Amplificatori Integrati

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Amplificatori Integrati"

Transcript

1 Amplificatori Integrati Lucidi del Corso di Microelettronica Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB OTA L amplificatore operazionale a transconduttanza è la più semplice realizzazione di un amplificatore operazionale. Ha un solo stadio di amplificazione, l ingresso è differenziale mentre l uscita è single-ended. V IN + M 3 M 4 V B M 1 M 2 M B OTA asimmetrico V OUT V IN - Principio di Funzionamento: una differenza di potenziale in ingresso (v in =v in+ -v in- può sempre essere vista come una variazione bilanciata di v in /2 in M1 e (-v in /2 in M2. Ma una variazione nella tensione di gate si traduce in una variazione della corrente di drain pari a: i d1 = g m1 v in /2 = g m v in /2 i d2 = -g m2 v in /2 = g m v in /2 (MOS matched La corrente i d1 viene copiata tramite lo specchio M3- M4 ed iniettata nel nodo di uscita. La corrente di uscita i o risulta quindi: i o = i d1 -i d2 = g m v in 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 2

2 OTA: Considerazioni Il punto di polarizzazione dell OTA è definito dalla corrente di polarizzazione I B che scorre in MB. In assenza di segnale differenziale di ingresso (v in+ =v in- in ognuno dei due MOS (M1 e M2 scorre una corrente pari a I B /2. Tale valore di corrente di polarizzazione determina il punto di lavoro del circuito e quindi i parametri del modello a piccoli segnali di M1, M2, M3, M4 (quindi tutte le g m e le r ds. Al presentarsi di un segnale di ingresso l equilibrio si sbilancia e la corrente di polarizzazione si ripartisce in maniera differente in M1 e M2. Al limite (saturazione dell amplificatore la differenza di potenziale in ingresso è tale che tutta la corrente I B scorre in uno solo dei due rami del circuito. Non è comunque mai possibile che nei transistor del circuito scorra una corrente superiore a I B. Il comportamento in frequenza è determinato dal polo dominante introdotto dal nodo di uscita Vo (elevata resistenza ed elevata capacità, il secondo polo è introdotto dal nodo A di ingresso dello specchio (M3 visto che, pur essendo bassa la resistenza (1/g m3 è elevata la capacità (capacità di gate di M3 e M4, il terzo polo (introdotto dal nodo X è trascurabile perché corrisponde a resistenza (1/g m1 // 1/g m2 e capacità molto piccole. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 3 OTA: Resistenza di Uscita La corrente di uscita scorre poi nella resistenza di uscita dell OTA e dà luogo ad una tensione: V out = i o R out = g m R out v in Il guadagno è pari a: dunque A v =g m R out = g m (r ds2 //r ds4 Il calcolo della resistenza di uscita può essere fatto dal modello a piccoli segnali in Figura (per M1 e M2 si usa il modello a T anzi che quello a π. E comunque intuitivo comprendere che la resistenza di uscita complessiva approssimata sarà pari al parallelo della r ds4 e r ds2. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 4

3 OTA simmetrico L OTA asimmetrico viene raramente usato come amplificatore operazionale, in genere rappresenta lo stadio di ingresso differenziale di un amplificatore a più stadi. In alcune situazioni, però, è plausibile pensare di avere un solo stadio di amplificazione, in tale caso si usa la versione simmetrica dell OTA, che ha un maggiore range di uscita e un minore offset sistematico di ingresso (grazie alla simmetria. In questo caso i d1 viene copiata da M3-M4, poi tramite M5-M6 M 4 sottratta dalla copia (M7-M8 di i d2. Il guadagno è dunque pari a: V IN - M 3 M 7 M 1 M 2 A v =g m R out = g m (r ds6 //r ds8 M 5 M 6 V IN + M 8 V OUT V B M B 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 5 Amplificatore Due Stadi In generale, per raggiungere livelli di guadagno elevati, sarà necessario mettere in cascata due stadi di amplificazione. Lo schema più classico di amplificatore a due stadi (detto anche di Miller è mostrato in Figura. Il numero di stadi coincide col numero di stadi di amplificazione, il terzo blocco in questo caso ha guadagno unitario e serve solo come buffer di uscita per pilotare carichi resistivi. Nel caso di carichi puramente capacitivi può essere omesso. C C V IN + - A 1 A 2 A 3 =1 V OUT 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 6

4 Due Stadi: Implementazione CMOS 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 7 Due Stadi: Guadagno in Continua In continua il guadagno è dato dal prodotto dei guadagni dei tre blocchi (due soli dei quali di amplificazione. A v = A v1 A v2 A v3 Il primo stadio è uno stadio differenziale (OTA asimmetrico il cui carico ha resistenza infinita (il gate di Q7 quindi rimane solo il carico intrinseco: A v1 = g m1 (r ds2 // r ds4 Il secondo stadio è uno stadio a source comune, che ha come carico ancora una resistenza infinita (gate di Q8 quindi rimane solo il carico intrinseco: A v2 = -g m7 (r ds7 // r ds6 Il terzo stadio è un inseguitore di source, quindi il guadagno è: A v3 = g m8 /(G L +g m8 +g ds8 +g ds9 Questo se Q8 è in una nwell separata con source e body cortocircuitati, altrimenti al denominatore di A v3 comparirà anche g s8. Il termine G L rappresenta ovviamente il carico finale. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 8

5 Comportamento in Frequenza L amplificatore a due stadi viene anche detto di Miller per via della presenza della capacità C c (capacità di compensazione in controreazione sul secondo stadio. Tale capacità è soggetta ad effetto Miller (proprio perché fra i suoi nodi c è il guadagno A2 e diventa quindi la capacità dominante del circuito (per frequenze intermedie. La frequenza a guadagno unitario può quindi essere calcolata tenendo conto della sola C c. In questa fase si può trascurare Q16 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 9 Frequenza a Guadagno Unitario Se trascuriamo tutte le capacità eccetto C c e ci riduciamo quindi alla Figura del lucido precedente cambierà solo il guadagno A v1, poiché il primo stadio (OTA vedrà come carico non più una resistenza infinita ma l impedenza (finita introdotta dalla capacità C c riportata in ingresso tramite il teorema di Miller: Il guadagno A v1 diventa quindi: C eq = C c (1+A 2 C c A 2 A v1 = g m1 (r ds2 // r ds4 // (1/ sc eq A frequenze intermedie C eq domina quindi: A v1 = ( g m1 / sc eq = ( g m1 / sc C A 2 Il guadagno totale quindi è dato dal prodotto dei 3 blocchi (gli ultimi due rimangono immutati, inoltre il guadagno del source follower può essere considerato unitario: A v = A 1 A 2 A 3 (g m1 / sc c A 2 A 2 = g m1 / sc c La frequenza a guadagno unitario dunque è: ω ta = g m1 /C c 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 10

6 Due Stadi: Slew Rate Lo Slew-Rate è il massimo gradiente che può assumere l uscita in presenza di variazioni brusche (idealmente infinite dell ingresso. Questa limitazione nasce dal fatto che la massima corrente che il primo stadio può fornire al secondo coincide con la corrente di polarizzazione (I B. Quando l ingresso ha delle variazioni brusche ed ampie, l intera corrente di polarizzazione scorre in uno dei due MOS di ingresso (Q1 o Q2 e tale corrente è l unica disponibile per scaricare (o caricare la capacità di compensazione C c. Si ricava quindi che: SR = dv dt out MAX = I C 2I 2 D 5 D1 C = C C = I ω D1 ta g m1 = V eff 1 ω ta 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 11 Due Stadi: Analisi in Frequenza Per la compensazione dell amplificatore è necessario conoscerne i poli (il polo dominante ed il primo non dominante. L ipotesi di partenza è che i nodi che introducono i poli di interesse sono quello di ingresso al secondo stadio (dove compare la capacità di Cc moltiplicata dall effetto Miller ed il nodo di uscita del secondo stadio (dove compare un elevata resistenza. Il terzo stadio può essere omesso dall analisi. Modellando il primo stadio (OTA come un generatore di corrente controllato in corrente con opportuna resistenza di uscita il modello a piccoli segnali dei primi due stadi risulta: 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 12

7 Due Stadi: Analisi in Frequenza I parametri del modello sono: R 1 = r ds4 // r ds2 R 2 = r ds6 // r ds7 R C =r ds16 C 1 = C db2 + C db4 + C gs7 C 2 = C db7 + C db6 + C L2 Dove C L2 rappresenta la capacità di carico del secondo stadio. Se il buffer d uscita NON è presente C L2 coincide con il carico dell amplificatore. Se il buffer d uscita c è C 1 conterrà anche il contributo di C gs9. Q16 è in triodo. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 13 Due Stadi: Analisi in Frequenza L analisi del modello equivalente parte dalla premessa che ci siano due soli poli dominanti (ω P 1 e ω P 2 supponendo che non sia presente R C. Successivamente verrà introdotta la R C per vederne l effetto. Risolvendo il circuito si ottiene: Dove: V V out in = g m1 sc g R R (1 m g m 2 1+ sa + s b a=(c 2 +C C R 2 +(C 1 +C C R 1 +g m7 R 1 R 2 C C b=r 1 R 2 (C 1 C 2 +C 1 C C +C 2 C C Il guadagno in continua è quello atteso, è presente uno zero e si possono calcolare i due poli. C 7 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 14

8 Due Stadi: Analisi in Frequenza I poli e lo zero si ricavano confrontando l equazione ottenuta con quella generica: A( s s (1 + ω Z = s s (1 + (1 + ω ω P1 P 2 Si ricava (approssimando e considerando g m7 R 2 >> 1, C C >> C 1,C 2 : ω P1 1/(g m7 R 1 R 2 C C ω P2 g m7 /(C 1 +C 2 ω Z = -g m7 /C C All aumentare di g m7 dunque, i due poli si separano (pole-splitting ed aumenta la stabilità. La presenza dello zero, però, complica le cose (introduce sfasamenti negativi. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 15 Due Stadi: Lead Compensation L introduzione della resistenza R C non ha quasi effetto sul valore dei poli ma cambia il valore dello zero (che può facilmente essere calcolato imponendo V out =0 e trovando il valore dell ammettenza Y C = (1/R C + sc C per cui la corrente in Y C è uguale a g m7 v 1 : ω Z = -1 / ( C C (1/g m7 R C Si può allora usare il valore di R C per migliorare la stabilità. Si potrebbe scegliere di cancellare lo zero (R C = 1/g m7 ma è preferibile utilizzare la resistenza per spostare ulteriormente verso destra il punto di attraversamento della fase del valore 180. Una buona scelta è quella di scegliere la resistenza di compensazione per spostare lo zero vicino alla frequenza di guadagno unitario (supponendo R C >> 1/g m7 : ω Z = 1.2 ω ta = 1.2 g m1 /C C R C = 1 / (1.2 g m1 In questo modo si ottimizza il comportamento dell amplificatore, aumentando di circa 30 il margine di fase 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 16

9 Due Stadi: Compensazione In definitiva la tecnica di compensazione prevede: 1 Scegliere un valore iniziale di C C (es. 5pF 2 Usare la simulazione SPICE per determinare la frequenza ω t per cui lo sfasamento è 155 (per tale frequenza il guadagno sia A 3 Scegliere una nuova C C in modo che la ω t diventi la frequenza di guadagno unitario: C C = g m1 / ω t. Può essere necessario iterare alcune volte. 4 Scegliere la resistenza di compensazione: R C = 1 / (1.2 ω t C C + 1/g m7. In questo modo si può essere sicuri che il margine di fase sia circa 60 5 Se dopo il passo 4 ancora il margine di fase è insufficiente si può aumentare ulteriormente C C senza toccare R C. 6 Sostituire R C con un MOS in triodo (Q16: R C =r ds16 = 1/( µ n C OX W/LV eff16 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 17 Due Stadi: Polarizzazione Tutti i parametri del amplificatore sono proporzionali o inversamente proporzionali e delle transconduttanze (g m1, g m7, g m16. In particolare: ω ta = g m1 /C c ω P2 g m7 /(C 1 +C 2 ω Z = -1 / ( C C (1/g m7 R C Poiché il valore esatto delle transconduttanze può variare a causa delle fluttuazioni statistiche dei parametri di processo ed alla variazione della temperatura si desidera che i parametri fondamentali dell amplificatore dipendano da rapporti di tali transconduttanze e siano cioè insensibili a variazioni dei parametri di processo (a patto che i transistor siano matchati. Se ad esempio g m1 fosse più alta di quanto atteso anche g m7 dovrebbe scalare di conseguenza in modo che la separazione fra i poli restasse costante. Analogamente per R C che dovrebbe seguire le eventuali variazioni di g m7 per rendere la lead-compensation indipendente dal processo. Bisogna, quindi, che tutte le transconduttanze siano ricavate da una stessa rete di polarizzazione e siano tra loro proporzionali solo attraverso fattori geometrici. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 18

10 Transistor di Compensazione Ricordando (dove S=W/L: Veff = 2I µ C D OX S Va=Vb se: S 6 / S 7 = S 11 / S 13 In tale condizione sarà: V eff12 =V eff16 Allora il prodotto g m7 R C diviene: g R = m 7 C S S 7 16 S S In tale modo la compensazione dipende solo da parametri geometrici. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 19 Due Stadi: Offset Sistematico Per minimizzare l offset sistematico del circuito è necessario che, con V in =0, I D7 =I D6 (con Q7 in saturazione. V GS7 =V eff7 +V tn Per simmetria deve essere V GS7 =V DS4 =V GS3 =V eff3 +V tn Quindi: V eff7 =V eff3 Ossia: S 7 / S 3 =2 S 6 / S 5 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 20

11 Due Stadi: Circuito di Polarizzazione S I g Il circuito di polarizzazione è fatto in modo che tutte le transconduttanze siano inversamente proporzionali ad un unico parametro (la resistenza R B che può essere esterno al chip ma che è l UNICO elemento di riferimento esterno. Tutti gli altri parametri dipendono da R B attraverso rapporti geometrici e NON di processo (tranne l inevitabile rapporto fra le mobilità de elettroni e lacune. NMOS g 2 1 R 15 = = m13 i Di p i Di g = mi m13 g = g mi m13 S I 13 D13 µ S I n 13 D13 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 21 B S S µ 13 S I 1 R B PMOS Amplificatori a Guadagno Elevato Come è possibile aumentare il guadagno del amplificatore? Dalle equazioni si ricava che il guadagno in continua dipende dal prodotto delle transconduttanze e le resistenze di uscita dei due stadi. A parità di consumo di potenza (quindi di corrente di polarizzazione si può allora agire sulla W dei transistor di guadagno (per aumentare la S=W/L senza diminuire la resistenza di uscita oppure aumentare la resistenza di uscita (e quindi aumentare la L. Queste variazioni di geometria hanno ovviamente un limite nell area del dispositivo che non può aumentare in modo eccessivo. Bisogna dunque utilizzare le configurazioni di specchi cascode per aumentare la resistenza di uscita ed il guadagno (ma se lo specchio è cascode anche lo stadio di amplificazione deve avere una configurazione cascode, altrimenti la sua r ds in parallelo alla resistenza dello specchio vanificherebbe l aumento della resistenza di uscita. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 22

12 Tensione di Alimentazione L uso di cofigurazioni cascode è limitato dalle tensioni di alimentazione: con lo scaling dei processi CMOS anche le tensioni di alimentazioni sono diminuite (3.3V, 1.8V, 1.2V. Con basse tensioni di alimentazioni è impossibile riuscire ad impilare troppi transistor l uno sull altra mantenendoli tutti in saturazione. Per questo motivo si passa dalle configurazioni cascode alle folded-cascode (cascode ripiegato. Un altro problema è legato alla tensione minima che deve essere presente all uscita di uno specchio cascode: essa è molto maggiore che nel caso di uno specchio semplice. E necessario allora ricorrere all uso di specchi cascode modificati in modo che la loro tensione minima di uscita sia molto minore (specchi wide-swing. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 23 Specchio Wide-Swing Cascode Se Iin non è costante si sceglierà per Ibias il valore massimo assunto dalla Iin. Si ricava che, perché Q2 (nel caso che Ibias=Iin resti in saturazione deve essere: Vout>(n+1Veff2 Se si sceglie n=1 Vout>2 Veff2 Tale valore è significativamente minore che nel caso di un cascode classico. La resistenza di uscita resta quella di un cascode. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 24

13 Esempio: Wide-Swing per Due Stadi 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 25 Altissima Resistenza d Uscita Per aumentare ulteriormente la resistenza dello specchio si può introdurre un ulteriore stadio di amplificazione. In questo caso: R out =g m1 r ds1 r ds2 (1+A 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 26

14 Implementazione L implementazione pratica dello specchio ad altissima impedenza di uscita prevede di realizzare l amplificatore A per mezzo di un amplificatore singolo stadio a source comune (Q3 e IB1. In questo caso: Rout=(g m1 g m3 r ds1 r ds2 r ds3 /2 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 27 Altissima Resistenza & Wide-Swing Per unire l altissima impedenza ed il wide-swing si usa il circuito in Figura. V out >2V eff 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 28

15 Amplificatore Folded-Cascode L amplificatore folded-cascode utilizza i concetti visti finora per realizzare un amplificatore ad elevato gudagno con un solo stadio di amplificazione. Essendo spesso il carico di tipo puramente capacitivo sarà possibile omettere anche lo stadio di uscita. In un folded-cascode la resistenza di uscita intriseca dell amplificatore (quella che genera il guadagno è data dalla tipica resistenza di uno stadio cascode. Gli specchi sono però wide-swing in modo da ridurre lo swing di tensione e funzionare quindi a bassi livelli di tensione di alimentazione. Lo stadio di ingresso (la coppia differenziale, inoltre, presenta una struttura a cascode ripiegato (folded che dà appunto il nome al circuito. Essendoci un solo stadio di amplificazione la compensazione non avverrà per mezzo della capacità di Miller ma per mezzo della stessa capacità di carico. Il nodo che introduce il polo dominante sarà quello di uscita (resistenza e capacità elevate, mentre gli altri nodi vedono fondamentalmente solo resistenze dell ordine di 1/g m quindi molto basse e che portano poli a notevole distanza dal polo dominante. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 29 Folded-Cascode: Schematico 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 30

16 Folded-Cascode: Funzionamento I transistor Q1 e Q2 sono la coppia differenziale di ingresso. Q3 eq4 sono specchi che portano la corrente di polarizzazione (i dettagli della polarizzazione sono semplificati, ragionevolmente anche questi saranno specchi cascode wide-swing. Q12 e Q13 sono normalmente spenti e si accendono solo in condizioni di slewrate (vedremo per fare uscire più velocemente l amplificatore da tale condizione. Q5 e Q6 rappresentano il folded cascode, vi scorre la differenza fra la corrente di segnale i 1 (o i 2 e la corrente di polarizzazione. Q7, Q8, Q9, Q10 rappresentano lo specchio cascode wide-swing che fa la differenza fra le correnti di segnali i 1 e i 2. Tale differenza di correnti scorre poi nell impedenza di uscita data dal parallelo fra la resistenza di uscita cascode ed il carico capacitivo. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 31 Amplificatore Folded-Cascode: Analisi Lo stadio differenziale di ingresso genera due correnti di segnale: i 1 = g m1 v in /2 i 2 = - g m2 v in /2 La differenza fra i 1 e i 2 (generata da Q7, Q8, Q9, Q10 scorre nella impedenza di uscita: La funzione di trasferimento è dunque: Z L =R out // (1/sC L A V (s=g m1 r out /(1+sr out C L Il polo dominante è: ω P1 = 1/(r out C L Frequenza di guadagno unitario: ω t = g m1 /C L Aggiungendo in serie a C L una resistenza R C si possono ulteriormente migliorare le prestazioni (come per il due stadi introducendo uno zero ad una frequenza pari a 1.2 ω t 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 32

17 Folded-Cascode: Considerazioni Massimizzando la transconduttanza dei transistor di ingresso si ottengono due vantaggi: si aumenta la banda dell amplificatore anche il guadagno. Infatti, tale massimizzazione la si ottiene usando transistor n per lo stadio di ingresso e rendendo la corrente di polarizzazione di Q1 e Q2 molto più grande (per un dato consumo di potenza di quella di Q5 e Q6. Questo rende più grande g m1 ma anche più grande r out (diminuisce la corrente di polarizzazione dello specchio wide-swing di uscita. Da notare che il rapporto fra le polarizzazioni di Q1 e Q5 non può essere troppo grande (maggiore di 4 perché tali correnti sono ottenute per differenza e cercare un rapporto troppo alto potrebbe rendere imprecisa la corrente in Q5 (errori nella differenza delle correnti se I bias1 e I bias2 sono troppo simili. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 33 Folded-Cascode: Slew-Rate I transistor Q12 e Q13 servono perché l amplificatore esca più velocemente da condizioni di slew-rate. In loro assenza, infatti, in condizioni di slew-rate, se Q1 conduce molto più di Q2 (che si interdice tutta la corrente I bias1 scorrerà in Q5 ed attraverso lo specchio andrà a scaricare la CL con uno slew-rate pari a: S R =I D4 /C L Poiché tutta I bias2 scorre in Q1, ed essendo tale corrente più grande di I bias1, Q3 non riuscirà a fornire tutta la corrente necessaria a Q1 che deve quindi andare in triodo (e fare andare in triodo anche lo specchio che genera I bias2 quindi la tensione sul drain di Q1 si abbasserà notevolmente dalle condizioni normali. Quando scompare la condizione che genera lo slew-rate il drain di Q1 dovrà salire notevolmente per fare tornare l amplificatore in condizioni di normale polarizzazione. Con la presenza di Q12 e Q13, invece, tali tensioni di drain rimangono agganciate verso l alimentazione grazie a Q12 e Q13 connessi a diodo. La presenza di tali MOS, inoltre, fa aumentare la I bias1 (in slew-rate rendendo ulteriormente più veloce il dispositivo. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 34

18 Amplificatore a Specchi di Corrente Nella stessa filosofia del folded-cascode si collocano anche gli amplificatori a specchi di corrente: 1. Un solo stadio di amplificazione. 2. Tutto il guadagno ottenuto aumentando la resistenza di uscita. 3. Un solo polo dominante introdotto dal nodo di uscita. 4. Compensazione tramite il carico. Il principio di funzionamento è simile: le due correnti di segnale vengono copiate tramite specchi, sottratte fra loro e la corrente risultante scorre nell impedenza di uscita: Z L =R out // (1/sC L Simbolo sintetico di uno specchio NMOS con guadagno K Simbolo sintetico di uno specchio PMOS con guadagno K 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 35 Amplificatore a Specchi di Corrente Lo schema circuitale più generale è mostrato in Figura. Ai simboli degli specchi con guadagno K può essere sostituito una fra gli specchi ad alte prestazioni visti precedentemente. Funzione di trasferimento: A V (s=(k g m1 r out /(1+sr out C L Slew-Rate: S R =KI B /C L Frequenza guadagno unitario: ω t = (Kg m1 /C L 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 36

19 Esempio: Specchi Wide-Swing Esempio: amplificatore a specchi di corrente basato sullo specchio cascode wide-swing. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 37 Amplificatore Fully-Differential Un amplificatore fully-differential è un amplificatore con ingresso differenziale (come quelli visti finora ed uscita differenziale (a differenza di quelli visti finora. Può facilmente essere ottenuto da uno schema di amplificatore operazionale con uscita single-ended semplicemente facendo scorrere le due correnti di segnale i 1 e i 2 su due resistenze di uscite senza farne prima la differenza. I fully-differential sono molto utili perché prendendo il segnale in modo differenziale si elimina tutto il rumore di modo comune e tutti i disturbi che si presentano contemporaneamente (nello stesso modo sui due percorsi del segnale. Poiché il segnale d uscita è differenziale è fondamentale controllare il modo comune di uscita che deve essere imposto per evitare che l operazionale saturi. Per questo si usa un blocco chiamato CMFB (Common Mode FeedBack che ha il compito di generare una retroazione che si opponga ad eventuali derive del modo comune. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 38

20 Fully-Differential Folded-Cascode Amplificatore fullydifferentail realizzato a partire da un amplificatore foldedcascode. La corrente di polarizzazione dello stadio di uscita è controllata dal CMFB. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 39 Fully-Differential a Specchi di Corrente Amplificatore fullydifferentail realizzato a partire da un amplificatore a specchi di corrente generico. La corrente di polarizzazione dello stadio di uscita è controllata dal CMFB. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 40

21 F-D: Realizzazione del CMFB Possibile implementazione del CMFB (Common Mode Feedback All aumentare del Modo Comune le correnti in Q2 e Q4 aumentano (contemporaneamente, aumenta quindi la corrente di polarizzazione I B che tende a fare diminuire il modo comune e riportarlo al punto di equilibrio. Se V out+ e V outvariano invece in modo differenziale le due variazioni (opposte si annullano e I B resta costante. 31 Marzo 2006 UE - Amplificatori Integrati Massimo Barbaro 41

Progettazione Analogica e Blocchi Base

Progettazione Analogica e Blocchi Base Progettazione Analogica e Blocchi Base Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Blocchi base

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Stadi Amplificatori di Base

Stadi Amplificatori di Base Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplificatori operazionali Parte 3 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 6--) Integratore Dato che l ingresso invertente è virtualmente a massa si ha vi ( t) ir ( t) R Inoltre i

Dettagli

Coppia differenziale MOS con carico passivo

Coppia differenziale MOS con carico passivo Coppia differenziale MOS con carico passivo tensione differenziale v ID =v G1 v G2 e di modo comune v CM = v G1+v G2 2 G. Martines 1 Coppia differenziale MOS con carico passivo Funzionamento con segnale

Dettagli

Corso di Circuiti Integrati Anno Accademico 2012/2013. Esercitazione 6 Progetto di un amplificatore a Due Stadi (di Miller) in tecnologia CMOS 0.

Corso di Circuiti Integrati Anno Accademico 2012/2013. Esercitazione 6 Progetto di un amplificatore a Due Stadi (di Miller) in tecnologia CMOS 0. Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica Corso di Circuiti Integrati Anno Accademico 2012/2013 Esercitazione 6 Progetto di un amplificatore

Dettagli

Circuiti per l Elaborazione del Segnale: Capacità Commutate

Circuiti per l Elaborazione del Segnale: Capacità Commutate Circuiti per l Elaborazione del Segnale: Capacità Commutate Lucidi del Corso di Microelettronica Parte 6 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

Convertitori Digitale-Analogico

Convertitori Digitale-Analogico Convertitori Digitale-Analogico Lucidi del Corso di Microelettronica Parte 7 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Convertitori D/A

Dettagli

= A v1 A v2 R o1 + R i2 A v A v1 A v2. se R i2 R o1

= A v1 A v2 R o1 + R i2 A v A v1 A v2. se R i2 R o1 Amplificatori a due stadi STADIO 1 STADIO 2 R s R o1 R o2 v s + _ vi1 R i1 + A v1 v i1 _ v i2 R i2 + Av2vi2 _ vo2 RL A v v o2 v i1 = A v1 A v2 R i2 R o1 + R i2 A v A v1 A v2 se R i2 R o1 A.Nigro Laboratorio

Dettagli

Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39

Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39 Indice generale Prefazione xi Capitolo 1. Richiami di analisi dei circuiti 1 1.1. Bipoli lineari 1 1.1.1. Bipoli lineari passivi 2 1.1.2. Bipoli lineari attivi 5 1.2. Metodi di risoluzione delle reti 6

Dettagli

Microelettronica Indice generale

Microelettronica Indice generale Microelettronica Indice generale Prefazione Rigraziamenti dell Editore Guida alla lettura Parte I Elettronica dello stato solido e dispositivi XV XVII XVIII Capitolo 1 Introduzione all elettronica 1 1.1

Dettagli

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale

Dettagli

Elettronica Amplificatore operazionale ideale; retroazione; stabilità

Elettronica Amplificatore operazionale ideale; retroazione; stabilità Elettronica Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Amplificatore operazionale

Dettagli

Amplificatori elementari con carico attivo MOSFET E connesso a diodo

Amplificatori elementari con carico attivo MOSFET E connesso a diodo Amplificatori elementari con carico attio MOSFET E connesso a diodo i ( ) = K g = µ C W L I V t m n OX G. Martines MOSFET DE connesso a diodo GS = 0, il transistore può funzionare in regione di triodo

Dettagli

MOSFET o semplicemente MOS

MOSFET o semplicemente MOS MOSFET o semplicemente MOS Sono dei transistor e come tali si possono usare come dispositivi amplificatori e come interruttori (switch), proprio come i BJT. Rispetto ai BJT hanno però i seguenti vantaggi:

Dettagli

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

Convertitori D/A. Convertitori Digitale-Analogico. D/A: Misura Prestazioni. D/A Ideale. Caratteristica. Lucidi del Corso di Microelettronica Parte 7

Convertitori D/A. Convertitori Digitale-Analogico. D/A: Misura Prestazioni. D/A Ideale. Caratteristica. Lucidi del Corso di Microelettronica Parte 7 Convertitori D/A Un convertitore D/A prende in ingresso un numero digitale (rappresentato da una stringa di 1 e 0) e lo converte in un valore analogico (tipicamente una tensione) proporzionale tramite

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590 CIRCUITO DI CONDIZIONAMENTO PER IL ASDUTTORE DI TEMPERATURA AD590 Gruppo n 5 Urbini Andrea Marconi Simone Classe 5C 2001/2002 SPECIFICHE DEL PROGETTO: realizzare un circuito in grado di trasformare una

Dettagli

Esercitazione n 2: Circuiti di polarizzazione (2/2)

Esercitazione n 2: Circuiti di polarizzazione (2/2) Esercitazione n 2: Circuiti di polarizzazione (2/2) 1) Per il circuito di in Fig. 1 dimensionare R in modo tale che la corrente di collettore di Q 1 sia 5 ma. Siano noti: V CC = 15 V; β = 150; Q1 = Q2

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO www.polimi.it ELETTRONICA per ingegneria BIOMEDICA prof. Alberto TOSI Sommario Transistore MOSFET Struttura Equazioni caratteristiche Curve caratteristiche Funzionamento come amplificatore

Dettagli

Indice generale. Elettronica dello stato solido e dispositivi. Capitolo 1 Introduzione all elettronica 1

Indice generale. Elettronica dello stato solido e dispositivi. Capitolo 1 Introduzione all elettronica 1 Prefazione Autori e Curatori Rigraziamenti dell Editore Guida alla lettura Parte I Elettronica dello stato solido e dispositivi XII XV XVI XVII Capitolo 1 Introduzione all elettronica 1 1.1 Breve storia

Dettagli

Elettronica dei Sistemi Digitali Le porte logiche CMOS

Elettronica dei Sistemi Digitali Le porte logiche CMOS Elettronica dei Sistemi Digitali Le porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

Comparatori. Circuiti per l Elaborazione del Segnale: Comparatori e Sample&Hold. Comparatori: Eliminazione Offset. Comparatori: Velocità

Comparatori. Circuiti per l Elaborazione del Segnale: Comparatori e Sample&Hold. Comparatori: Eliminazione Offset. Comparatori: Velocità Comparatori Circuiti per l Elaborazione del Segnale: Comparatori e Sample&Hold Lucidi del Corso di Microelettronica Parte 5 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio

Dettagli

L amplificatore operazionale

L amplificatore operazionale L amplificatore operazionale terminali di input terminale di output Alimentazioni: massa nodo comune L amplificatore operazionale ideale Applichiamo 2 tensioni agli input 1 e 2 L amplificatore è sensibile

Dettagli

Indice. Cap. 1 Il progetto dei sistemi elettronici pag. 1

Indice. Cap. 1 Il progetto dei sistemi elettronici pag. 1 Indice Cap. 1 Il progetto dei sistemi elettronici pag. 1 1.1 Oggetto dello studio 1 1.2 Concezione, progetto e produzione del sistema elettronico 5 1.3 Il circuito di interfaccia di ingresso 13 1.4 Il

Dettagli

{ v c 0 =A B. v c. t =B

{ v c 0 =A B. v c. t =B Circuiti RLC v c t=ae t / B con τ=rc e { v c0=ab v c t =B Diodo La corrente che attraversa un diodo quando questo è attivo è i=i s e v /nv T n ha un valore tra e. Dipende dalla struttura fisica del diodo.

Dettagli

Componenti in corrente continua

Componenti in corrente continua Ogni componente reale utilizzato in un circuito è la realizzazione approssimata di un elemento circuitale ideale. Nello studio dei sistemi in cc gli elementi più importanti sono : esistore Generatori campione

Dettagli

CAPITOLO 7 DISPOSITIVI INTEGRATI ANALOGICI

CAPITOLO 7 DISPOSITIVI INTEGRATI ANALOGICI 139 CAPTOLO 7 DSPOSTV NTEGRAT ANALOGC Negli amplificatori la necessità di ottenere elevate impedenze ed elevati guadagni impone spesso l utilizzo di resistenze di valore molto alto; inoltre l accoppiamento

Dettagli

Schemi e caratteristiche dei principali amplificatori a BJT

Schemi e caratteristiche dei principali amplificatori a BJT Schemi e caratteristiche dei principali amplificatori a BJT Sommario argomenti trattati Schemi e caratteristiche dei principali amplificatori a BJT... 1 Amplificatore emettitore comune o EC... 1 Amplificatore

Dettagli

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1)

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1) Capitolo 3 Amplificazione 3.1 Circuiti attivi Gli elementi circuitali considerati sino ad ora, sia lineari (resistenze, capacità, induttanze e generatori indipendenti), sia non lineari (diodi), sono detti

Dettagli

Prova scritta Fondamenti di Elettronica B / BC 26 Gennaio 2011 COGNOME: NOME: CORSO DI LAUREA: INGEGNERIA

Prova scritta Fondamenti di Elettronica B / BC 26 Gennaio 2011 COGNOME: NOME: CORSO DI LAUREA: INGEGNERIA Prova scritta Fondamenti di Elettronica B / BC 26 Gennaio 2011 A COGNOME: NOME: CORSO DI LAUREA: INGEGNERIA MATRICOLA: Negli esercizi, ove necessario e salvo indicazioni contrarie, si consideri che i circuiti

Dettagli

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). a figura 1 mostra la sezione di una porzione di fetta di silicio in corrispondenza di un dispositio MOSFET a canale n. In condizioni di funzionamento

Dettagli

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Corso di Metodi di Trattamento del Segnale INTRODUZIONE AGLI AMPLIFICATORI OPERAZIONALI

Corso di Metodi di Trattamento del Segnale INTRODUZIONE AGLI AMPLIFICATORI OPERAZIONALI Corso di Metodi di Trattamento del Segnale INTRODUZIONE AGLI AMPLIFICATORI OPERAZIONALI RETROAZIONE (FEEDBACK) S in + + G S out! S out = G!( S in + "S ) out S out = G 1! "G S G in! = G 1" #G G! = G 1 "

Dettagli

Porte logiche in tecnologia CMOS

Porte logiche in tecnologia CMOS Porte logiche in tecnologia CMOS Transistore MOS = sovrapposizione di strati di materiale con proprietà elettriche diverse tra loro (conduttore, isolante, semiconduttore) organizzati in strutture particolari.

Dettagli

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona Corso di laurea in Informatica Regolatori Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Scelta delle specifiche 1. Picco di risonanza e massima sovraelongazione

Dettagli

Studio e Simulazione di un Amplificatore Operazionale CMOS di Miller a Basso Consumo

Studio e Simulazione di un Amplificatore Operazionale CMOS di Miller a Basso Consumo Università degli Studi di Padova Facoltà di Ingegneria Corso di Laurea in Ingegneria Dell Informazione Tesi di Laurea Triennale Studio e Simulazione di un Amplificatore Operazionale CMOS di Miller a Basso

Dettagli

Le configurazioni della reazione

Le configurazioni della reazione Capitolo 2 Le configurazioni della reazione Nel capitolo precedente si è visto che la reazione ha effetto diametralmente opposto tra l amplificatore non invertente (par. 9.5) e quello invertente (par.

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO www.polimi.it ELETTRONICA per ingegneria BIOMEDICA prof. Alberto TOSI Sommario Caratteristiche degli OpAmp OpAmp ideali e Retroazione Offset di tensione e di corrente Alimentazione

Dettagli

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013 I.T.I.. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 03/4 OGNOME E NOME Data: 7//03 Quesito ) (50%) Dato il circuito qui a fianco che rappresenta un oscillatore sinusoidale a ponte

Dettagli

Laboratorio II, modulo Amplificatori operazionali (cfr.

Laboratorio II, modulo Amplificatori operazionali (cfr. Laboratorio II, modulo 2 20152016 Amplificatori operazionali (cfr. http://physics.ucsd.edu/~tmurphy/phys121/phys121.html) Amplificatori operazionali Amplificatori operazionali sono disegnati come triangoli

Dettagli

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC 23. Guadagno di un quadripolo Filtri passivi isposta in frequenza dei circuiti C-L-LC In un quadripolo generico (fig. ) si definisce guadagno G il rapporto tra il valore d uscita e quello d ingresso della

Dettagli

6. Generatori di corrente controllati

6. Generatori di corrente controllati 6. Generatori di corrente controllati 6.1 Generatori con un solo operazionale In molte applicazioni è utile poter disporre di generatori di corrente controllati in tensione. Un modo semplice, ad esempio,

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

ELETTRONICA CdS Ingegneria Biomedica

ELETTRONICA CdS Ingegneria Biomedica ELEONICA CdS Ingegneria Biomedica LEZIONE A.03 Circuiti a diodi: configurazioni, analisi, dimensionamento addrizzatori a semplice e doppia semionda addrizzatori a filtro (L, C e LC) Moltiplicatori di tensione

Dettagli

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT Interruttori allo stato solido 1 Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: con MOS con BJT Velocità di commutazione MOS Velocità di commutazione BJT 2 2003 Politecnico

Dettagli

Teoria dei circuiti reazionati

Teoria dei circuiti reazionati Teoria dei circuiti reazionati Differenze tra lo schema di reazione ideale e il circuito con retroazione: Ogni blocco dello schema a blocchi ha una direzione e un trasferimento che non dipende dai blocchi

Dettagli

Amplificatore Operazionale in Classe AB con rete di compensazione RC

Amplificatore Operazionale in Classe AB con rete di compensazione RC Amplificatore Operazionale in Classe AB con rete di compensazione RC BONFIGIO Fabio, matr. O53/000052 CASTIGIONE Angelo, matr. O53/000062 MESSINA Sergio, matr. O53/000072 Indice Introduzione iii 1 Il Circuito

Dettagli

4.4 Il regolatore di tensione a diodo zener.

4.4 Il regolatore di tensione a diodo zener. 4.4 l regolatore di tensione a diodo zener. n molte applicazioni il valore del fattore di ripple ottenibile con un alimentatore a raddrizzatore e filtro capacitivo non è sufficientemente basso. Per renderlo

Dettagli

Amplificatori alle alte frequenze

Amplificatori alle alte frequenze mplificatori alle alte frequenze lle alte frequenze, le capacità parassite dei dispositivi non sono più trascurabili ed esse provocano una diminuzione più o meno rapida del guadagno; noi studieremo, a

Dettagli

a.a. 2014/2015 Docente: Stefano Bifaretti

a.a. 2014/2015 Docente: Stefano Bifaretti a.a. 2014/2015 Docente: Stefano Bifaretti email: bifaretti@ing.uniroma2.it Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici. Infatti, la struttura del convertitore

Dettagli

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 2009 Amplificatore operazionale perché? Moltiplicazione

Dettagli

In elettronica un filtro elettronico è un sistema o dispositivo che realizza

In elettronica un filtro elettronico è un sistema o dispositivo che realizza Filtri V.Russo Cos è un Filtro? In elettronica un filtro elettronico è un sistema o dispositivo che realizza delle funzioni di trasformazione o elaborazione (processing) di segnali posti al suo ingresso.

Dettagli

Esercitazione n 3: Amplificatore a base comune

Esercitazione n 3: Amplificatore a base comune Esercitazione n 3: Amplificatore a base comune 1) Per il circuito in Fig. 1 determinare il valore delle resistenze di polarizzazione affinché si abbia: I C = 0,2 ma; V C = 3 V; V E = 1,9 V. Sia noto che:

Dettagli

Modello di Ebers-Moll del transistore bipolare a giunzione

Modello di Ebers-Moll del transistore bipolare a giunzione D Modello di Ebers-Moll del transistore bipolare a giunzione Un transistore bipolare è un dispositivo non lineare che può essere modellato facendo ricorso alle caratteristiche non lineari dei diodi. Il

Dettagli

Misure su linee di trasmissione

Misure su linee di trasmissione Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare

Dettagli

Logica cablata (wired logic)

Logica cablata (wired logic) Logica cablata (wired logic) Cosa succede quando si collegano in parallelo le uscite di più porte appartenenti alla stessa famiglia logica? Si realizza una ulteriore funzione logica tra le uscite Le porte

Dettagli

Resistenza d entrata e d uscita di un AO Saturazioni di livello in un AO Offset in un AO Polo intrinseco in un AO Slew-rate in un AO

Resistenza d entrata e d uscita di un AO Saturazioni di livello in un AO Offset in un AO Polo intrinseco in un AO Slew-rate in un AO C3x - Presentazione della lezione C3 /- Obiettivi esistenza d entrata e d uscita di un AO Saturazioni di livello in un AO Offset in un AO Polo intrinseco in un AO Slew-rate in un AO /6/ :4 PM L7_C3.doc

Dettagli

Amplificatori a FET. Amplificatore a source comune (C.S.) Vdd. Rd R1. C2 out C Rg in. out

Amplificatori a FET. Amplificatore a source comune (C.S.) Vdd. Rd R1. C2 out C Rg in. out Amplificatori a FET Per realizzare un amplificatore a FET, il dispositivo va polarizzato regione attiva (cioè nella regione a corrente costante, detta anche zona di saturazione della corrente). Le reti

Dettagli

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Transistore bipolare a giunzione (BJT)

Transistore bipolare a giunzione (BJT) ransistore bipolare a giunzione (J) Parte 1 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 22-5-2012) ransistore bipolare a giunzione (J) l transistore bipolare a giunzione è un dispositivo

Dettagli

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati Elettronica per telecomunicazioni 1 Contenuto dell unità A Informazioni logistiche e organizzative Applicazione di riferimento caratteristiche e tipologie di moduli Circuiti con operazionali reazionati

Dettagli

Elettronica Analogica con Applicazioni

Elettronica Analogica con Applicazioni Elettronica Analogica con Applicazioni Docente: Alessandro Trifiletti CFU: 6 E mail: alessandro.trifiletti@diet.uniroma1.it 1) Presentazione del corso, cenni sulle problematiche di progetto a RF, problematiche

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO

ISTITUTO TECNICO INDUSTRIALE STATALE G. MARCONI Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : iti@marconipontedera.it - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO

Dettagli

Regolatori di tensione dissipativi. Regolatori LDO. Schema elettrico. Stabilità LDO Politecnico di Torino 1

Regolatori di tensione dissipativi. Regolatori LDO. Schema elettrico. Stabilità LDO Politecnico di Torino 1 Regolatori di tensione dissipativi 1 Schema elettrico Stabilità LDO 2 2003 Politecnico di Torino 1 Schema elettrico 3 Efficienza La tensione di headroom crea dei problemi: Alta potenza dissipata (necessita

Dettagli

Elettronica I Porte logiche CMOS

Elettronica I Porte logiche CMOS Elettronica I Porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/ liberali Elettronica

Dettagli

1 Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli R 2. v out R 1

1 Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli R 2. v out R 1 Prova scritta di fine corso di Meccanica Applicata alle Macchine, modulo da 5CFU Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli motori DC Il circuito mostrato in figura è uno

Dettagli

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica Macro unità n 1 Classe IV specializzazione elettronica Elettrotecnica ed elettronica Reti elettriche, segnali e diodi Leggi fondamentali: legge di Ohm, principi di Kirchhoff, teorema della sovrapposizione

Dettagli

L AMPLIFICATORE A TRANSCONDUTTANZA, OTA (1)

L AMPLIFICATORE A TRANSCONDUTTANZA, OTA (1) L AMPLIFICATORE A TRANSCONDUTTANZA, OTA () Esiste una classe di amplificatori che va sotto il nome di OTA Amplifier, Operational Transconductance Amplifier. Sono caratterizzati dall avere una larghezza

Dettagli

Elettronica analogica: cenni

Elettronica analogica: cenni Elettronica analogica: cenni VERSIONE 23.5.01 valle del componente di acquisizione dati nella struttura funzionale di un sistema di misura: misurando x y y z sens elab pres ambiente w abbiamo già considerato

Dettagli

Pilotaggio high-side

Pilotaggio high-side Interruttori allo stato solido Introduzione Il pilotaggio high-side è più difficile da realizzare del low-side in quanto nel secondo un capo dell interruttore è a massa Non sempre è possibile il pilotaggio

Dettagli

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1

Dettagli

L Amplificatore Operazionale

L Amplificatore Operazionale L Amplificatore Operazionale Buona parte dei circuiti elettronici è costituita da componenti integrati, composti ciascuno da numerosi elementi attivi e passivi miniaturizzati, e nei circuiti analogici

Dettagli

12. F.d.T. con uno ZERO nell'origine ed un POLO non nell origine: Derivatore invertente reale. Per prima cosa troviamo Z 1. Quindi: eq

12. F.d.T. con uno ZERO nell'origine ed un POLO non nell origine: Derivatore invertente reale. Per prima cosa troviamo Z 1. Quindi: eq Appunti di ELETTONIA lassi QUINTE Integratori e Derivatori attivi:.d.t., diagrammi di Bode, risposte nel tempo A.S. 999-000 - martedì 7 dicembre 999 Pagina n. 53..d.T. con uno EO nell'origine ed un POLO

Dettagli

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi Esperimentazioni di Fisica 3 Appunti sugli. Amplificatori Differenziali M De Vincenzi 1 Introduzione L amplificatore differenziale è un componente elettronico che (idealmente) amplifica la differenza di

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

I.P.S.I.A. Di BOCCHIGLIERO Oscillatori ad alta frequenza ---- Materia: Elettronica. prof. Ing. Zumpano Luigi

I.P.S.I.A. Di BOCCHIGLIERO Oscillatori ad alta frequenza ---- Materia: Elettronica. prof. Ing. Zumpano Luigi I.P.S.I.A. Di BOHIGLIERO a.s. 2010/2011 classe III Materia: Elettronica Oscillatori ad alta frequenza alunni : hindamo Michelangelo Bossio Salvatore prof. Ing. Zumpano Luigi IPSIA Bocchigliero Elettronica

Dettagli

Generatori di Tensione Continua

Generatori di Tensione Continua Corso Sensori e ivelatori - Ponte di Wheatstone Generatori di Tensione Continua I generatori di tensione continua sono utilizzati per: generare tensioni di riferimento; generare correnti di riferimento;

Dettagli

Elettronica Circuiti con amplificatori operazionali; comparatore; conversione analogico-digitale

Elettronica Circuiti con amplificatori operazionali; comparatore; conversione analogico-digitale Elettronica Circuiti con amplificatori operazionali; comparatore; conversione analogico-digitale Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

Se la Vi è applicata all ingresso invertente si avrà un comparatore invertente con la seguente caratteristica:

Se la Vi è applicata all ingresso invertente si avrà un comparatore invertente con la seguente caratteristica: I comparatori sono dispositivi che consentono di comparare (cioè di confrontare ) due segnali. Di norma uno dei due è una tensione costante di riferimento Vr. Il dispositivo attivo utilizzato per realizzare

Dettagli

I transistor in alta frequenza

I transistor in alta frequenza Capitolo 16 I transistor in alta frequenza I modelli lineari per i dispositivi a due porte descritti al par. 6.4 sono astrazioni matematiche, analoghe ai teoremi di Thèvenin e Norton. Questi modelli sono

Dettagli

Esercizi di Elettronica Digitale Monostabile #1

Esercizi di Elettronica Digitale Monostabile #1 Esercizi di Elettronica Digitale Monostabile # M.Borgarino Università di Modena e Reggio Emilia Facoltà di ngegneria (0/09/006 Descrizione del circuito Lo schematico riportato nella seguente Figura rappresenta

Dettagli

Le tensioni di alimentazione +Va e Va devono essere applicate rispetto alla zona di massa.

Le tensioni di alimentazione +Va e Va devono essere applicate rispetto alla zona di massa. 4.2 Sul calcolo del guadagno di un microamplificatore Uno schema elettrico che mostra il più semplice impiego di un circuito integrato è tracciato in figura 4.4, in essa è riportato un microamplificatore

Dettagli

Si vuole progettare un filtro passabanda in microstriscia con le seguenti specifiche:

Si vuole progettare un filtro passabanda in microstriscia con le seguenti specifiche: Si vuole progettare un filtro passabanda in microstriscia con le seguenti specifiche: Tipologia di filtro: equiripple Numero di poli: 5 Massimo ripple in banda: 0.5 db Frequenza centrale: 2.45 Ghz Banda

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Amplificatori a Transistori con controreazione

Amplificatori a Transistori con controreazione Amplificatori a Transistori con controreazione Esempi di amplificatori inertenti (CS e CE) con controreazione. G. Martines 1 G. Martines 2 Modello equialente a piccolo segnale e guadagno di tensione be

Dettagli

CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO

CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO 1 CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO Il diodo come raddrizzatore Un semiconduttore contenente una giunzione p-n, come elemento di un circuito elettronico si chiama diodo e viene indicato

Dettagli

IL MOSFET.

IL MOSFET. IL MOSFET Il MOSFET è certamente il più comune transistor a effetto di campo sia nei circuiti digitali che in quelli analogici. Il MOSFET è composto da un substrato di materiale semiconduttore di tipo

Dettagli

Amplificatore logaritmico

Amplificatore logaritmico Elettronica delle Telecomunicazioni Esercitazione 2 mplificatore logaritmico ev 1 981208 GV, S ev 2 990617 DDC Specifiche di progetto Progettare un amplificatore con funzione di trasferimento logaritmica

Dettagli

4 Amplificatori operazionali

4 Amplificatori operazionali 4 Amplificatori operazionali 4.1 Amplificatore operazionale: caratteristiche, ideale vs. reale - Di seguito simbolo e circuito equivalente di un amplificatore operazionale. Da notare che l amplificatore

Dettagli

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET 1 Contatti metallo semiconduttore (1) La deposizione di uno strato metallico

Dettagli

Coppia differenziale con BJT e carico passivo

Coppia differenziale con BJT e carico passivo oppia ifferenziale con BJ e carico passivo tensione ifferenziale e i moo comune: v v v B1 B v M v + v B1 B risposta al segnale i moo comune G. Martines 1 oppia ifferenziale con BJ e carico passivo Saturazione

Dettagli

Porte Logiche. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica

Porte Logiche. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Porte Logiche Lucidi del Corso di Elettronica Digitale Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Porte logiche Una porta logica

Dettagli

3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n

3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n 1 3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n Il diodo come raddrizzatore Un semiconduttore contenente una giunzione p-n, come elemento di un circuito elettronico si chiama diodo e viene

Dettagli

Corso di Elettronica di Potenza (9 CFU) ed Elettronica Industriale (6CFU) Convertitori c.a.-c.a. 2/24

Corso di Elettronica di Potenza (9 CFU) ed Elettronica Industriale (6CFU) Convertitori c.a.-c.a. 2/24 Tra i vari tipi di convertitori monostadio, i convertitori c.a.-c.a. sono quelli che presentano il minore interesse applicativo, a causa delle notevoli limitazioni per quanto concerne sia la qualità della

Dettagli

Parametri di noise in un two-port circuit

Parametri di noise in un two-port circuit Parametri di noise in un two-port circuit Definizione: un port e definito come una coppia di terminali per mezzi dei quali una corrente entra o esce da un circuito e tra i quali esiste una tensione. Modelli

Dettagli