Amplificatori Integrati

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Amplificatori Integrati"

Transcript

1 Amplificatori Integrati Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)

2 OTA L amplificatore operazionale a transconduttanza è la più semplice realizzazione di un amplificatore operazionale. Ha un solo stadio di amplificazione, l ingresso è differenziale mentre l uscita è single-ended. V IN + M 3 M 4 M 1 M 2 V B M B OTA asimmetrico V OUT V IN - Principio di Funzionamento: una differenza di potenziale in ingresso (v in =v in + -v in- ) può sempre essere vista come una variazione bilanciata di v in /2 in M1 e (-v in /2) in M2. Ma una variazione nella tensione di gate si traduce in una variazione della corrente di drain pari a: i d1 = g m1 v in /2 = g m v in /2 i d2 = -g m2 v in /2 = g m v in /2 (MOS matched) La corrente i d1 viene copiata tramite lo specchio M3- M4 ed iniettata nel nodo di uscita. La corrente di uscita i o risulta quindi: i o = i d1 - i d2 = g m v in 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 2

3 OTA: Considerazioni Il punto di polarizzazione dell OTA è definito dalla corrente di polarizzazione I B che scorre in MB. In assenza di segnale differenziale di ingresso (v in+ =v in- ) in ognuno dei due MOS (M1 e M2) scorre una corrente pari a I B /2. Tale valore di corrente di polarizzazione determina il punto di lavoro del circuito e quindi i parametri del modello a piccoli segnali di M1, M2, M3, M4 (quindi tutte le g m e le r ds ). Al presentarsi di un segnale di ingresso l equilibrio si sbilancia e la corrente di polarizzazione si ripartisce in maniera differente in M1 e M2. Al limite (saturazione dell amplificatore) la differenza di potenziale in ingresso è tale che tutta la corrente I B scorre in uno solo dei due rami del circuito. Non è comunque mai possibile che nei transistor del circuito scorra una corrente superiore a I B. Il comportamento in frequenza è determinato dal polo dominante introdotto dal nodo di uscita Vo (elevata resistenza ed elevata capacità), il secondo polo è introdotto dal nodo A di ingresso dello specchio (M3) visto che, pur essendo bassa la resistenza (1/g m3 ) è elevata la capacità (capacità di gate di M3 e M4), il terzo polo (introdotto dal nodo X) è trascurabile perché corrisponde a resistenza (1/g m1 // 1/g m2 ) e capacità molto piccole. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 3

4 OTA: Resistenza di Uscita La corrente di uscita scorre poi nella resistenza di uscita dell OTA e dà luogo ad una tensione: V out = i o R out = g m R out v in Il guadagno è dunque pari a: A v =g m R out = g m (r ds2 //r ds4 ) Il calcolo della resistenza di uscita può essere fatto dal modello a piccoli segnali in Figura (per M1 e M2 si usa il modello a T anzi che quello a ). E comunque intuitivo comprendere che la resistenza di uscita complessiva approssimata sarà pari al parallelo della r ds4 e r ds2. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 4

5 OTA simmetrico L OTA asimmetrico viene raramente usato come amplificatore operazionale, in genere rappresenta lo stadio di ingresso differenziale di un amplificatore a più stadi. In alcune situazioni, però, è plausibile pensare di avere un solo stadio di amplificazione, in tale caso si usa la versione simmetrica dell OTA, che ha un maggiore range di uscita e un minore offset sistematico di ingresso (grazie alla simmetria). In questo caso i d1 viene copiata da M3-M4, poi tramite M5-M6 sottratta dalla copia (M7-M8) di i d2. Il guadagno è dunque pari a: M 4 V IN - M 3 M 7 M 1 M 2 A v =g m R out = g m (r ds6 //r ds8 ) M 5 M 6 V IN + M 8 V OUT V B M B 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 5

6 Amplificatore Due Stadi In generale, per raggiungere livelli di guadagno elevati, sarà necessario mettere in cascata due stadi di amplificazione. Lo schema più classico di amplificatore a due stadi (detto anche di Miller) è mostrato in Figura. Il numero di stadi coincide col numero di stadi di amplificazione, il terzo blocco in questo caso ha guadagno unitario e serve solo come buffer di uscita per pilotare carichi resistivi. Nel caso di carichi puramente capacitivi può essere omesso. C C + V IN A 1 A 2 A 3 =1 V OUT - 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 6

7 Due Stadi: Implementazione CMOS 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 7

8 Due Stadi: Guadagno in Continua In continua il guadagno è dato dal prodotto dei guadagni dei tre blocchi (due soli dei quali di amplificazione). A v = A v1 A v2 A v3 Il primo stadio è uno stadio differenziale (OTA asimmetrico) il cui carico ha resistenza infinita (il gate di Q7) quindi rimane solo il carico intrinseco: A v1 = g m1 (r ds2 // r ds4 ) Il secondo stadio è uno stadio a source comune, che ha come carico ancora una resistenza infinita (gate di Q8) quindi rimane solo il carico intrinseco: A v2 = -g m7 (r ds7 // r ds6 ) Il terzo stadio è un inseguitore di source, quindi il guadagno è: A v3 = g m8 /(G L +g m8 +g ds8 +g ds9 ) Questo se Q8 è in una nwell separata con source e body cortocircuitati, altrimenti al denominatore di A v3 comparirà anche g s8. Il termine G L rappresenta ovviamente il carico finale. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 8

9 Comportamento in Frequenza L amplificatore a due stadi viene anche detto di Miller per via della presenza della capacità C c (capacità di compensazione) in controreazione sul secondo stadio. Tale capacità è soggetta ad effetto Miller (proprio perché fra i suoi nodi c è il guadagno A2) e diventa quindi la capacità dominante del circuito (per frequenze intermedie). La frequenza a guadagno unitario può quindi essere calcolata tenendo conto della sola C c. In questa fase si può trascurare Q16 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 9

10 Frequenza a Guadagno Unitario Se trascuriamo tutte le capacità eccetto C c e ci riduciamo quindi alla Figura del lucido precedente cambierà solo il guadagno A v1, poiché il primo stadio (OTA) vedrà come carico non più una resistenza infinita ma l impedenza (finita) introdotta dalla capacità C c riportata in ingresso tramite il teorema di Miller: Il guadagno A v1 diventa quindi: C eq = C c (1+A 2 ) C c A 2 A v1 = g m1 (r ds2 // r ds4 // (1/ sc eq ) ) A frequenze intermedie C eq domina quindi: A v1 = ( g m1 / sc eq ) = ( g m1 / sc C A 2 ) Il guadagno totale quindi è dato dal prodotto dei 3 blocchi (gli ultimi due rimangono immutati, inoltre il guadagno del source follower può essere considerato unitario): A v = A 1 A 2 A 3 (g m1 / sc c A 2 ) A 2 = g m1 / sc c La frequenza a guadagno unitario dunque è: t a = g m1 /C c 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 10

11 Due Stadi: Slew Rate Lo Slew-Rate è il massimo gradiente che può assumere l uscita in presenza di variazioni brusche (idealmente infinite) dell ingresso. Questa limitazione nasce dal fatto che la massima corrente che il primo stadio può fornire al secondo coincide con la corrente di polarizzazione (I B ). Quando l ingresso ha delle variazioni brusche ed ampie, l intera corrente di polarizzazione scorre in uno dei due MOS di ingresso (Q1 o Q2) e tale corrente è l unica disponibile per scaricare (o caricare) la capacità di compensazione C c. Si ricava quindi che: SR dv dt out MAX I C 2I 2 D5 D1 C C C I D1 ta g m1 V eff 1 ta 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 11

12 Due Stadi: Analisi in Frequenza Per la compensazione dell amplificatore è necessario conoscerne i poli (il polo dominante ed il primo non dominante). L ipotesi di partenza è che i nodi che introducono i poli di interesse sono quello di ingresso al secondo stadio (dove compare la capacità di Cc moltiplicata dall effetto Miller) ed il nodo di uscita del secondo stadio (dove compare un elevata resistenza). Il terzo stadio può essere omesso dall analisi. Modellando il primo stadio (OTA) come un generatore di corrente controllato in corrente con opportuna resistenza di uscita il modello a piccoli segnali dei primi due stadi risulta: 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 12

13 Due Stadi: Analisi in Frequenza I parametri del modello sono: R 1 = r ds4 // r ds2 R 2 = r ds6 // r ds7 R C = r ds16 C 1 = C db2 + C db4 + C gs7 C 2 = C db7 + C db6 + C L2 Dove C L2 rappresenta la capacità di carico del secondo stadio. Se il buffer d uscita NON è presente C L2 coincide con il carico dell amplificatore. Se il buffer d uscita c è C 1 conterrà anche il contributo di C gs9. Q16 è in triodo. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 13

14 Due Stadi: Analisi in Frequenza L analisi del modello equivalente parte dalla premessa che ci siano due soli poli dominanti ( P 1 e P 2 ) supponendo che non sia presente R C. Successivamente verrà introdotta la R C per vederne l effetto. Risolvendo il circuito si ottiene: Dove: V V out in g m1 g m 7 1 R R 1 sa 2 (1 s 2 b sc g C m 7 a=(c 2 +C C )R 2 +(C 1 +C C )R 1 +g m7 R 1 R 2 C C b=r 1 R 2 (C 1 C 2 +C 1 C C +C 2 C C ) Il guadagno in continua è quello atteso, è presente uno zero e si possono calcolare i due poli. ) 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 14

15 Due Stadi: Analisi in Frequenza I poli e lo zero si ricavano confrontando l equazione ottenuta con quella generica: A( s) s (1 ) Z s s (1 )(1 P1 P 2 Si ricava (approssimando e considerando g m7 R 2 >> 1, C C >> C 1,C 2 ): P 1 1/(g m7 R 1 R 2 C C ) P 2 g m7 /(C 1 +C 2 ) Z = -g m7 /C C All aumentare di g m7 dunque, i due poli si separano (pole-splitting) ed aumenta la stabilità. La presenza dello zero, però, complica le cose (introduce sfasamenti negativi). ) 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 15

16 Due Stadi: Lead Compensation L introduzione della resistenza R C non ha quasi effetto sul valore dei poli ma cambia il valore dello zero (che può facilmente essere calcolato imponendo V out =0 e trovando il valore dell ammettenza Y C = (1/R C ) + sc C per cui la corrente in Y C è uguale a g m7 v 1 ): Z = -1 / ( C C (1/g m7 R C )) Si può allora usare il valore di R C per migliorare la stabilità. Si può scegliere di cancellare lo zero (R C = 1/g m7 ) e questa è in genere la tecnica più utilizzata. Altrimenti si può scegliere di usare la resistenza di compensazione per spostare lo zero vicino alla frequenza di guadagno unitario (supponendo R C >> 1/g m7 ): Z = 1.2 t a = 1.2 g m1 / C C R C = 1 / (1.2 g m1 ) In questo modo si ottimizza il comportamento dell amplificatore, aumentando di circa 30 il margine di fase 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 16

17 Due Stadi: Polarizzazione Tutti i parametri del amplificatore sono proporzionali o inversamente proporzionali e delle transconduttanze (g m1, g m7, g m16 ). In particolare: t a = g m1 /C c P 2 g m7 /(C 1 +C 2 ) Z = -1 / ( C C (1/g m7 R C )) Poiché il valore esatto delle transconduttanze può variare a causa delle fluttuazioni statistiche dei parametri di processo ed alla variazione della temperatura si desidera che i parametri fondamentali dell amplificatore dipendano da rapporti di tali transconduttanze e siano cioè insensibili a variazioni dei parametri di processo (a patto che i transistor siano matchati). Se ad esempio g m1 fosse più alta di quanto atteso anche g m7 dovrebbe scalare di conseguenza in modo che la separazione fra i poli restasse costante. Analogamente per R C che dovrebbe seguire le eventuali variazioni di g m7 per rendere la lead-compensation indipendente dal processo. Bisogna, quindi, che tutte le transconduttanze siano ricavate da una stessa rete di polarizzazione e siano tra loro proporzionali solo attraverso fattori geometrici. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 17

18 Transistor di Compensazione Ricordando (dove S=W/L): Veff 2I C D OX S Va=Vb se: S 6 / S 7 = S 11 / S 13 In tale condizione sarà: V eff12 =V eff16 Allora il prodotto g m7 R C diviene: g m7 R C S S 7 16 S S In tale modo la compensazione dipende solo da parametri geometrici. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 18

19 Due Stadi: Offset Sistematico Per minimizzare l offset sistematico del circuito è necessario che, con V in =0, I D7 =I D6 (con Q7 in saturazione). V GS7 =V eff7 +V tn Per simmetria deve essere V GS7 =V DS4 =V GS3 =V eff3 +V tn Quindi: V eff7 =V eff3 Ossia: S 7 / S 3 =2 S 6 / S 5 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 19

20 Due Stadi: Circuito di Polarizzazione S S Il circuito di polarizzazione è fatto in modo che tutte le transconduttanze siano inversamente proporzionali ad un unico parametro (la resistenza R B ) che può essere esterno al chip ma che è l UNICO elemento di riferimento esterno. Tutti gli altri parametri dipendono da R B attraverso rapporti geometrici e NON di processo (tranne l inevitabile rapporto fra le mobilità de elettroni e lacune). g 21 R 15 m13 i Di p i Di g g mi m13 g g mi m13 13 I I D13 NMOS 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 20 B S S n 13 S S 13 I I 1 R B D13 PMOS

21 Amplificatori a Guadagno Elevato Come è possibile aumentare il guadagno del amplificatore? Dalle equazioni si ricava che il guadagno in continua dipende dal prodotto delle transconduttanze e le resistenze di uscita dei due stadi. A parità di consumo di potenza (quindi di corrente di polarizzazione) si può allora agire sulla W dei transistor di guadagno (per aumentare la S=W/L senza diminuire la resistenza di uscita) oppure aumentare la resistenza di uscita (e quindi aumentare la L). Queste variazioni di geometria hanno ovviamente un limite nell area del dispositivo che non può aumentare in modo eccessivo. Bisogna dunque utilizzare le configurazioni di specchi cascode per aumentare la resistenza di uscita ed il guadagno (ma se lo specchio è cascode anche lo stadio di amplificazione deve avere una configurazione cascode, altrimenti la sua r ds in parallelo alla resistenza dello specchio vanificherebbe l aumento della resistenza di uscita). 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 21

22 Amplificatore Folded-Cascode L amplificatore folded-cascode utilizza i concetti visti finora per realizzare un amplificatore ad elevato gudagno con un solo stadio di amplificazione. Essendo spesso il carico di tipo puramente capacitivo sarà possibile omettere anche lo stadio di uscita. In un folded-cascode la resistenza di uscita intriseca dell amplificatore (quella che genera il guadagno) è data dalla tipica resistenza di uno stadio cascode. Gli specchi sono però wide-swing in modo da ridurre lo swing di tensione e funzionare quindi a bassi livelli di tensione di alimentazione. Lo stadio di ingresso (la coppia differenziale), inoltre, presenta una struttura a cascode ripiegato (folded) che dà appunto il nome al circuito. Essendoci un solo stadio di amplificazione la compensazione non avverrà per mezzo della capacità di Miller ma per mezzo della stessa capacità di carico. Il nodo che introduce il polo dominante sarà quello di uscita (resistenza e capacità elevate), mentre gli altri nodi vedono fondamentalmente solo resistenze dell ordine di 1/g m quindi molto basse e che portano poli a notevole distanza dal polo dominante. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 22

23 Folded-Cascode: Schematico 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 23

24 Folded-Cascode: Funzionamento I transistor Q1 e Q2 sono la coppia differenziale di ingresso. Q3 eq4 sono specchi che portano la corrente di polarizzazione (i dettagli della polarizzazione sono semplificati, ragionevolmente anche questi saranno specchi cascode wide-swing). Q12 e Q13 sono normalmente spenti e si accendono solo in condizioni di slewrate (vedremo) per fare uscire più velocemente l amplificatore da tale condizione. Q5 e Q6 rappresentano il folded cascode, vi scorre la differenza fra la corrente di segnale i 1 (o i 2 ) e la corrente di polarizzazione. Q7, Q8, Q9, Q10 rappresentano lo specchio cascode wide-swing che fa la differenza fra le correnti di segnali i 1 e i 2. Tale differenza di correnti scorre poi nell impedenza di uscita data dal parallelo fra la resistenza di uscita cascode ed il carico capacitivo. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 24

25 Amplificatore Folded-Cascode: Analisi Lo stadio differenziale di ingresso genera due correnti di segnale: i 1 = g m1 v in /2 i 2 = - g m2 v in /2 La differenza fra i 1 e i 2 (generata da Q7, Q8, Q9, Q10) scorre nella impedenza di uscita: La funzione di trasferimento è dunque: Z L =R out // (1/sC L ) A V (s)=g m1 r out /(1+sr out C L ) Il polo dominante è: P1 = 1/(r out C L ) Frequenza di guadagno unitario: t = g m1 /C L Aggiungendo in serie a C L una resistenza R C si possono ulteriormente migliorare le prestazioni (come per il due stadi) introducendo uno zero ad una frequenza pari a 1.2 t 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 25

26 Folded-Cascode: Considerazioni Massimizzando la transconduttanza dei transistor di ingresso si ottengono due vantaggi: si aumenta la banda dell amplificatore anche il guadagno. Infatti, tale massimizzazione la si ottiene usando transistor n per lo stadio di ingresso e rendendo la corrente di polarizzazione di Q1 e Q2 molto più grande (per un dato consumo di potenza) di quella di Q5 e Q6. Questo rende più grande g m1 ma anche più grande r out (diminuisce la corrente di polarizzazione dello specchio wide-swing di uscita). Da notare che il rapporto fra le polarizzazioni di Q1 e Q5 non può essere troppo grande (maggiore di 4) perché tali correnti sono ottenute per differenza e cercare un rapporto troppo alto potrebbe rendere imprecisa la corrente in Q5 (errori nella differenza delle correnti se I bias1 e I bias2 sono troppo simili). 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 26

27 Folded-Cascode: Slew-Rate I transistor Q12 e Q13 servono perché l amplificatore esca più velocemente da condizioni di slew-rate. In loro assenza, infatti, in condizioni di slew-rate, se Q1 conduce molto più di Q2 (che si interdice) tutta la corrente I bias1 scorrerà in Q5 ed attraverso lo specchio andrà a scaricare la CL con uno slew-rate pari a: S R =I D4 /C L Poiché tutta I bias2 scorre in Q1, ed essendo tale corrente più grande di I bias1, Q3 non riuscirà a fornire tutta la corrente necessaria a Q1 che deve quindi andare in triodo (e fare andare in triodo anche lo specchio che genera I bias2 ) quindi la tensione sul drain di Q1 si abbasserà notevolmente dalle condizioni normali. Quando scompare la condizione che genera lo slew-rate il drain di Q1 dovrà salire notevolmente per fare tornare l amplificatore in condizioni di normale polarizzazione. Con la presenza di Q12 e Q13, invece, tali tensioni di drain rimangono agganciate verso l alimentazione grazie a Q12 e Q13 connessi a diodo. La presenza di tali MOS, inoltre, fa aumentare la I bias1 (in slew-rate) rendendo ulteriormente più veloce il dispositivo. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 27

28 Amplificatore a Specchi di Corrente Nella stessa filosofia del folded-cascode si collocano anche gli amplificatori a specchi di corrente: 1. Un solo stadio di amplificazione. 2. Tutto il guadagno ottenuto aumentando la resistenza di uscita. 3. Un solo polo dominante introdotto dal nodo di uscita. 4. Compensazione tramite il carico. Il principio di funzionamento è simile: le due correnti di segnale vengono copiate tramite specchi, sottratte fra loro e la corrente risultante scorre nell impedenza di uscita: Z L =R out // (1/sC L ) Simbolo sintetico di uno specchio NMOS con guadagno K Simbolo sintetico di uno specchio PMOS con guadagno K 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 28

29 Amplificatore a Specchi di Corrente Lo schema circuitale più generale è mostrato in Figura. Ai simboli degli specchi con guadagno K può essere sostituito una fra gli specchi ad alte prestazioni visti precedentemente. Funzione di trasferimento: A V (s)=(k g m1 r out )/(1+sr out C L ) Slew-Rate: S R =KI B /C L Frequenza guadagno unitario: t = (Kg m1 )/C L 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 29

30 Esempio: Specchi Wide-Swing Esempio: amplificatore a specchi di corrente basato sullo specchio cascode wide-swing. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 30

31 Esempio: Blocco di polarizzazione 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 31

32 Amplificatore Fully-Differential Un amplificatore fully-differential è un amplificatore con ingresso differenziale (come quelli visti finora) ed uscita differenziale (a differenza di quelli visti finora). Può facilmente essere ottenuto da uno schema di amplificatore operazionale con uscita single-ended semplicemente facendo scorrere le due correnti di segnale i 1 e i 2 su due resistenze di uscite senza farne prima la differenza. I fully-differential sono molto utili perché prendendo il segnale in modo differenziale si elimina tutto il rumore di modo comune e tutti i disturbi che si presentano contemporaneamente (nello stesso modo) sui due percorsi del segnale. Poiché il segnale d uscita è differenziale è fondamentale controllare il modo comune di uscita che deve essere imposto per evitare che l operazionale saturi. Per questo si usa un blocco chiamato CMFB (Common Mode FeedBack) che ha il compito di generare una retroazione che si opponga ad eventuali derive del modo comune. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 32

33 Fully-Differential Folded-Cascode Amplificatore fullydifferentail realizzato a partire da un amplificatore foldedcascode. La corrente di polarizzazione dello stadio di uscita è controllata dal CMFB. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 33

34 Fully-Differential a Specchi di Corrente Amplificatore fullydifferentail realizzato a partire da un amplificatore a specchi di corrente generico. La corrente di polarizzazione dello stadio di uscita è controllata dal CMFB. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 34

35 F-D: Realizzazione del CMFB Possibile implementazione del CMFB (Common Mode Feedback) All aumentare del Modo Comune le correnti in Q2 e Q4 aumentano (contemporaneamente), aumenta quindi la corrente di polarizzazione I B che tende a fare diminuire il modo comune e riportarlo al punto di equilibrio. Se V out+ e V out- variano invece in modo differenziale le due variazioni (opposte) si annullano e I B resta costante. 1 Novembre 2012 CI - Amplificatori Integrati Massimo Barbaro 35

Amplificatori Integrati

Amplificatori Integrati Amplificatori Integrati Lucidi del Corso di Microelettronica Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB OTA L amplificatore operazionale

Dettagli

Amplificatori Integrati

Amplificatori Integrati Amplificatori Integrati Lucidi del Corso di Microelettronica Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) OTA L amplificatore operazionale

Dettagli

Progettazione Analogica e Blocchi Base

Progettazione Analogica e Blocchi Base Progettazione Analogica e Blocchi Base Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Blocchi base

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplificatori operazionali Parte 3 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 6--) Integratore Dato che l ingresso invertente è virtualmente a massa si ha vi ( t) ir ( t) R Inoltre i

Dettagli

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min)

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min) 14 Giugno 2006 M3 M4 M2 M1 R Nel circuito in figura determinare: 1) trascurando l effetto di modulazione della lunghezza di canale, il legame tra la corrente che scorre nella resistenza R e i parametri

Dettagli

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005 Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento

Dettagli

Coppia differenziale MOS con carico passivo

Coppia differenziale MOS con carico passivo Coppia differenziale MOS con carico passivo tensione differenziale v ID =v G1 v G2 e di modo comune v CM = v G1+v G2 2 G. Martines 1 Coppia differenziale MOS con carico passivo Funzionamento con segnale

Dettagli

Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39

Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39 Indice generale Prefazione xi Capitolo 1. Richiami di analisi dei circuiti 1 1.1. Bipoli lineari 1 1.1.1. Bipoli lineari passivi 2 1.1.2. Bipoli lineari attivi 5 1.2. Metodi di risoluzione delle reti 6

Dettagli

Stadi Amplificatori di Base

Stadi Amplificatori di Base Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

= A v1 A v2 R o1 + R i2 A v A v1 A v2. se R i2 R o1

= A v1 A v2 R o1 + R i2 A v A v1 A v2. se R i2 R o1 Amplificatori a due stadi STADIO 1 STADIO 2 R s R o1 R o2 v s + _ vi1 R i1 + A v1 v i1 _ v i2 R i2 + Av2vi2 _ vo2 RL A v v o2 v i1 = A v1 A v2 R i2 R o1 + R i2 A v A v1 A v2 se R i2 R o1 A.Nigro Laboratorio

Dettagli

Microelettronica Indice generale

Microelettronica Indice generale Microelettronica Indice generale Prefazione Rigraziamenti dell Editore Guida alla lettura Parte I Elettronica dello stato solido e dispositivi XV XVII XVIII Capitolo 1 Introduzione all elettronica 1 1.1

Dettagli

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Amplificatori elementari con carico attivo MOSFET E connesso a diodo

Amplificatori elementari con carico attivo MOSFET E connesso a diodo Amplificatori elementari con carico attio MOSFET E connesso a diodo i ( ) = K g = µ C W L I V t m n OX G. Martines MOSFET DE connesso a diodo GS = 0, il transistore può funzionare in regione di triodo

Dettagli

Struttura del condensatore MOS

Struttura del condensatore MOS Struttura del condensatore MOS Primo elettrodo - Gate: realizzato con materiali a bassa resistività come metallo o silicio policristallino Secondo elettrodo - Substrato o Body: semiconduttore di tipo n

Dettagli

Michele Scarpiniti. L'Amplificatore Operazionale

Michele Scarpiniti. L'Amplificatore Operazionale Michele Scarpiniti L'Amplificatore Operazionale MICHELE SCARPINITI L Amplificatore Operazionale Versione 1.0 Dipartimento DIET Università di Roma La Sapienza via Eudossiana 18, 00184 Roma L AMPLIFICATORE

Dettagli

Circuiti per l Elaborazione del Segnale: Capacità Commutate

Circuiti per l Elaborazione del Segnale: Capacità Commutate Circuiti per l Elaborazione del Segnale: Capacità Commutate Lucidi del Corso di Microelettronica Parte 6 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica

Dettagli

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Elettronica dei Sistemi Digitali Le porte logiche CMOS

Elettronica dei Sistemi Digitali Le porte logiche CMOS Elettronica dei Sistemi Digitali Le porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Corso di Circuiti Integrati Anno Accademico 2012/2013. Esercitazione 6 Progetto di un amplificatore a Due Stadi (di Miller) in tecnologia CMOS 0.

Corso di Circuiti Integrati Anno Accademico 2012/2013. Esercitazione 6 Progetto di un amplificatore a Due Stadi (di Miller) in tecnologia CMOS 0. Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica Corso di Circuiti Integrati Anno Accademico 2012/2013 Esercitazione 6 Progetto di un amplificatore

Dettagli

MOSFET o semplicemente MOS

MOSFET o semplicemente MOS MOSFET o semplicemente MOS Sono dei transistor e come tali si possono usare come dispositivi amplificatori e come interruttori (switch), proprio come i BJT. Rispetto ai BJT hanno però i seguenti vantaggi:

Dettagli

Elettronica Amplificatore operazionale ideale; retroazione; stabilità

Elettronica Amplificatore operazionale ideale; retroazione; stabilità Elettronica Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Amplificatore operazionale

Dettagli

FILTRI in lavorazione. 1

FILTRI in lavorazione. 1 FILTRI 1 in lavorazione. Introduzione Cosa sono i filtri? C o II filtri sono dei quadripoli particolari, che presentano attenuazione differenziata in funzione della frequenza del segnale applicato in ingresso.

Dettagli

Convertitori Digitale-Analogico

Convertitori Digitale-Analogico Convertitori Digitale-Analogico Lucidi del Corso di Microelettronica Parte 7 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Convertitori D/A

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO www.polimi.it ELETTRONICA per ingegneria BIOMEDICA prof. Alberto TOSI Sommario Transistore MOSFET Struttura Equazioni caratteristiche Curve caratteristiche Funzionamento come amplificatore

Dettagli

Dispositivi e Tecnologie Elettroniche. Stadi Amplificatori MOSFET

Dispositivi e Tecnologie Elettroniche. Stadi Amplificatori MOSFET Dispositivi e Tecnologie Elettroniche Stadi Amplificatori MOSFET Esercizio 1: si consideri il seguente circuito per la polarizzazione del MOSFET: VDD=15 V R2=560K RD=2.2 K G R1=180K D B VTn=1.5V Βn=20mA/V^2

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

{ v c 0 =A B. v c. t =B

{ v c 0 =A B. v c. t =B Circuiti RLC v c t=ae t / B con τ=rc e { v c0=ab v c t =B Diodo La corrente che attraversa un diodo quando questo è attivo è i=i s e v /nv T n ha un valore tra e. Dipende dalla struttura fisica del diodo.

Dettagli

Indice generale. Elettronica dello stato solido e dispositivi. Capitolo 1 Introduzione all elettronica 1

Indice generale. Elettronica dello stato solido e dispositivi. Capitolo 1 Introduzione all elettronica 1 Prefazione Autori e Curatori Rigraziamenti dell Editore Guida alla lettura Parte I Elettronica dello stato solido e dispositivi XII XV XVI XVII Capitolo 1 Introduzione all elettronica 1 1.1 Breve storia

Dettagli

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590 CIRCUITO DI CONDIZIONAMENTO PER IL ASDUTTORE DI TEMPERATURA AD590 Gruppo n 5 Urbini Andrea Marconi Simone Classe 5C 2001/2002 SPECIFICHE DEL PROGETTO: realizzare un circuito in grado di trasformare una

Dettagli

Elettronica digitale

Elettronica digitale Elettronica digitale Porte logiche a rapporto e a pass transistor Andrea Bevilacqua UNIVERSITÀ DI PADOVA a.a 2008/09 Elettronica digitale p. 1/22 Introduzione In questa lezione analizzeremo modalità di

Dettagli

Indice. Cap. 1 Il progetto dei sistemi elettronici pag. 1

Indice. Cap. 1 Il progetto dei sistemi elettronici pag. 1 Indice Cap. 1 Il progetto dei sistemi elettronici pag. 1 1.1 Oggetto dello studio 1 1.2 Concezione, progetto e produzione del sistema elettronico 5 1.3 Il circuito di interfaccia di ingresso 13 1.4 Il

Dettagli

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1)

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1) Capitolo 3 Amplificazione 3.1 Circuiti attivi Gli elementi circuitali considerati sino ad ora, sia lineari (resistenze, capacità, induttanze e generatori indipendenti), sia non lineari (diodi), sono detti

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

Porte logiche in tecnologia CMOS

Porte logiche in tecnologia CMOS Porte logiche in tecnologia CMOS Transistore MOS = sovrapposizione di strati di materiale con proprietà elettriche diverse tra loro (conduttore, isolante, semiconduttore) organizzati in strutture particolari.

Dettagli

Schemi e caratteristiche dei principali amplificatori a BJT

Schemi e caratteristiche dei principali amplificatori a BJT Schemi e caratteristiche dei principali amplificatori a BJT Sommario argomenti trattati Schemi e caratteristiche dei principali amplificatori a BJT... 1 Amplificatore emettitore comune o EC... 1 Amplificatore

Dettagli

Prova scritta Fondamenti di Elettronica B / BC 26 Gennaio 2011 COGNOME: NOME: CORSO DI LAUREA: INGEGNERIA

Prova scritta Fondamenti di Elettronica B / BC 26 Gennaio 2011 COGNOME: NOME: CORSO DI LAUREA: INGEGNERIA Prova scritta Fondamenti di Elettronica B / BC 26 Gennaio 2011 A COGNOME: NOME: CORSO DI LAUREA: INGEGNERIA MATRICOLA: Negli esercizi, ove necessario e salvo indicazioni contrarie, si consideri che i circuiti

Dettagli

L amplificatore operazionale

L amplificatore operazionale L amplificatore operazionale terminali di input terminale di output Alimentazioni: massa nodo comune L amplificatore operazionale ideale Applichiamo 2 tensioni agli input 1 e 2 L amplificatore è sensibile

Dettagli

4.4 Il regolatore di tensione a diodo zener.

4.4 Il regolatore di tensione a diodo zener. 4.4 l regolatore di tensione a diodo zener. n molte applicazioni il valore del fattore di ripple ottenibile con un alimentatore a raddrizzatore e filtro capacitivo non è sufficientemente basso. Per renderlo

Dettagli

Laboratorio di Progettazione Elettronica Esercitazione 1

Laboratorio di Progettazione Elettronica Esercitazione 1 Laboratorio di Progettazione Elettronica Esercitazione 1 Esercizio 1: Progettare un amplificatore operazionale in configurazione invertente come rappresentato in Figura 1. Utilizzare l ampificatore operazionale

Dettagli

Convertitori D/A. Convertitori Digitale-Analogico. D/A: Misura Prestazioni. D/A Ideale. Caratteristica. Lucidi del Corso di Microelettronica Parte 7

Convertitori D/A. Convertitori Digitale-Analogico. D/A: Misura Prestazioni. D/A Ideale. Caratteristica. Lucidi del Corso di Microelettronica Parte 7 Convertitori D/A Un convertitore D/A prende in ingresso un numero digitale (rappresentato da una stringa di 1 e 0) e lo converte in un valore analogico (tipicamente una tensione) proporzionale tramite

Dettagli

CAPITOLO 7 DISPOSITIVI INTEGRATI ANALOGICI

CAPITOLO 7 DISPOSITIVI INTEGRATI ANALOGICI 139 CAPTOLO 7 DSPOSTV NTEGRAT ANALOGC Negli amplificatori la necessità di ottenere elevate impedenze ed elevati guadagni impone spesso l utilizzo di resistenze di valore molto alto; inoltre l accoppiamento

Dettagli

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 5. a.a

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 5. a.a 32586 - ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica Lezione 5 a.a. 2010-2011 Amplificatori Operazionali NON ideali Impedenza di gresso Differenziale e di modo comune Zd Amplificatore Differenziale

Dettagli

Componenti in corrente continua

Componenti in corrente continua Ogni componente reale utilizzato in un circuito è la realizzazione approssimata di un elemento circuitale ideale. Nello studio dei sistemi in cc gli elementi più importanti sono : esistore Generatori campione

Dettagli

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CE: AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CS: G. Martines 1 ANALISI IN CONTINUA Circuito di polarizzazione a quattro resistenze. NOTE: I parametri del modello a piccolo

Dettagli

Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici.

Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici. Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici. Infatti, la struttura del convertitore risulta fortemente influenzata: dal tipo di sorgente primaria di alimentazione;

Dettagli

Esercitazione n 2: Circuiti di polarizzazione (2/2)

Esercitazione n 2: Circuiti di polarizzazione (2/2) Esercitazione n 2: Circuiti di polarizzazione (2/2) 1) Per il circuito di in Fig. 1 dimensionare R in modo tale che la corrente di collettore di Q 1 sia 5 ma. Siano noti: V CC = 15 V; β = 150; Q1 = Q2

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

Comparatori. Circuiti per l Elaborazione del Segnale: Comparatori e Sample&Hold. Comparatori: Eliminazione Offset. Comparatori: Velocità

Comparatori. Circuiti per l Elaborazione del Segnale: Comparatori e Sample&Hold. Comparatori: Eliminazione Offset. Comparatori: Velocità Comparatori Circuiti per l Elaborazione del Segnale: Comparatori e Sample&Hold Lucidi del Corso di Microelettronica Parte 5 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio

Dettagli

Interruttori Digitali

Interruttori Digitali Interruttori Digitali Ing. Ivan Blunno 21 aprile 2005 1 Introduzione In questa dispensa verranno presentati gli interruttori digitali. In particolar modo si parlerà delle possibili realizzazioni mediante

Dettagli

Corso di Metodi di Trattamento del Segnale INTRODUZIONE AGLI AMPLIFICATORI OPERAZIONALI

Corso di Metodi di Trattamento del Segnale INTRODUZIONE AGLI AMPLIFICATORI OPERAZIONALI Corso di Metodi di Trattamento del Segnale INTRODUZIONE AGLI AMPLIFICATORI OPERAZIONALI RETROAZIONE (FEEDBACK) S in + + G S out! S out = G!( S in + "S ) out S out = G 1! "G S G in! = G 1" #G G! = G 1 "

Dettagli

Elettronica Analogica con Applicazioni

Elettronica Analogica con Applicazioni Elettronica Analogica con Applicazioni Docente: Alessandro Trifiletti CFU: 6 E mail: alessandro.trifiletti@diet.uniroma1.it 1) Presentazione del corso, cenni sulle problematiche di progetto a RF, problematiche

Dettagli

Dispositivi e Tecnologie Elettroniche. Il transistore MOS

Dispositivi e Tecnologie Elettroniche. Il transistore MOS Dispositivi e Tecnologie Elettroniche Il transistore MOS Il transistore MOS La struttura MOS a due terminali vista può venire utilizzata per costruire un condensatore integrato È la struttura base del

Dettagli

9.Generatori di tensione

9.Generatori di tensione 9.Generatori di tensione In molte applicazioni analogiche, specialmente per i processi di conversione D/A e A/D, è necessario disporre di tensioni di riferimento precise. Mostriamo alcuni metodi per ottenere

Dettagli

Laboratorio II, modulo Amplificatori operazionali (cfr.

Laboratorio II, modulo Amplificatori operazionali (cfr. Laboratorio II, modulo 2 20152016 Amplificatori operazionali (cfr. http://physics.ucsd.edu/~tmurphy/phys121/phys121.html) Amplificatori operazionali Amplificatori operazionali sono disegnati come triangoli

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

Modello di Ebers-Moll del transistore bipolare a giunzione

Modello di Ebers-Moll del transistore bipolare a giunzione D Modello di Ebers-Moll del transistore bipolare a giunzione Un transistore bipolare è un dispositivo non lineare che può essere modellato facendo ricorso alle caratteristiche non lineari dei diodi. Il

Dettagli

Dispositivi e Tecnologie Elettroniche. Modelli di ampio e piccolo segnale del MOSFET

Dispositivi e Tecnologie Elettroniche. Modelli di ampio e piccolo segnale del MOSFET Dispositivi e Tecnologie Elettroniche Modelli di ampio e piccolo segnale del MOFET Modello di ampio segnale Le regioni di funzionamento per ampio segnale sono: interdizione quadratica saturazione I D =

Dettagli

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT Interruttori allo stato solido 1 Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: con MOS con BJT Velocità di commutazione MOS Velocità di commutazione BJT 2 2003 Politecnico

Dettagli

6. Generatori di corrente controllati

6. Generatori di corrente controllati 6. Generatori di corrente controllati 6.1 Generatori con un solo operazionale In molte applicazioni è utile poter disporre di generatori di corrente controllati in tensione. Un modo semplice, ad esempio,

Dettagli

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). a figura 1 mostra la sezione di una porzione di fetta di silicio in corrispondenza di un dispositio MOSFET a canale n. In condizioni di funzionamento

Dettagli

IL MOSFET.

IL MOSFET. IL MOSFET Il MOSFET è certamente il più comune transistor a effetto di campo sia nei circuiti digitali che in quelli analogici. Il MOSFET è composto da un substrato di materiale semiconduttore di tipo

Dettagli

Le configurazioni della reazione

Le configurazioni della reazione Capitolo 2 Le configurazioni della reazione Nel capitolo precedente si è visto che la reazione ha effetto diametralmente opposto tra l amplificatore non invertente (par. 9.5) e quello invertente (par.

Dettagli

Effetti della reazione sui parametri

Effetti della reazione sui parametri Effetti della reazione sui parametri Analizziamo come la reazione interviene sui parametri dello amplificatore complessivo, se questo è realizzato con un Amplificatore Operazionale reazionato. A d R 1

Dettagli

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Logica cablata (wired logic)

Logica cablata (wired logic) Logica cablata (wired logic) Cosa succede quando si collegano in parallelo le uscite di più porte appartenenti alla stessa famiglia logica? Si realizza una ulteriore funzione logica tra le uscite Le porte

Dettagli

Introduzione e richiami Simulatore PSPICE Tipi di amplificatori e loro parametri. Amplificatori Operazionali e reazione negativa

Introduzione e richiami Simulatore PSPICE Tipi di amplificatori e loro parametri. Amplificatori Operazionali e reazione negativa Amplificatori e doppi bipoli Amplificatori e doppi bipoli ntroduzione e richiami Simulatore PSPCE Tipi di amplificatori e loro parametri Amplificatori AC e differenziali Amplificatori Operazionali reali

Dettagli

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009 Esame del 19 febbraio 2009 Nel circuito di figura Is è un generatore di corrente con l andamento temporale riportato nel grafico. Determinare l'evoluzione temporale della V out e disegnarne il grafico

Dettagli

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona Corso di laurea in Informatica Regolatori Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Scelta delle specifiche 1. Picco di risonanza e massima sovraelongazione

Dettagli

Segnale: Comparatori e Sample&Hold

Segnale: Comparatori e Sample&Hold Circuiti per l Elaborazione del Segnale: Comparatori e Sample&Hold Lucidi del Corso di Microelettronica Parte 5 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di

Dettagli

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013 I.T.I.. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 03/4 OGNOME E NOME Data: 7//03 Quesito ) (50%) Dato il circuito qui a fianco che rappresenta un oscillatore sinusoidale a ponte

Dettagli

Elettronica I Porte logiche CMOS

Elettronica I Porte logiche CMOS Elettronica I Porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/ liberali Elettronica

Dettagli

Emettitore Comune AC: EC AC (1) C BC. V b C BE

Emettitore Comune AC: EC AC (1) C BC. V b C BE mettitore omune A: A () mercoledì 8 giugno 206 Nel considerare il modello completo del transistore occorre aggiungere le 2 capacità tra B ed e tra B e. Questo complica parecchio i conti, per cui conviene

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO

ISTITUTO TECNICO INDUSTRIALE STATALE G. MARCONI Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : iti@marconipontedera.it - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO

Dettagli

ELETTRONICA CdS Ingegneria Biomedica

ELETTRONICA CdS Ingegneria Biomedica ELEONICA CdS Ingegneria Biomedica LEZIONE A.03 Circuiti a diodi: configurazioni, analisi, dimensionamento addrizzatori a semplice e doppia semionda addrizzatori a filtro (L, C e LC) Moltiplicatori di tensione

Dettagli

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (5.1)

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (5.1) Capitolo 5 Amplificazione 5.1 Circuiti attivi Gli elementi circuitali considerati sino ad ora, sia lineari (resistenze, capacità, induttanze e generatori indipendenti), sia non lineari (diodi), sono detti

Dettagli

Capitolo VI. Risposta in frequenza

Capitolo VI. Risposta in frequenza Capitolo VI Risposta in frequenza Nel capitolo I è stata brevemente introdotta la risposta in frequenza di un amplificatore (o, meglio, di reti a singola costante di tempo). Si è anche accennato all effetto

Dettagli

Amplificatore Operazionale in Classe AB con rete di compensazione RC

Amplificatore Operazionale in Classe AB con rete di compensazione RC Amplificatore Operazionale in Classe AB con rete di compensazione RC BONFIGIO Fabio, matr. O53/000052 CASTIGIONE Angelo, matr. O53/000062 MESSINA Sergio, matr. O53/000072 Indice Introduzione iii 1 Il Circuito

Dettagli

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 2009 Amplificatore operazionale perché? Moltiplicazione

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO www.polimi.it ELETTRONICA per ingegneria BIOMEDICA prof. Alberto TOSI Sommario Caratteristiche degli OpAmp OpAmp ideali e Retroazione Offset di tensione e di corrente Alimentazione

Dettagli

CIRCUITERIA DELLA POMPA MAGNETOIDRODINAMICA

CIRCUITERIA DELLA POMPA MAGNETOIDRODINAMICA CIRCUITERIA DELLA POMPA MAGNETOIDRODINAMICA 9.1 Introduzione Nel capitolo precedente, è stato affrontato il progetto dei componenti meccanici della pompa MHD; a questi va ovviamente integrata tutta la

Dettagli

Indice. I Dispositivi a semiconduttore 1. Prefazione. Prologo. Breve storia dell elettronica

Indice. I Dispositivi a semiconduttore 1. Prefazione. Prologo. Breve storia dell elettronica Indice Prefazione Prologo. Breve storia dell elettronica XI XIII I Dispositivi a semiconduttore 1 1 Semiconduttori 3 1.1 Forze, campi ed energia 3 1.2 Conduzione nei metalli 6 1.3 Semiconduttori intrinseci

Dettagli

Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI

Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI Un filtro passivo in elettronica ha il compito di elaborare un determinato segnale in ingresso. Ad esempio una sua funzione può

Dettagli

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica Macro unità n 1 Classe IV specializzazione elettronica Elettrotecnica ed elettronica Reti elettriche, segnali e diodi Leggi fondamentali: legge di Ohm, principi di Kirchhoff, teorema della sovrapposizione

Dettagli

Studio e Simulazione di un Amplificatore Operazionale CMOS di Miller a Basso Consumo

Studio e Simulazione di un Amplificatore Operazionale CMOS di Miller a Basso Consumo Università degli Studi di Padova Facoltà di Ingegneria Corso di Laurea in Ingegneria Dell Informazione Tesi di Laurea Triennale Studio e Simulazione di un Amplificatore Operazionale CMOS di Miller a Basso

Dettagli

L amplificatore Williamson

L amplificatore Williamson L amplificatore Williamson Nel 1947 l inglese D.T.N. Williamson propose un amplificatore audio che è da molti considerato il primo amplificatore ad alta fedeltà. Pur essendo realizzato con tubi elettronici,

Dettagli

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi Esperimentazioni di Fisica 3 Appunti sugli. Amplificatori Differenziali M De Vincenzi 1 Introduzione L amplificatore differenziale è un componente elettronico che (idealmente) amplifica la differenza di

Dettagli

Se la Vi è applicata all ingresso invertente si avrà un comparatore invertente con la seguente caratteristica:

Se la Vi è applicata all ingresso invertente si avrà un comparatore invertente con la seguente caratteristica: I comparatori sono dispositivi che consentono di comparare (cioè di confrontare ) due segnali. Di norma uno dei due è una tensione costante di riferimento Vr. Il dispositivo attivo utilizzato per realizzare

Dettagli

MOS Field-Effect Transistors (MOSFETs)

MOS Field-Effect Transistors (MOSFETs) MOS Field-Effect Transistors (MOSFETs) A. Ranieri Laboratorio di Elettronica A.A. 2009-2010 1 Struttura fisica di un transistore NMOS ad accrescimento. Tipicamente L = 0.1 a 3 m, W = 0.2 a 100 m e lo spessore

Dettagli

Generatori di tensione

Generatori di tensione Generatori di tensione Laboratorio di Elettronica B Anno accademico 2007-2008 In molte applicazioni analogiche, specialmente per i processi di conversione D/A e A/D, è necessario disporre di tensioni di

Dettagli

4 Amplificatori operazionali

4 Amplificatori operazionali 4 Amplificatori operazionali 4.1 Amplificatore operazionale: caratteristiche, ideale vs. reale - Di seguito simbolo e circuito equivalente di un amplificatore operazionale. Da notare che l amplificatore

Dettagli

Capitolo IX. Convertitori di dati

Capitolo IX. Convertitori di dati Capitolo IX Convertitori di dati 9.1 Introduzione I convertitori di dati sono circuiti analogici integrati di grande importanza. L elaborazione digitale dei segnali è alternativa a quella analogica e presenta

Dettagli

Transistore bipolare a giunzione (BJT)

Transistore bipolare a giunzione (BJT) ransistore bipolare a giunzione (J) Parte 1 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 22-5-2012) ransistore bipolare a giunzione (J) l transistore bipolare a giunzione è un dispositivo

Dettagli

Amplificatori a Transistori con controreazione

Amplificatori a Transistori con controreazione Amplificatori a Transistori con controreazione Esempi di amplificatori inertenti (CS e CE) con controreazione. G. Martines 1 G. Martines 2 Modello equialente a piccolo segnale e guadagno di tensione be

Dettagli

L Amplificatore Operazionale

L Amplificatore Operazionale L Amplificatore Operazionale Buona parte dei circuiti elettronici è costituita da componenti integrati, composti ciascuno da numerosi elementi attivi e passivi miniaturizzati, e nei circuiti analogici

Dettagli

figura 4.20 La formula generale del rivelatore, valida per segnali d ingresso sinusoidali, è data dall espressione:

figura 4.20 La formula generale del rivelatore, valida per segnali d ingresso sinusoidali, è data dall espressione: 4.12 Il circuito rivelatore La funzione svolta da un circuito rivelatore è simile al processo di raddrizamento svolto da un diodo così come illustrato nel paragrafo 2.3; la differenza sostanziale tra un

Dettagli