INDUZIONE E AUTOINDUZIONE

INDUZIONE E AUTOINDUZIONE E possibile avere un effetto analogo anche in un singolo circuito Un circuito percorso da una corrente variabile può indurre una f.e.m., e quindi una corrente indotta su se stesso, in questo caso il fenomeno

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

Induzione Elettromagnetica

Induzione Elettromagnetica Induzione Elettromagnetica Un campo elettrico (che induce quindi una corrente elettrica produce un campo magnetico. Un campo magnetico è in grado di produrre un campo elettrico? Quando non c e moto relativo

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Programma del Corso di Fisica Battaglin

Programma del Corso di Fisica Battaglin Programma del Corso di Fisica Battaglin 2008/2009 Fenomeni fisici e grandezze fisiche. Sistema internazionale di unità di misura. Unità derivate, unità pratiche e fattori di ragguaglio. Analisi dimensionale.

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza Esperienza di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Campi elettrici e magnetici variabili nel tempo

Campi elettrici e magnetici variabili nel tempo Campi elettrici e magnetici variabili nel tempo a.a. 2017-2018 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci Fisica 2, Giancoli 23 Aprile 2018, Bari Dal programma o 1.0 CFU CAMPI ELETTRICI

Dettagli

Calamite e fenomeni magnetici

Calamite e fenomeni magnetici Campo magnetico Calamite e fenomeni magnetici Magnetite: scoperta dai Greci (ossido di ferro capace di attirare piccoli pezzettini di ferro) Materiali ferromagnetici: ferro, cobalto, nichel... se posti

Dettagli

Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW , 27.6

Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW , 27.6 Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW 27.1-27.4, 27.6 1 1. L esperimento di Faraday Una corrente elettrica produce un campo magnetico. Vale anche per l opposto!

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe VB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 FORZA E CAMPI ELETTRICI (Richiami) Teoria sui vettori I

Dettagli

CAPITOLO 8 CAMPI ELETTRICI E MAGNETICI VARIABILI NEL TEMPO

CAPITOLO 8 CAMPI ELETTRICI E MAGNETICI VARIABILI NEL TEMPO CAPITOLO 8 CAMPI ELETTRICI E MAGNETICI VARIABILI NEL TEMPO Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Campo elettromagnetico Campo ELETTRICO e campo MAGNETICO sono generati entrambi da

Dettagli

Lezione 8 L induzione elettromagnetica (sintesi slides)

Lezione 8 L induzione elettromagnetica (sintesi slides) Lezione 8 L induzione elettromagnetica (sintesi slides) Questa sintesi fa riferimento alla lezione 8 L induzione elettromagnetica del corso online di Fisica II accessibile, previa iscrizione, da http://federica.eu/c/fisica_ii

Dettagli

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Circuiti elettrici Possiamo combinare molti oggetti già studiati per fare circolare corrente nel modo che ci conviene Possiamo usare condensatori e solenoidi Introdurremo anche generatori (i motori delle

Dettagli

- Introduzione all elettromagnetismo. - Elettrizzazione per strofinio. - Carica elettrica. - Elettrizzazione per contatto

- Introduzione all elettromagnetismo. - Elettrizzazione per strofinio. - Carica elettrica. - Elettrizzazione per contatto Lezione del 28/09/2017 - Introduzione all elettromagnetismo - Elettrizzazione per strofinio - Carica elettrica - Elettrizzazione per contatto - Elettrizzazione per induzione - Isolanti e conduttori - Legge

Dettagli

MODULI DI FISICA (QUINTO ANNO)

MODULI DI FISICA (QUINTO ANNO) DIPARTIMENTO SCIENTIFICO Asse* Matematico Scientifico - tecnologico Triennio MODULI DI FISICA (QUINTO ANNO) SUPERVISORE DI AREA Prof. FRANCESCO SCANDURRA MODULO N. 1 ELETTROSTATICA 1-2 TRIMESTRE U.D. 1.

Dettagli

1.11.3 Distribuzione di carica piana ed uniforme... 32

1.11.3 Distribuzione di carica piana ed uniforme... 32 Indice 1 Campo elettrico nel vuoto 1 1.1 Forza elettromagnetica............ 2 1.2 Carica elettrica................ 3 1.3 Fenomeni elettrostatici............ 6 1.4 Legge di Coulomb.............. 9 1.5 Campo

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

P I P I 100W P R. eff. Veff. eff. eff

P I P I 100W P R. eff. Veff. eff. eff Uno stereo da 100 W per canale ha gli altoparlanti da 8 W. Calcolare i valori efficaci della corrente e tensione, a) al valore massimo della potenza b) quando il volume è abbassato ad una potenza di 1

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi. Corso di Laurea in Matematica Seconda prova in itinere di Fisica (Prof. E. Santovetti) 13 gennaio 016 Nome: La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli

Dettagli

Applicazioni delle derivate alla Fisica

Applicazioni delle derivate alla Fisica Liceo Scientifico Statale S. Cannizzaro Applicazioni delle derivate alla Fisica erasmo@galois.it Indice 1 Intensità di corrente elettrica 1 2 Tensione e corrente ai capi di un condensatore 2 3 Forza elettromotrice

Dettagli

L induzione elettromagnetica

L induzione elettromagnetica L induzione elettromagnetica Alcune esperienze Consideriamo una bobina collegata ad un galvanometro a zero centrale (amperometro in grado di misurare correnti positive e negative di intensità molto piccola)

Dettagli

La legge di Faraday-Neumann afferma che in un circuito attraversato da un campo magnetico il cui flusso varia nel tempo:

La legge di Faraday-Neumann afferma che in un circuito attraversato da un campo magnetico il cui flusso varia nel tempo: tibo5794_em11_test1 Nome Classe Data 1 - Scelta multipla La legge di Faraday-Neumann afferma che in un circuito attraversato da un campo magnetico il cui flusso varia nel tempo: esiste una forza esterna

Dettagli

Fisica Main Training Lorenzo Manganaro

Fisica Main Training Lorenzo Manganaro Fisica Main Training 2016-2017 Lorenzo Manganaro 1. Campo magnetico e Forza di Lorentz 2. Campo magnetico e corrente elettrica 3. Induzione elettromagnetica 4. Applicazioni 30 25 20 Veterinaria Ottica

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA Commento ai problemi proposti nell incontro del 17 febbraio 2016 Adriana Lanza I.T:T. COLOMBO via Panisperna, 255 24 febbraio 2016 I problemi proposti TRACCE

Dettagli

P I P I 100W P R. eff. Veff. eff. eff

P I P I 100W P R. eff. Veff. eff. eff esercizi 1 Uno stereo da 100 W per canale ha gli altoparlanti da 8 W. Calcolare i valori efficaci della corrente e tensione, a) al valore massimo della potenza b) quando il volume è abbassato ad una potenza

Dettagli

Corrente elettrica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Corrente elettrica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Corrente elettrica Sotto l effetto di un campo elettrico le cariche si possono muovere In un filo elettrico, se una carica dq attraversa una sezione del filo nel tempo dt abbiamo una corrente di intensità

Dettagli

CAPITOLO 8 LEGGE DI FARADAY

CAPITOLO 8 LEGGE DI FARADAY CAPITOLO 8 8.1 Induzione elettromagnetica Abbiamo visto nei precedenti come le cariche siano origine sia di campi elettrici che di campi magnetici. A parte questa connessione tra i due campi a livello

Dettagli

Corrente elettrica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Corrente elettrica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Corrente elettrica Sotto l effetto di un campo elettrico le cariche si possono muovere In un filo elettrico, se una carica dq attraversa una sezione del filo nel tempo dt abbiamo una corrente di intensità

Dettagli

INDUTTANZA ENERGIA MAGNETICA

INDUTTANZA ENERGIA MAGNETICA INDUTTANZA E ENEGIA MAGNETICA Una corrente variabile in una bobina induce una f.e.m. in un altra bobina: è possibile avere lo stesso fenomeno in una sola bobina quando la corrente i varia nel tempo? Fenomenologia

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

Induzione magnetica 1

Induzione magnetica 1 l flusso concatenato nduzione magnetica 1 è solenoidale è definito il flusso di concatenato con una linea chiusa e orientata Φ () n d (verso della normale n indotto dalla percorrenza della linea secondo

Dettagli

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso:

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: - Proprietà generali delle cariche elettriche - Cariche puntiformi e distribuzioni continue di

Dettagli

Indice. Meccanica. Le grandezze fsiche. Il moto in una dimensione. Il moto in due dimensioni. Le forze e l equilibrio III

Indice. Meccanica. Le grandezze fsiche. Il moto in una dimensione. Il moto in due dimensioni. Le forze e l equilibrio III Indice Meccanica 1 2 3 4 Le grandezze fsiche 1 Grandezze fsiche 2 2 Il Sistema Internazionale di Unità 3 3 Notazione scientifca e approssimazioni 5 4 L intervallo di tempo 9 5 La lunghezza 9 6 La massa

Dettagli

IL CAMPO MAGNETICO FENOMENI MAGNETICI FONDAMENTALI CARATTERISTICHE DEL CAMPO MAGNETICO INDUZIONE ELETTROMAGNETICA

IL CAMPO MAGNETICO FENOMENI MAGNETICI FONDAMENTALI CARATTERISTICHE DEL CAMPO MAGNETICO INDUZIONE ELETTROMAGNETICA IL CAMPO MAGNETICO FENOMENI MAGNETICI FONDAMENTALI CARATTERISTICHE DEL CAMPO MAGNETICO INDUZIONE ELETTROMAGNETICA MAGNETI E SOSTANZE FERROMAGNETICHE MAGNETI capaci di attirare oggetti di ferro naturali

Dettagli

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha 1 easy matematica CORRENI ALERNAE Consideriamo una bobina ruotante, con velocità angolare ω costante all'interno di un campo magnetico uniforme B. Gli estremi della spira sono collegati a due anelli chiamati

Dettagli

Il campo magnetico. Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete:

Il campo magnetico. Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete: Il campo magnetico Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete: correnti elettrici creano campo magnetici magneti permanenti (calamiti) ogni

Dettagli

Elettricità e Magnetismo. M. Cobal, Università di Udine

Elettricità e Magnetismo. M. Cobal, Università di Udine Elettricità e Magnetismo M. Cobal, Università di Udine Forza di Coulomb Principio di Sovrapposizione Lineare Campo Ele8rico Linee di campo Flusso, teorema di Gauss e applicazioni Condu8ori Energia potenziale

Dettagli

( ) = E i. E i. = πr 2 db. = 1 2 r db

( ) = E i. E i. = πr 2 db. = 1 2 r db II Variazione del campo magnetico vista da un circuito fisso: la presenza di corrente (movimento degli elettroni) richiede l esistenza di un campo elettrico indotto E i. ε i = E i ds = dφ B dt N.B. il

Dettagli

Formulario per Fisica con Esercitazioni

Formulario per Fisica con Esercitazioni Formulario per Fisica con Esercitazioni 27 gennaio 2015 1 Errori di misura Errore sulle misure dirette: Errore massimo (il risultato della misura non fluttua): 1 oppure 1/2 divisione della scala. Errore

Dettagli

Fondamenti di fisica

Fondamenti di fisica Fondamenti di fisica Elettromagnetismo: 6-7 Circuiti in corrente alternata Tensioni e correnti alternate Vettori di fase, valori quadratici medi Potenza media Sicurezza nei circuiti domestici Circuiti

Dettagli

INDUZIONE ELETTROMAGNETICA

INDUZIONE ELETTROMAGNETICA INDUZIONE ELETTROMAGNETICA Faraday scoprì che muovendo rapidamente un magnete vicino ad una bobina, in questa passava una corrente elettrica che cessava di esistere quando il magnete era in quiete. Questo

Dettagli

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna)

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) 7 giugno 2013 1 Errori di misura Errore sulle misure dirette: Errore massimo (il risultato della misura non fluttua): 1 oppure

Dettagli

Quantità di Carica Elettrica

Quantità di Carica Elettrica ELETTROMAGNETISMO Quantità di Carica Elettrica Il concetto nasce dalla esperienza della attrazione e repulsione elettrostatica Un corpo è carico quando il numero di elettroni (Ne) e di protoni (Np) è differente

Dettagli

LISTA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A PRIMA PARTE: Elettrostatica LISTA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A 2017-2018 Proff. P. Monaco e F. Longo 1. Cos'e' la quantizzazione della carica elettrica? 2. Cosa stabilisce il principio di

Dettagli

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

INTERPRETAZIONE CINEMATICA DELLA DERIVATA INTERPRETAZIONE CINEMATICA DELLA DERIVATA Consideriamo un punto mobile sopra una qualsiasi linea Fissiamo su tale linea un punto O, come origine degli archi, e un verso di percorrenza come verso positivo;

Dettagli

1 La corrente elettrica E34. 2 Le leggi di Ohm E38 3 La potenza nei circuiti elettrici E42. 4 Resistività e temperatura E46

1 La corrente elettrica E34. 2 Le leggi di Ohm E38 3 La potenza nei circuiti elettrici E42. 4 Resistività e temperatura E46 Fenomeni elettrostatici 15 la corrente elettrica continua 16 1 Le cariche elettriche E2 2 La legge di Coulomb E4 TECNOLOGIA La gabbia di Faraday E6 3 Il campo elettrico E8 4 Diversi tipi di campo elettrico

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO ISTITUTO D ISTRUZIONE SUPERIORE Enrico Mattei ISTITUTO TECNICO COMMERCIALE LICEO SCIENTIFICO LICEO dellescienze UMANE Via delle Rimembranze, 26 40068 San Lazzaro di Savena BO Tel. 051 464510 464545 fax

Dettagli

Cariche e Campi Elettrici

Cariche e Campi Elettrici PROGRAMMA FINALE di FISICA A.S. 2016/2017 5 Liceo Classico LIBRO DI TESTO Parodi, Ostili, Onori Il Linguaggio della Fisica 3 - Linx MODULO N. 1 Cariche e Campi Elettrici U.D. 1 Carica Elettrica e Legge

Dettagli

Riassunto lezione 11

Riassunto lezione 11 Riassunto lezione 11 Forza di Coloumb attrattiva o repulsiva F A B = 1 4 π ϵ 0 q A q B r 2 Consideriamo effetto di una carica sola campo elettrico: E Q = F Qq q = 1 4 π ϵ 0 Q r 2 ^u A B Come si rappresenta?

Dettagli

Prova Scritta Elettromagnetismo (a.a. 2018/19, S. Giagu/F. Lacava/F. Piacentini)

Prova Scritta Elettromagnetismo (a.a. 2018/19, S. Giagu/F. Lacava/F. Piacentini) Prova Scritta Elettromagnetismo - 8.6.09 a.a. 08/9, S. Giagu/F. Lacava/F. Piacentini) recupero primo esonero: risolvere l esercizio : tempo massimo.5 ore. recupero secondo esonero: risolvere l esercizio

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

Istituti Paritari PIO XII

Istituti Paritari PIO XII Istituti Paritari PIO XII RMTD545007 Amministrazione Finanza e Marketing Sistemi Informativi Aziendali 00159 ROMA - via Galla Placidia, 63 RMTL395001 Costruzioni, Ambiente e territorio Tel 064381465 Fax

Dettagli

Note sui circuiti a corrente alternata

Note sui circuiti a corrente alternata Note sui circuiti a corrente alternata Versione provvisoria. Novembre 018 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Indice 1 Corrente alternata 1.1 Circuito

Dettagli

PROGRAMMA DI FISICA. CLASSE: 4^ SEZ.:A Scientifico

PROGRAMMA DI FISICA. CLASSE: 4^ SEZ.:A Scientifico Viale Papa Giovanni XXIII 25 10098 RIVOLI Tel. 0119586756 Fax 0119589270 Sede di SANGANO 10090 via San Giorgio, 10 Tel. e fax 0119087184 SCIENTIFICO LINGUISTICO SCIENZE UMANE ECONOMICO SOCIALE e-mail:

Dettagli

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 PRIMA PARTE: Elettrostatica A/A 2017-2018 Proff. P. Monaco e F. Longo 1. Cos'e' la quantizzazione della carica elettrica? 2. Cosa stabilisce il

Dettagli

Cose da sapere - elettromagnetismo

Cose da sapere - elettromagnetismo Cose da sapere - elettromagnetismo In queste pagine c e` un riassunto di relazioni e risultati che abbiamo discusso e che devono essere conosciuti. Forza di Lorentz agente su una carica q in moto con velocita`

Dettagli

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =.

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =. Esercizio 1 a) Poiché la carica è interamente contenuta all interno di una cavità circondata da materiale conduttore, si ha il fenomeno dell induzione totale. Quindi sulla superficie interna della sfera

Dettagli

Conservazione della carica elettrica

Conservazione della carica elettrica Elettrostatica La forza elettromagnetica è una delle interazioni fondamentali dell universo L elettrostatica studia le interazioni fra le cariche elettriche non in movimento Da esperimenti di elettrizzazione

Dettagli

Si ripetano i calcoli nel caso in cui la R2 si interrompe e nel caso in cui R2 vada in corto circuito.

Si ripetano i calcoli nel caso in cui la R2 si interrompe e nel caso in cui R2 vada in corto circuito. Dati i valori delle tre resistenze R1=25Ω R2=8Ω R3=14Ω e considerando una d.d.p. di 12 V tra A e, Calcolare a) la resistenza equivalente b) la corrente totale e la corrente che passa attraverso i rami

Dettagli

Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW ,

Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW , Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW 26.1-26.4, 26.6-26.7 1 1. Magneti permanenti Le estremità di una barretta magnetica corrispondono a poli opposti (detti polo nord e polo sud).

Dettagli

Unità 9. Il campo magnetico

Unità 9. Il campo magnetico Unità 9 Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico;

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

Magnetismo. Fisica x Biologi 2017 Fabio Bernardini

Magnetismo. Fisica x Biologi 2017 Fabio Bernardini Magnetismo Il magnetismo entra nella nostra esperiemza a partire dalla bussola. Si può verificare che lʼorientamento dellʼago della bussola può essere modificato in due modi: avvicinando un magnete alla

Dettagli

Campo magne*co F B. Il verso della forza di deviazione è tale che i vettori F, v, B (in quest ordine) formano una terna destrorsa.

Campo magne*co F B. Il verso della forza di deviazione è tale che i vettori F, v, B (in quest ordine) formano una terna destrorsa. Campo magne*co Il Magne*smo L esistenza di una forza capace di attirare particelle metalliche risale all antica città di Magnesia in Grecia. In quella città ricca di molte miniere di Ferro si osservarono

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II NGEGNERA GESTONALE corso di Fisica Generale Prof. E. Puddu nterazioni di tipo magnetico 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica chiamata

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O Facoltà di Ingegneria Prova scritta di Fisica II - 3 Settembre 003 - Compito A Esercizio n.1 Quattro cariche di uguale valore q, due positive e due negative, sono poste nei vertici di un quadrato di lato

Dettagli

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO Attività didattica FISICA [MFN0598] Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO Corso di studio: INFORMATICA [008707] Docente titolare del corso: MIGLIORE

Dettagli

Fisica Rapid Training. Principi di Kirchhoff e Induzione Elettromagnetica

Fisica Rapid Training. Principi di Kirchhoff e Induzione Elettromagnetica Fisica Rapid Training Principi di Kirchhoff e Induzione Elettromagnetica Introduzione alle Leggi di Kirchhoff Nello schema di un circuito elettrico si possono identificare: Maglie: percorsi chiusi che

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 13/6/2011 - NOME 1) Un gas perfetto monoatomico con n= 2 moli viene utilizzato in una macchina termica

Dettagli

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Circuiti elettrici Per muovere una carica tra due punti ci vuole un campo elettrico, quindi una differenza di potenziale (ddp) Se la carica si muove in un percorso chiuso (circuito) ho bisogno di un congegno

Dettagli

Secondo Parziale Fisica Generale T-B

Secondo Parziale Fisica Generale T-B Secondo Parziale Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli 20/12/2012 Soluzioni Esercizi Ex. 1 Due fasci di particelle, uno composto da nuclei di elio (m He = 6.65

Dettagli

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb ELETTROTECNICA Livello 13 Elettromagnetismo Andrea Ros sdb Livello 13 Elettromagnetismo Sezione 1 Campi magnetici e correnti elettriche Nel 1820 il fisico Oersted scoprì che il passaggio di una corrente

Dettagli

FENOMENI MAGNETICI NATURALI

FENOMENI MAGNETICI NATURALI MAGNETISMO l Il magnetismo è una caratteristica di certi corpi, detti magneti, grazie alla quale essi esercitano una forza a distanza su sostanze come il ferro, attirandole. FENOMENI MAGNETICI NATURALI

Dettagli

Indice. Fenomeni elettrici Introduzione Carica elettrica Legge di Coulomb... 13

Indice. Fenomeni elettrici Introduzione Carica elettrica Legge di Coulomb... 13 Indice Fenomeni elettrici... 11 1.1 Introduzione... 11 1.2 Carica elettrica... 11 1.3 Legge di Coulomb... 13 Campo e potenziale elettrostatico... 15 2.1 Introduzione... 15 2.2 Campo elettrostatico... 15

Dettagli

Fisica 2 per biotecnologie: Prova in itinere 16 Aprile 2012

Fisica 2 per biotecnologie: Prova in itinere 16 Aprile 2012 Fisica per biotecnologie: Prova in itinere 16 Aprile 1 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :... Numero

Dettagli

Programmazione Modulare

Programmazione Modulare Programmazione Modulare 2015-16 Indirizzo: BIENNIO Disciplina: FISICA Ore settimanali previste: 3 (2 ore Teoria 1 ora Laboratorio) Classe: 2A 2B- 2C Prerequisiti per l'accesso alla PARTE C: Unità di misura,

Dettagli

n.: 1 Didattica erogativa lezione esercitazione laboratorio seminario Data: 25/09/2018 Totale ore: 2

n.: 1 Didattica erogativa lezione esercitazione laboratorio seminario Data: 25/09/2018 Totale ore: 2 n.: 1 Didattica erogativa lezione esercitazione laboratorio seminario Data: 25/09/2018 Totale ore: 2 Argomento: Introduzione ai fenomeni elettrici. Triboelettricita', generalita' di conduttori e isolanti.

Dettagli

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2016/2017 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2016/2017 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO ISTITUTO D ISTRUZIONE SUPERIORE Enrico Mattei ISTITUTO TECNICO COMMERCIALE LICEO SCIENTIFICO LICEO dellescienze UMANE Via delle Rimembranze, 26 40068 San Lazzaro di Savena BO Tel. 051 464510 464545 fax

Dettagli

Verifica scritta di Fisica Classe V

Verifica scritta di Fisica Classe V Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 19/01/2019 Verifica scritta di Fisica Classe V Soluzione Risolvi 4 degli 8 quesiti proposti. Ogni quesito vale 25 p.ti. 1. Una sbarra

Dettagli