per tutti i visitatori disponibile tutti i giorni gratuito con il biglietto della mostra Contiene un album una matita una gomma questo manuale

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "per tutti i visitatori disponibile tutti i giorni gratuito con il biglietto della mostra Contiene un album una matita una gomma questo manuale"

Transcript

1 pr tutti i visitatori disponibil tutti i giorni gratuito con il biglitto dlla mostra Contin un album una matita una gomma qusto manual

2 Un manual pr visitar la mostra ossrvar 1 chi è già un po sprto chi non ha mai disgnato mttr in moto la cratività l opr Trovrai Suggrimnti, id, spunti di disgno smplici srcizi pr scoprir con mano com dipingono gli artisti in mostra Puoi scglir di sguir l pagin passo passo oppur saltar dirttamnt all srcizio ch più ti intrssa. L avanguardia russa, la Sibria l Orint

3 Punto di partnza Visitar una mostra è com far un viaggio. E un viaggio ha bisogno di ssr raccontato attravrso parol immagini ch puoi annotar sul blocco dl tuo Kit. Disgnar prmtt di sprimrsi con immdiatzza di scoprir qualcosa in più sull opr ch hai di front: non è important far un bl disgno, ma attravrso il procsso crativo raccoglir informazioni saminar dttagli dl soggtto rapprsntato ch spsso, ad una prima ossrvazion, sfuggono. Il punto di pr sé è una forma, la più piccola unità prcttiva ch il nostro occhio possa vdr. L su dimnsioni dipndono da: lo strumnto ch lo disgna ( matita, pnna, pnnarllo ) la prssion con cui la mano lo traccia il supporto su cui vin disgnato (carta liscia o ruvida, tla ) 2

4 La lina 3 La lina com figura astratta nasc prò dal concrto: la lina ond ulata nll antich pittografi ra il sgno dll acqua, dava visiva di movim to, l imprssion nto, di scorrimn simbolo di vita. Una smpl ic lina può ssr usata in modo sprssivo comunicando quindi u na snsazion. Può ssr diritta o curva o incrspata com s a vss il valor di un suono: acuto, profondo, modulato. Guarda alcuni dipinti in mostra (guardali com s ascoltassi una musica!) trova più smpi possibil n cui la lina sprim ii tnsion lastici tà zza d i b r mo flssuosità. tar vari tipi di tratto, ispirandoti a n m i r p s a a ll opr ossrvat Prov

5 Chi disgna traccia dll lin con ss sprim una forma, dfinisc un oggtto sul foglio di carta. Il disgno linar è il mzzo più smplic pr rapprsntar l cos, si può immaginar ch il primo disgnator, l artista primitivo, abbia mmorizzato la sagoma dgli animali ossrvandon l ombr o vdndo stagliarsi i corpi contro il baglior dl fuoco. Disgna una smplic txtur grafica poi laborala pr crar l immagin di una suprfici tridimnsional ch suggrisca ondulazioni, curvatur cc. I tratti si possono avvicinar, distanziar, possono convrgr. 4

6 L form ch ci ricordiamo più facilmnt sono qull ch stanno bn insim, ch crano un insim organico. Alla fin dll Ottocnto-inizi dl Novcnto l analisi dll form divnta l occasion pr crar un nuovo linguaggio. Volkov ha crato una suprfici pittorica ch è un intarsio di form Filonov usando form lmntari ha dato vita ad animali pasaggi Scgli un quadro figurativo dlla mostra prova a ridurr il soggtto rapprsntato attravrso l uso dll sol form gomtrich. 5

7 l ritmo l form dinamich Il ritmo, intso com altrnanza di form, ci dà una snsazion piacvol alla vista. la nostra stssa sistnza è basata sul ritmo: tmpo sonno il rspiro stagioni battito dl cuor L form in natura possono ssr dinamich, modllat da forz ch continuamnt l modificano: l fiamm dl fuoco o l nuvol cambiano asptto di continuo. Il nostro sistma prcttivo rgistra anch l form dl movimnto: un albro pigato dal vnto pr smpio. Ci sono form dtrminat da nrgi dirompnti, com un 6

8 7 S provi a spostar gli lmnti gomtrici ch compongono il quadro, l fftto dinamico non sarà più lo stsso il quadro sprimrà un conctto divrso un altra mozion.

9 Pur ssndo stato intrprtato in modi diffrnti nll divrs cultur nll vari poch, mantin smpr l su carattristich pculiari grazi all alto grado di riconoscibilità dl suo l volto... 8 rapprsntazion di una prsona scondo i suoi carattri individuali ralistici dl v olto tto nc Co nll po cor a t i ts o hann bal tri i t r a l artista torna a una prczion dl mondo volutamnt infantil. l imm è rid otta Sintsi agin a

10 L'inizio la mia fin la fin il mio inizio 9 Pr ottnr un immagin vrosimil dobbiamo: qull r una figura i a z z i nm al nti il nostro pu v i nt d fac nd o sì c h o rrivo di a na Vicvrsa possia ti r al u q 2. capir co ati m sch odo mo i so no l o dll sing o l par 1. ossrvar co l for m più ada tt pr ds c il suo asptto gn r ra riv r nta rs n l oggtto da r o i z app n tt

11 10 La forma com sprssion L sprssion dl volto è il modo più smplic pr sprimr uno stato d animo. Ma mozioni sntimnti possono ssr idntificati anch con form colorat astratt. Guarda il quadro di Kandinsky. prova a riprodurr l lin l form sul tuo foglio.

12 Quando il viaggiator si è sduto sulla sabbia dlla spiaggia ha dtto: Non c è altro da vdr, sapva ch non ra vro. Bisogna vdr qul ch non si è visto, vdr di nuovo qul ch si è già visto, vdr in primavra qul ch si è visto in stat, vdr di giorno qul ch si è visto di nott, con il sol dov la prima volta piovva, vdr l mssi vrdi, il frutto maturo, la pitra ch ha cambiato posto, l ombra ch non c ra. Bisogna ritornar sui passi già dati, pr riptrli, pr tracciarvi a fianco nuovi cammini. Bisogna ricominciar il viaggio. Smpr. Fai una foto ai disgni più blli ch hai fatto in mostra condividili sui nostri social! #IMADETHIS #KITDISEGNO S ti piac qusto manual puoi scaricarlo dal nostro sito: Idazion, disgni tsti: Lisa Colombi Traduzion: Stphn Tobin Progtto grafico: Bndtta Scarplli Fondazion Palazzo Strozzi

ISTITUTO COMPRENSIVO ORZINUOVI ANNO SCOLASTICO 2012-2013 PROGRAMMAZIONE di MUSICA 2 QUADRIMESTRE CLASSE PRIMA

ISTITUTO COMPRENSIVO ORZINUOVI ANNO SCOLASTICO 2012-2013 PROGRAMMAZIONE di MUSICA 2 QUADRIMESTRE CLASSE PRIMA PROGRAMMAZIONE di MUSICA 2 QUADRIMESTRE CLASSE PRIMA 1a. Prcpir prsnza assnza di raltà sonor (suono-silnzio-rumor) 1b. Discriminar distanza provninza dll fonti sonor 1c. Individuar fonti sonor 1d. Coglir

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

SCUOLE PRIMARIE CLASSI QUINTE

SCUOLE PRIMARIE CLASSI QUINTE ISTITUTO COMPRENSIVO N 5 SANTA LUCIA UNITÀ DI APPRENDIMENTO 1 o QUADRIMESTRE SCUOLE PRIMARIE CLASSI QUINTE UNITA DI APPRENDIMENTO Dnominazion Compito-prodotto Comptnz mirat Comuni /cittadinanza LA CIVILTA

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Palazzina di Caccia di Stupinigi, Fondazione Ordine Mauriziano

Palazzina di Caccia di Stupinigi, Fondazione Ordine Mauriziano , Fondazion Ordin Mauriziano LE PROPOSTE PER I CENTRI ESTIVI ESTATE 2014 IN PALAZZINA: DIVERTIRSI IMPARANDO VISITE A TEMA E LABORATORI PER I CENTRI ESTIVI Dalla primavra 2014 la palazzina di caccia offr

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

ISTITUTO COMPRENSIVO M. ANZI DI BORMIO Scuola Primaria di Cepina Valdisotto PROGETTO IMPARA L ARTE E FAI DA TE

ISTITUTO COMPRENSIVO M. ANZI DI BORMIO Scuola Primaria di Cepina Valdisotto PROGETTO IMPARA L ARTE E FAI DA TE ISTITUTO COMPRENSIVO M. ANZI DI BORMIO Scuola Primaria di Cpina Valdisotto PROGETTO IMPARA L ARTE E FAI DA TE Classi coinvolt: prima A B Tmpi di ffttuazion: 19-20-21 novmbr 2015 Obittivi trasvrsali gnrali:

Dettagli

LE PROPOSTE PER I CENTRI ESTIVI Palazzina di Caccia di Stupinigi ESTATE 2015

LE PROPOSTE PER I CENTRI ESTIVI Palazzina di Caccia di Stupinigi ESTATE 2015 LE PROPOSTE PER I CENTRI ESTIVI ESTATE 2015 SPECIALE MOSTRA FRITZ. UN ELEFANTE A CORTE! 20 Maggio 13 sttmbr 2015 IN PALAZZINA: DIVERTIRSI IMPARANDO VISITE A TEMA E LABORATORI PER I CENTRI ESTIVI Anch nlla

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Cod. 01. Laboratorio di Didattica Museale Museo Civico di Rieti a cura del Museo Civico di Rieti e dell Associazione Culturale ReArte

Cod. 01. Laboratorio di Didattica Museale Museo Civico di Rieti a cura del Museo Civico di Rieti e dell Associazione Culturale ReArte Cod. 01 Laboratorio di Didattica Musal a cura dl dll Associazion Cultural RArt La musica di Orfo ATTIVITÀ: Visita guidata laboratorio didattico. FASCIA DI ETÀ: 5/10 anni N. BAMBINI: Da dfinir in bas alla

Dettagli

SCHEDA VALUTAZIONE ANNUALE PERSONALE SCHEDA VALUTAZIONE NEOASSUNTO

SCHEDA VALUTAZIONE ANNUALE PERSONALE SCHEDA VALUTAZIONE NEOASSUNTO Rvision n 3 25/06/2012 SCHEDA VALUTAZIONE ANNUALE SCHEDA VALUTAZIONE NEOASSUNTO Cognom Nom Unità Oprativa Valutator Data valutazion Da compilar s noassunto: Data inizio priodo di prova Data valutazion

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

la mente cosciente... oltre i neuroni?

la mente cosciente... oltre i neuroni? la mnt coscint... oltr i nuroni? smbra ch ci sia un problma insolubil pr la scinza! com puo il mondo fisico produrr qualcosa con l carattristich dlla mnt coscint? un problma cosi difficil ch qualcuno lo

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

Circolare n. 1 Prot. n. 758 Roma 29/01/2015

Circolare n. 1 Prot. n. 758 Roma 29/01/2015 Ministro dll Istruzion, dll Univrsità dlla Ricrca Dipartimnto pr il sistma ducativo di istruzion formazion Dirzion Gnral pr gli ordinamnti scolastici la valutazion dl sistma nazional di istruzion Circolar

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

AZIONE DI SISTEMA 2 MOBILITAZIONE DEGLI OPERATORI E DELLA POPOLAZIONE LOCALE ATTRAVERSO EVENTI SINTESI DEL PROGETTO 1

AZIONE DI SISTEMA 2 MOBILITAZIONE DEGLI OPERATORI E DELLA POPOLAZIONE LOCALE ATTRAVERSO EVENTI SINTESI DEL PROGETTO 1 AZIONE DI SISTEMA 2 MOBILITAZIONE DEGLI OPERATORI E DELLA POPOLAZIONE LOCALE ATTRAVERSO EVENTI SINTESI DEL PROGETTO 1 Il Programma di Sviluppo Rural (PSR) 2007-2013 dlla Sardgna prvd ch i Gruppi di Azion

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

"PREMIO BEST PRACTICE PATRIMONI PUBBLICI 2010" MIMUV: Monitoraggio Interventi Manutenzione Urbana Venezia

PREMIO BEST PRACTICE PATRIMONI PUBBLICI 2010 MIMUV: Monitoraggio Interventi Manutenzione Urbana Venezia "PREMIO BEST PRACTICE PATRIMOI PUBBLICI 2010" MIMUV Monitoraggio Intrvnti Manutnzion Urbana Vnzia MIMUV: Monitoraggio Intrvnti Manutnzion Urbana Vnzia Contsto patrimonial quo ant "PREMIO BEST PRACTICE

Dettagli

Istituti Tecnici Industriali. Le curvature dei percorsi scolastici verso. Robotica/Meccatronica avanzata

Istituti Tecnici Industriali. Le curvature dei percorsi scolastici verso. Robotica/Meccatronica avanzata Istituti Tcnici Industriali L curvatur di prcorsi scolastici vrso Robotica/Mccatronica avanzata MACRO-COMPETENZE IN USCITA VERSO LA ROBOTICA/MECCATRONICA AVANZATA Quattro Macro-Comptnz Spcialistich: 1.

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Catalonia in Venice. La Venezia che non si vede.

Catalonia in Venice. La Venezia che non si vede. Catalonia in Vnic. La Vnzia ch non si vd. Un progtto di Antoni Abad prodotto dall Istituto Ramon Llull pr 57 a Esposizion Intrnazional d Art dl Binnal di Vnzia. Accssib all prson con disabità intllttiva.

Dettagli

Tavola comparativa delle piattaforme analizzate nel benchmarking UTILIZZO LICENZE LIBERE. Tipo di licenze

Tavola comparativa delle piattaforme analizzate nel benchmarking UTILIZZO LICENZE LIBERE. Tipo di licenze Tavola comparativa dll piattaform analizzat nl bnchmarking PIATTAFORME CONTENUTO TARGET Jamndo.com Comunità di musica lgal sotto CCPL. Utilizza applicazion in grado di licnziar la musica dirttamnt durant

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città COMUNE DI BOLOGNA Dipartimnto Economia Promozion dlla Città Allgato C all Avviso pubblico pr la prsntazion di progtti di sviluppo alla Agnda Digital di Bologna Modllo di dichiarazion sul posssso di rquisiti

Dettagli

Progetto I CARE Progetto CO.L.O.R.

Progetto I CARE Progetto CO.L.O.R. Attori in rt pr la mobilità di risultati dll apprndimnto Dirtta WEB, 6 dicmbr 2011 Progtto I CARE Progtto CO.L.O.R. Elmnti distintivi complmntarità Michla Vcchia Fondazion CEFASS gli obittivi Facilitar

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

Catalonia in Venice. La Venezia che non si vede. Un progetto di Antoni Abad prodotto dall Istituto Ramon LLull per la 57 a Esposizione Internazionale

Catalonia in Venice. La Venezia che non si vede. Un progetto di Antoni Abad prodotto dall Istituto Ramon LLull per la 57 a Esposizione Internazionale Catalonia in Vnic. La Vnzia ch non si vd. Un progtto di Antoni Abad prodotto dall Istituto Ramon LLull pr 57 a Esposizion Intrnazional d Art dl Binnal di Vnzia. Accssib all prson con disabità intllttiva.

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Scuola dell Infanzia. Dalle competenze chiave europee per l apprendimento permanente alla nostra progettazione didattica

Scuola dell Infanzia. Dalle competenze chiave europee per l apprendimento permanente alla nostra progettazione didattica Scuola dll Infanzia Dall comptnz chiav urop pr l apprndimnto prmannt alla nostra progttazion didattica 1. Comunicazion nlla madrlingua; 2. Comunicazion nll lingu stranir; 3. Comptnza matmatica comptnz

Dettagli

ISTITUTO COMPRENSIVO DI SCUOLA DELL INFANZIA, PRIMARIA E SECONDARIA DI 1 GRADO BORGATA PARADISO SCUOLA DELL INFANZIA STATALE A.

ISTITUTO COMPRENSIVO DI SCUOLA DELL INFANZIA, PRIMARIA E SECONDARIA DI 1 GRADO BORGATA PARADISO SCUOLA DELL INFANZIA STATALE A. ISTITUTO COMPRENSIVO DI SCUOLA DELL INFANZIA, PRIMARIA E SECONDARIA DI 1 GRADO Martin Luthr King Dirignt Scolastico Prof. Giuspp ASSANDRI PRESIDENZA E SEGRETERIA Vial Radich, 3 10095 GRUGLIASCO (TO) Tl.:

Dettagli

L a b o r a t o r i d i S c i e n z e d e l l a Te r r a

L a b o r a t o r i d i S c i e n z e d e l l a Te r r a L a b o r a t o r i d i c i n z d l l a T r r a A cura di Dr. Raffalla Grassi tl. 0586 266757 gologia.muso@provincia.livorno.it I laboratori di cinz dlla Trra sono organizzati scondo urdin gradual di difficoltà:

Dettagli

LISTA D ACQUISTO GODMORGON. Mobili per bagno

LISTA D ACQUISTO GODMORGON. Mobili per bagno GODMORGON Mobili pr bagno ISTRUZIONI PER LA PULIZIA Pulisci il mobil con un panno inumidito con acqua o con un dtrsivo non abrasivo, quindi asciuga con un panno pulito. L macchi umid dvono smpr ssr asciugat

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

Lettera 32. Lettera 32. Sistema Ufficio. Sistema Ufficio

Lettera 32. Lettera 32. Sistema Ufficio. Sistema Ufficio Lttra 32 Sistma Ufficio INDUSTRIE VALENTINI SPA via Rigoltto 27-47900 Rimini Tl. +39 0541 368888 - Fax +39 0541 774233 www.valntini.com Lttra 32 Sistma Ufficio L 2 3 a r t t inif, l nzia nano s s bi gn

Dettagli

Informatica. Comunicazione e multimedialità. Vibo Valentia, 24 ottobre 2005 Ercole Colonese e.colonese@virgilio.it. Testo

Informatica. Comunicazione e multimedialità. Vibo Valentia, 24 ottobre 2005 Ercole Colonese e.colonese@virgilio.it. Testo Tsto Informatica Suono, tsto, immagin, filmato Comunicazion multimalità Vibo Valntia, 24 ottobr 2005 Ercol Colons.colons@virgilio.it Comunicazion Multimalità Tsto Comunicazion Multimalità 2 Comunicazion

Dettagli

XXX SPA Stabilimento di xxx (xx) REGISTRO FORMAZIONE/ADDESTRAMENTO CONTINUI LAVORATORI CAPIREPARTO PREPOSTI VICE CAPIREPARTO REPARTO.

XXX SPA Stabilimento di xxx (xx) REGISTRO FORMAZIONE/ADDESTRAMENTO CONTINUI LAVORATORI CAPIREPARTO PREPOSTI VICE CAPIREPARTO REPARTO. Pag. 1/10 REGISTRO FORMAZIONE/ADDESTRAMENTO CONTINUI LAVORATORI CAPIREPARTO PREPOSTI VICE CAPIREPARTO REPARTO. Pr form azion/ addst ram nt o cont inui si intnd la attività di addstramnto, vrbal / o pratico,

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

MODULO 01 TERMODINAMICA

MODULO 01 TERMODINAMICA Programmazion di Impianti Trmici Class V TS A.S. 2011-2012 Insgnant: ing. Cardamon Antonio MODULO 01 TERMODINAMICA Prsntazion: con il modulo in oggtto, l allivo è nll condizioni di svolgr calcoli rlativi

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

Studio l italiano! 1. In questa lezione impari a: 1 Per iniziare. * salutare. * presentare te stesso e altre persone. * chiedere la provenienza

Studio l italiano! 1. In questa lezione impari a: 1 Per iniziare. * salutare. * presentare te stesso e altre persone. * chiedere la provenienza Studio l italiano! In qusta lzion impari a: * salutar * prsntar t stsso altr prson * chidr la provninza Pr iniziar Pr m l Italia è... Quando pnsi all Italia, ch cosa ti vin in mnt? * far domand in class

Dettagli

1 Scheda di Adesione scaricabile sul sito www.fondazionecariplo.it/scuola21. ione relativo a una ipotetica. consapevoli.

1 Scheda di Adesione scaricabile sul sito www.fondazionecariplo.it/scuola21. ione relativo a una ipotetica. consapevoli. VERSO LA COSTRUZIONE CONDIVISA DEL PIANO DIDATTICO DI SCUOLA 21 s. Istituto Tcnico Commrcial L'obittivo dl prsnt documnto è qullo di smplificar la compilazion dl Piano Didattico di Scuola 21 ch è riportato

Dettagli

SCHEDA IMMOBILIARE Cod. Identificativo CDPI 43 COMPLESSO IMMOBILIARE SITO NEL COMUNE DI LUCCA

SCHEDA IMMOBILIARE Cod. Identificativo CDPI 43 COMPLESSO IMMOBILIARE SITO NEL COMUNE DI LUCCA dci SHEDA IMMOBILIARE od. Idntificativo DPI 43 Allgato " Rprtorio n. n À5' 5.'4 OMPLESSO IMMOBILIARE SITO NEL OMUNE DI LUA DESRIZIONE IMMOBILIARE E ONFINI omplsso immobiliar dnominato "Palazzo Tommasi",

Dettagli

ACCORDO DI COLLABORAZIONE

ACCORDO DI COLLABORAZIONE ACCORDO DI COLLABORAZIONE TRA EXPO 2015 S.p.A. Rgion Lombardia il Ministro dll Istruzion, dll Univrsità dlla Ricrca Ufficio Scolastico Rgional pr la Lombardia in accordo con ANCI Lombardia Rgion Ecclsiastica

Dettagli

LG ha introdotto NeON 2 dotato di tecnologia CELLO, una cella di nuova concezione che migliora le prestazioni e l'affidabilità. Fino a 320 W 300 W

LG ha introdotto NeON 2 dotato di tecnologia CELLO, una cella di nuova concezione che migliora le prestazioni e l'affidabilità. Fino a 320 W 300 W Tcnologia CELLO IT LG ha introdotto NON 2 dotato di tcnologia CELLO, una clla di nuova conczion ch migliora l prstazioni l'affidabilità. Fino a 320 W 300 W Tcnologia CELLO Cll Connction (Connssion Clla)

Dettagli

3 Corso di Formazione per Operatori Volontari per Centri di Primo Soccorso e Centri di Recupero Animali Selvatici Feriti o in difficoltà.

3 Corso di Formazione per Operatori Volontari per Centri di Primo Soccorso e Centri di Recupero Animali Selvatici Feriti o in difficoltà. Corpo di Polizia Provincial 3 Corso di Formazion pr Opratori Volontari pr Cntri di Primo Soccorso Cntri di Rcupro Animali Slvatici Friti o in difficoltà. (Opratori da impigar prsso il Cntro di Rcupro Animali

Dettagli

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9 1 IL CONCETTO DI FUNZIONE 1 II-1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 5 3 Funzion invrsa 7 4 Rstrizion prolungamnto di una funzion 9 5 Soluzioni dgli srcizi 9 In qusta dispnsa affrontiamo

Dettagli

Suzuki generico. N e data : 40036-01/03/2014 Diffusione : NC Pagina 115 : Periodicità : Bimestrale Dimens. 92.74 : % Elabor4x4_40036_115_10.

Suzuki generico. N e data : 40036-01/03/2014 Diffusione : NC Pagina 115 : Periodicità : Bimestrale Dimens. 92.74 : % Elabor4x4_40036_115_10. Diffusion : NC Pagina 115 : Priodicità : Bimstral Dimns 9274 : % Elabor4x4_40036_115_10pdf Sito wb: wwwlaborarorg WEB 6 kiiikroktani 7igo 417- Libik _ 1 / 7 Diffusion : NC Pagina 116 : Priodicità : Bimstral

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

Caccia Programmazione e controllo nelle aziende sanitarie

Caccia Programmazione e controllo nelle aziende sanitarie Caccia Programmazion controllo nll azind sanitari approccio tradizional:stratgia posta all'strno di P & C formulazion di budgt STRATEGIE programmazion svolgimnto attività rporting valutazion approccio

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Generali operative. Ausiliario Sui compiti Semplice Interne con pochi soggetti. Di tipo indiretto. Discreta ampiezza delle soluzioni.

Generali operative. Ausiliario Sui compiti Semplice Interne con pochi soggetti. Di tipo indiretto. Discreta ampiezza delle soluzioni. ,352),/,352)(66,21$/,1(*/,(17,/2&$/,813266,%,/(02'(//2', '(6&5,=,21('(//$9252 GL5LFFDUGR*LRYDQQHWWL&H3$±/,8& A distanza di circa quattro anni dalla introduzion dl nuovo sistma di inquadramnto dl prsonal

Dettagli

MAGAZZINO EX GUALA VIA S. GIOVANNI BOSCO, - ALESSANDRIA PROCEDURA DI CONTROLLO DEGLI ACCESSI ALL INTERNO DELL AREA

MAGAZZINO EX GUALA VIA S. GIOVANNI BOSCO, - ALESSANDRIA PROCEDURA DI CONTROLLO DEGLI ACCESSI ALL INTERNO DELL AREA CITTÀ DI ALESSANDRIA SERVIZIO DI PREVENZIONE E PROTEZIONE PIAZZA DELLA LIBERTÀ n. 1 MAGAZZINO EX VIA S. GIOVANNI BOSCO, - ALESSANDRIA PROCEDURA DI CONTROLLO DEGLI ACCESSI ALL INTERNO DELL AREA FILE: procdura

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

REPORT DELLA VALUTAZIONE COLLETTIVA

REPORT DELLA VALUTAZIONE COLLETTIVA CONCORSO DI PROGETTAZIONE UNA NUOVA VIVIBILITA PER IL CENTRO DI NONANTOLA PROCESSO PARTECIPATIVO INTEGRATO CENTRO ANCH IO! REPORT DELLA VALUTAZIONE COLLETTIVA ESITO DELLE VOTAZIONI RACCOLTE DURANTE LE

Dettagli

REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA

REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA SETTORE ECONOMICO PROFESSIONALE 1 SETTORE EDILIZIA Procsso Costruzion di difici di opr di inggnria civil/industrial Squnza di procsso

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI

ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI PROGRAMMAZIONE INDIVIDUALE PIANO DIDATTICO ANNUALE A.S. 2015/2016 Matria: Tcnologi Informatich Class (docnt) 1^ACH - Prof. Musumci

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

2. L ambiente celeste

2. L ambiente celeste unità 2. L ambint clst L EVOLUZIONE DI UNA STELLA nana Bruna s la massa inizial è poco infrior a qulla dl Sol nana Bianca Nbulosa Protostlla fusion nuclar stlla dlla squnza principal dl diagramma HR gigant

Dettagli

PERCORSI DIDATTICI BAMBINI 3 ANNI ANNO SCOLASTICO 2013/2014 Scuola dell Infanzia G.Rodari FINALITA

PERCORSI DIDATTICI BAMBINI 3 ANNI ANNO SCOLASTICO 2013/2014 Scuola dell Infanzia G.Rodari FINALITA PRCORSI DIDATTICI BAMBINI 3 ANNI ANNO SCOLASTICO 2013/2014 Scuola dell Infanzia G.Rodari N 77 Bambini nati nel 2010 Sez: COCCODRILLI GIRAFF IPPOPOTAMI SCATOL, SCATOLIN, SCATOLONI...PR GIOCAR,CONTNR, SPLORAR

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1.

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1. CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ Spazi di probabilità, vnti smplici d vnti composti Indichiamo con S lo spazio dgli vnti. Esso è un insim, i cui lmnti sono dtti vnti. Nl lancio di un dado, lo

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Problema 3: CAPACITA ELETTRICA E CONDENSATORI

Problema 3: CAPACITA ELETTRICA E CONDENSATORI Problma 3: CAPACITA ELETTRICA E CONDENSATORI Prmssa Il problma composto da qusiti di carattr torico da una succssiva part applicativa costituisc un validissimo smpio di quilibrio tra l divrs signz ch convrgono

Dettagli

Concretezza in Qualità e Servizio.

Concretezza in Qualità e Servizio. Concrtzza in Qualità Srvizio www.monaripallts.it Chi siamo La MONARI PALLETS srl, fondata nl 1968 da Enrico Monari, è oggi una modrna industria di succsso, in continua spansion, grazi alla solida d oculata

Dettagli

Programmazione didattica annuale IRC

Programmazione didattica annuale IRC DIREZIONE DIDATTICA VIETRI SUL MARE Via Mazzini - Vitri sul Mar (SA) Programmazion didattica annual IRC Scuola Primaria Anno scolastico 2011/2012 A piccoli passi vrso Plsso: Class: DRAGONEA PRIMA, SECONDA,

Dettagli

Lampade di. emergenza MY HOME. emergenza. Lampade di

Lampade di. emergenza MY HOME. emergenza. Lampade di Lampad di Lampad di MY HOME 97 Lampad Carattristich gnrali Scopi dll illuminazion Ngli ambinti rsidnziali gli apparcchi di illuminazion non sono imposti da lggi o norm, ma divntano comunqu prziosi ausilii.

Dettagli

ISTRUZIONE OPERATIVA

ISTRUZIONE OPERATIVA Documnto: OPQTA20120001 ISTRUZIONE OPERATIVA Data: 19/03/2012 Prparato: Ufficio CPI Guida di rifrimnto rapido compilazion FORMAT COMAP pr PMI La prsnt guida dscriv l modalità di dtrminazion di costi orari

Dettagli

Ottimizzazione economica degli scambiatori di recupero.

Ottimizzazione economica degli scambiatori di recupero. Facoltà di Inggnria Univrsità dgli tudi di Bologna Dipartimnto di Inggnria Industrial Marco Gntilini Ottimizzazion conomica dgli scambiatori di rcupro Quadrni dl Dipartimnto MARCO GENTILINI OTTIMIZZAZIONE

Dettagli

installare sopra o filo pavimento, sono una scelta perfetta per dare un tocco contemporaneo e dinamico al bagno e aumentare la sensazione di spazio.

installare sopra o filo pavimento, sono una scelta perfetta per dare un tocco contemporaneo e dinamico al bagno e aumentare la sensazione di spazio. Piatto doccia rttangolar ultraflat spsso solo in 4 acrilico cm, da installar sopra o filo pavimnto, sono una sclta prftta pr dar un tocco contmporano dinamico al bagno aumntar la snsazion di spazio. Tsi

Dettagli

Tra. di seguito le Parti

Tra. di seguito le Parti Protocollo di intsa SERVIRE CON LODE Tra il Politcnico di Torino C.F. n. 00518460019, con sd lgal in Torino, Corso Duca dgli Abruzzi, 24, rapprsntato dal Vic Rttor pr la Didattica Prof.ssa Anita Tabacco

Dettagli

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

Il Mago di Oz - Laboratorio di teatro in inglese

Il Mago di Oz - Laboratorio di teatro in inglese Il Mago Oz - Laboratorio tatro in ingls Inviato da Raffal martdì 06 ottobr 2015 Ultimo aggiornamnto martdì 06 ottobr 2015 TAURIANO - Il Pas, la storia, l nws la sua gnt Con po ritardo pubblichiamo con

Dettagli

Ritmo danze Ritmo movimento. Bo Ritmando

Ritmo danze Ritmo movimento. Bo Ritmando Pr sion Mo cussion vimnto Dan Pr Pr Dan Dan Mo Pr Dan vimnto Dan Mo Mo Mo Dan Dan vimnto Mo Mo Mo Dan Dan vimnto Ed d Int grazion Ed d Ed Ed Ed Int Ed Ed Ed grazion Int Dan Ed Int Ed Int Ed Ed Ed Ed Di

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

Le evoluzioni del Corporate Banking interbancario in Italia e in Europa

Le evoluzioni del Corporate Banking interbancario in Italia e in Europa Convgno ABI Tavola rotonda L voluzioni dl Corporat Banking intrbancario in Italia in Europa 11 cmbr 2009 Luigi Prissich DG Confindustria Srvizi innovativi Tcnologici Il Progtto Italia Digital Costruir

Dettagli

Un test di decisione ortografica per i bambini di scuola elementare

Un test di decisione ortografica per i bambini di scuola elementare Un tst di dcision ortografica pr i bambini di scuola lmntar Andra Biancardi, Barbara Proni, Lilia Bonadiman 8 Convgno intrnazional Imparar: qusto è il problma San Marino, /9/ Caus di rrori ortografici

Dettagli

QUADRATI 60X60. ARTICOLO DESCRIZIONE SP (mm) MISURA (cm) 5 60x60 Non illuminato / 5 60x led da 0,06W. 5 60x60 Non illuminato Radio integrata

QUADRATI 60X60. ARTICOLO DESCRIZIONE SP (mm) MISURA (cm) 5 60x60 Non illuminato / 5 60x led da 0,06W. 5 60x60 Non illuminato Radio integrata Antprima Gli spcchi sono complmnti d arrdo molto importanti, in una casa così com in un ufficio o in un ngozio. Uno spcchio ha una funzion dcorativo-ornamntal fondamntal poiché, com pzzo d arrdo, può arricchir

Dettagli

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN PIANO DI LAVORO DELLA DISCIPLINA: ESTIMO SPECIALE CLASSI: V, sz A CORSO: Costruzioni, Ambint, Trritorio AS 2015-2016 Moduli Libro Di Tsto Comptnz bas Abilità Conoscnz Disciplina Concorrnti Tmpi Critri,

Dettagli

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida.

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida. INTRODUZIONE Pr la prdisposizion dl piano, è ncssario far rifrimnto all Lin Guida. Lo schma proposto di sguito è stato sviluppato nll ambito dl progtto Miglioramnto dll prformanc dll istituzioni scolastich

Dettagli

SERVIZIO LUCE 3 - Criteri di sostenibilità

SERVIZIO LUCE 3 - Criteri di sostenibilità SERVIZIO LUCE 3 - Critri sostnibilità 1. Oggtto dll iniziativa La Convnzion ha com oggtto l attività acquisto dll nrgia lttrica, srcizio manutnzion dgli impianti illuminazion pubblica, nonché gli intrvnti

Dettagli

novembre 2015 suddivisioni di quantità, retta numerica, lunghezze e superfici, altezza di figure 2D e 3D

novembre 2015 suddivisioni di quantità, retta numerica, lunghezze e superfici, altezza di figure 2D e 3D MATEMATICA 2^ VERSO I TRAGUARDI DI COMPETENZA L alunno: gg scriv i numri naturali snza limiti prfissati; riconosc il valor posiziona dl cifr; calcola riga addizioni, moltiplicazioni; calcola divisioni

Dettagli

LICEO CLASSICO TITO LIVIO - PADOVA PROGRAMMAZIONE DIPARTIMENTALE FILOSOFIA E STORIA. Anno scolastico 2014/2015 COMPETENZE CHIAVE

LICEO CLASSICO TITO LIVIO - PADOVA PROGRAMMAZIONE DIPARTIMENTALE FILOSOFIA E STORIA. Anno scolastico 2014/2015 COMPETENZE CHIAVE LICEO CLASSICO TITO LIVIO - PADOVA PROGRAMMAZIONE DIPARTIMENTALE DI FILOSOFIA E STORIA Anno scolastico 2014/2015 COMPETENZE CHIAVE 1) Comunicazion nlla madrlingua, 2) comunicazion in lingu stranir, 3)

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati Gnralità sull Misur di Grandzz Fisich - Misurazioni dirtt 1 Tsti consigliati Norma UNI 4546 - Misur Misurazioni; trmini dfinizioni fondamntali - Milano - 1984 Norma UNI-I 9 - Guida all sprssion dll incrtzza

Dettagli

Moduli e-learning ABB Istruzioni per la frequenza ai corsi. Sommario

Moduli e-learning ABB Istruzioni per la frequenza ai corsi. Sommario Moduli -larning ABB Istruzioni pr la frqunza ai corsi Il prsnt documnto ha lo scopo di dscrivr l principali carattristich di corsi -larning: com rgistrarsi d accdr al sistma, iscrivrsi ad un corso, frquntarlo

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli