Lezione XXVI Sistemi vibranti a 1 gdl 9,%5$=,21,75$16,725,(

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione XXVI Sistemi vibranti a 1 gdl 9,%5$=,21,75$16,725,("

Transcript

1 ezione XXVI 9,%5$=,,75$6,75,( Quando un sistema dinamico viene sollecitato da una eccitazione non periodica applicata improvvisamente, come nel caso di un impulso, le risposte a tali eccitazioni sono dette transitori, dal momento che generalmente non si producono oscillazioni di regime. Tali oscillazioni avvengono con le frequenze proprie del sistema e l'ampiezza varierà a seconda del tipo di eccitazione. er prima cosa studiamo la risposta del solito oscillatore a una eccitazione impulsiva, dal momento che questo caso è importante per la comprensione del problema più generale dei transitori. Incontriamo frequentemente forze molto grandi agenti per un tempo molto breve, ma con integrale finito rispetto al tempo. Chiamiamo tali forze impulsive e il loro valore è definito dall'equazione ˆ +ε = ) )G a figura mostra una forza impulsiva di grandezza F /ε con durata nel tempo ε. Se ε tende a zero, tali forze tendono all'infinito l'impulso definito dal suo integrale rispetto al tempo è ˆ). Quando ˆ) è uguale all'unità, tale forza nel caso limite di ε viene chiamata impulso unitario o funzione delta, e viene indicata con il simbolo δ (t- ξ) e gode delle seguenti proprietà δ ( ξ) = per ξ ( ) δ ξ Gξ = ( ξ) δ( ξ) ξ = ( ξ) I G I Dal momento che Fdt = mdv, 'impulso ) ˆ agente sulla massa darà luogo a una improvvisa variazione di velocità senza un apprezzabile cambiamento di posizione. Allora un oscillatore, eccitato da un impulso ) ˆ, nel caso di vibrazioni libere presenterà le condizioni iniziali ) ˆ [( ) = [ ( ) = Y = A.A. /

2 ezione XXVI Se il sistema non è smorzato, la soluzione dell integrale generale dell equazione differenziale omogenea è data da mentre nel caso smorzato ) ˆ () = sin ω ˆ = () ω [ K ) ˆ ξ ( ξω) ) ξω [ () = H sin = K ()) ˆ dove con h(t) si indica la risposta all'impulso unitario. ω Nota la risposta h(t) del sistema meccanico a un eccitazione d impulso unitario è quindi possibile calcolarne la risposta a una forza arbitraria f(t), immaginandola come costituita da una serie d impulsi ) ˆ = I( ξ) ξ A.A. /

3 ezione XXVI Il contributo alla risposta al tempo t di ogni singolo impulso è pari a I( ξ) ξk( ξ) e poiché il sistema è lineare, valendo il principio di sovrapposizione degli effetti, la risposta del nostro sistema alla forzante arbitraria f(t) è dato da ( ) [ () = I ξ K ( ξ) Gξ detto anche integrale di Duhamel o della sovrapposizione (o della convoluzione). Da quanto detto, si può banalmente calcolare la risposta a una forzante a gradino del tipo f(t)=f, già vista in precedenza. Se il sistema è non smorzato, abbiamo che e quindi () = sinω ω K ) ) [ G ( ) () = sin ω ξ ξ = ( cos ω ) ω N coincidente, ovviamente, con quanto avevamo ottenuto attraverso le condizioni iniziali e l integrale particolare. Inoltre, vale che la funzione di trasferimento e, ovviamente che M ( ) ( ) π Iτ + ( I ) ) K τ K τ H Gτ ( τ ) = ( ) K ) + I A.A. / 3

4 ezione XXVI 6,67(,/,($5, a seconda formulazione dell equazione di agrange per sistemi conservativi a un grado di libertà è la seguente G ( G7 ) G7 + G8 = 4 G G dove T è l energia cinetica del sistema U è l energia potenziale delle forze conservative agenti q è la coordinata libera che si è scelta per rappresentare il moto del sistema Q, detta componente lagrangiana, rappresenta la somma dei lavori elementari di tutte le altre forze agenti sul sistema per un incremento virtuale unitario δ T * = della variabile indipendente. In perticolare, il termine G ( G7 ) G7 rappresenta il lavoro virtuale delle forze e coppie G G d inerzia del sistema il termine G8 il lavoro virtuale delle forze che ammettono potenziale, G: mentre 4 = è il lavoro virtuale di tutte le altre forze agenti sul sistema. * δ T otrà essere spesso comodo esprimere T, U e Q in funzione di spostamenti virtuali dx i coordinate geometriche x i legate alla coordinata libera q da m relazioni del tipo di m = (, ) per i =,, 3,, m [ [ T Nei casi di cui ci occuperemo, gli m legami geometrici risultano indipendenti dal tempo per cui = ( ) per i =,, 3,, m [ [ T A.A. / 4

5 Ne deriva che ezione XXVI = ( ) per i =,, 3,, m [ [ T 7 = 7 = [ = = Ma G[ ( T) G[ ( T) [ G e quindi G[ ( T) = (, ) 7 7 T 7 T T = = Ma 7 7 (, ) = (,) + ( ) T T 7 T T 7 T T T T T T T T =, = =, = + ( ) + ( ) T T T T T T T T T =, = =, = =, = T T T T T T Ricordando agrange e l espressione di T si ha e G7 7 T ( ) T + G G7 7 7 T T T T G T T T T T, T =, = =, = 7 + T =, = T T T ( T T ) 7 + T T =, = T T T A.A. / 5

6 ezione XXVI Analogamente l energia potenziale U dipende solo dalla configurazione e quindi che porta a G8 G 8 ( ) = ( ) ( ) ( ) 8 T 8 T T T T T T T T T G8 G8 G 8 T T T T ( T T ) + er quanto riguarda la componente lagrangiana Q in essa compariranno i lavori virtuali * δ / ) [ uur = δ r ovvero r ur G[ ) G: / ) [ G [ G[ 4 = ) = ) ur r r * * δ δ * cos * * * * * ur α * = = = = = oiché le F i possono essere funzioni anche non lineari di, T,, si avrà 4TTT 4 T T T (,,, ) = (,,,) + ( ) + ( ) +... G = = =, =, T T T T + T G = G = T T T T =, =, Ovvero, utilizzando agrange, ed eventualmente linearizzando con Taylor i termini non lineari, perverremo sempre a una equazione differenziale lineare a coefficienti costanti completa del tipo dove, nel caso più generale, 7 = = =, = T T T T =, + + = () + UT NT ) ) U N = = T T =, G8 = = T= T =, T T A.A. / 6

7 ) () = G = T T =, ezione XXVI G8 G 8 ) = 4(, T,,) + T T T T T Con un opportuna scelta di t edi q è sempre possibile fare in modo che F sia nullo, se non interessa studiare la risposta del sistema alla sua applicazione, e quindi risolvere l equazione differenziale linearizzata al fine di valutare la stabilità del sistema per piccole oscillazioni attorno alla posizione q a partire dall istante t. Si vede immediatamente che se q è la posizione di equilibrio statico all istante t, definita da G8 4 (, T,,) = T = T ovviamente misurando gli spostamenti a partire da questa posizione avremo = = = = T T T T T T T ) A.A. / 7

Oscillatore semplice: risposta ad eccitazioni arbitrarie. In molte applicazioni pratiche l eccitazione dinamica non è né armonica nè periodica.

Oscillatore semplice: risposta ad eccitazioni arbitrarie. In molte applicazioni pratiche l eccitazione dinamica non è né armonica nè periodica. Oscillatore semplice: risposta ad eccitazioni arbitrarie In molte applicazioni pratiche l eccitazione dinamica non è né armonica nè periodica. È necessario dunque sviluppare una procedura generale per

Dettagli

Lezione XXIV Sistemi vibranti a 1 gdl 67580(17,',0,685$'(//(9,%5$=,21,

Lezione XXIV Sistemi vibranti a 1 gdl 67580(17,',0,685$'(//(9,%5$=,21, ezione XXIV 658(,,,685$(//(9,%5$,, Tra le applicazioni del nostro oscillatore vi è quella di usarlo come strumento per la misura delle vibrazioni assolute di un corpo Con riferimento alle grandezze indicate

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Lezione 23: Sistemi a più gradi di libertà: sistemi continui (3)

Lezione 23: Sistemi a più gradi di libertà: sistemi continui (3) Lezione 3: Sistemi a più gradi di libertà: sistemi continui 3) Federico Cluni maggio 5 Oscillazioni forzate Si è visto che, nel caso di oscillazioni libere, il moto della trave è dato dalla funzione vx,

Dettagli

Soluzioni Prova Scritta di di Meccanica Analitica. 17 aprile Un punto di massa unitaria si muove lungo una retta soggetto al potenziale

Soluzioni Prova Scritta di di Meccanica Analitica. 17 aprile Un punto di massa unitaria si muove lungo una retta soggetto al potenziale Soluzioni Prova Scritta di di Meccanica Analitica 17 aprile 15 Problema 1 Un punto di massa unitaria si muove lungo una retta soggetto al potenziale V x = exp x / a Tracciare il grafico del potenziale

Dettagli

Sistemi Dinamici. Corrado Santoro

Sistemi Dinamici. Corrado Santoro ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it Programmazione Sistemi Robotici Definizione di Sistema Un

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (21 gennaio 2011)

PROVA SCRITTA DI MECCANICA RAZIONALE (21 gennaio 2011) PRV SRITT DI MENI RZINLE (21 gennaio 2011) Il sistema in figura, posto in un piano verticale, è costituito di un asta rigida omogenea (massa m, lunghezza 2l) i cui estremi sono vincolati a scorrere, senza

Dettagli

Costruzioni in zona sismica

Costruzioni in zona sismica Costruzioni in zona sismica Lezione 11 Analisi dinamica e risposta di sistemi a più gradi di libertà Lezione 11 Analisi modale Lezione 11 Scopo e procedimento Le equazioni del moto, che sono accoppiate,

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Sistemi vibranti ad 1 gdl

Sistemi vibranti ad 1 gdl Sistemi vibranti ad 1 gdl - vibrazioni forzate - 14 novembre 2 Le vibrazioni forzate di un sistema ad 1 gdl sono descritte dall equazione: mẍ + cẋ + x = F sin(ωt) (1) dove, con riferimento alla figura

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o

Dettagli

Lezione XXVIII Sistemi vibranti a 2-n gdl. 6LVWHPLDSLJUDGLGLOLEHUWjQRQVPRU]DWL

Lezione XXVIII Sistemi vibranti a 2-n gdl. 6LVWHPLDSLJUDGLGLOLEHUWjQRQVPRU]DWL 6LVWHLDSLJUDGLGLOLEHUWjQRQVRU]DWL er un sistema non smorzato con gradi di libertà, le equazioni che ne governano il moto possono essere sempre scritte nella forma matriciale dove [ 0 ] e [ ] [ 0 ]{&& [()

Dettagli

Impostazione e controllo del progetto di edifici antisismici in cemento armato secondo le indicazioni delle Norme Tecniche per le Costruzioni 2008

Impostazione e controllo del progetto di edifici antisismici in cemento armato secondo le indicazioni delle Norme Tecniche per le Costruzioni 2008 Corso di aggiornamento Impostazione e controllo del progetto di edifici antisismici in cemento armato secondo le indicazioni delle Norme Tecniche per le Costruzioni 2008 Aula Oliveri, Facoltà di Ingegneria

Dettagli

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ).

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ). Impulso e quantità di moto: Lavori e Forze Impulso: l impulso di una forza variabile in un certo intervallo di tempo è definito come l integrale della forza rispetto al tempo nell intervallo considerato:

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

DINAMICA DELLE VIBRAZIONI LIBERE DEI SISTEMI A UN GRADO DI LIBERTÁ (SDOF)

DINAMICA DELLE VIBRAZIONI LIBERE DEI SISTEMI A UN GRADO DI LIBERTÁ (SDOF) INAMICA ELLE VIBRAZIONI LIBERE EI SISTEMI A UN GRAO I LIBERTÁ (SOF) M. Bozza Copyright AEPRON Tutti i iritti Riservati - www.adepron.it INAMICA ELLE VIBRAZIONI LIBERE EI SISTEMI A UN GRAO I LIBERTÁ (SOF)

Dettagli

Lezione XXII Sistemi vibranti a 1 gdl 5LJLGH]]DGHJOLHOHPHQWLHODVWLFL. k eq δ =1. k eq = 1/δ = 1 2. La forza unitaria applicata in O si divide così:

Lezione XXII Sistemi vibranti a 1 gdl 5LJLGH]]DGHJOLHOHPHQWLHODVWLFL. k eq δ =1. k eq = 1/δ = 1 2. La forza unitaria applicata in O si divide così: 5LJLGH]]DGHJOLHOHPHQWLHODVWLFL Applicando una forza unitaria all estremo della molla inferiore, questa si allungherà relativamente ai suoi estremi indeformati di δ =1/k, mentre la prima molla si allungherà

Dettagli

Lezione XXI Sistemi vibranti a 1gdl-Moto forzato non smorzato MOTI FORZATI PER SPOSTAMENTO DI VINCOLO

Lezione XXI Sistemi vibranti a 1gdl-Moto forzato non smorzato MOTI FORZATI PER SPOSTAMENTO DI VINCOLO Sistemi vibranti a gdl-moto forzato non smorzato MOTI FORZATI PER SPOSTAMETO DI VICOLO Consideriamo il solito sistema che si muova rispetto a un osservatore assoluto con una legge \W nota. \W Scrivendo

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

FM210 / MA - Prima prova pre-esonero ( )

FM210 / MA - Prima prova pre-esonero ( ) FM10 / MA - Prima prova pre-esonero (4-4-018) 1. Una particella di massa m si muove in una dimensione sotto l effetto di una forza posizionale, come descritto dalla seguente equazione: mẍ = A x xx 0 3x

Dettagli

Moti oscillatori. Parte I Oscillatore armonico

Moti oscillatori. Parte I Oscillatore armonico 1 10.1-10.2 OSCILLATORE ARMONICO Parte I Moti oscillatori 1 10.1-10.2 Oscillatore armonico Abbiamo visto che una situazione che si riconduce a soddisfare l equazione differenziale d 2 x(t) dt 2 +ω 2 x(t)

Dettagli

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9. Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale

Dettagli

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà)

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà) Foglio di Esercizi 7 Meccanica Razionale a.a. 018/19 Canale A-L P. Buttà Esercizio 1. Sia {O; x, y, z} un sistema di riferimento ortonormale con l asse z diretto secondo la verticale ascendente. Un punto

Dettagli

Stabilità esterna e analisi della risposta

Stabilità esterna e analisi della risposta Stabilità esterna e analisi della risposta Risposte di sistemi del 1 e 2 ordine Introduzione Risposta al gradino di sistemi del 1 ordine Determinazione di un modello del 1 ordine Risposta al gradino di

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 18-19 Dinamica del punto materiale 8 Dinamica del punto materiale Legge fondamentale della dinamica: d r ma m dt Tipi di forza: orza peso Reazione vincolare orza di attrito radente (statico,

Dettagli

Analisi sismica di un sistema lineare viscoso a più gradi di libertà con il metodo dello Spettro di Risposta

Analisi sismica di un sistema lineare viscoso a più gradi di libertà con il metodo dello Spettro di Risposta Analisi sismica di un sistema lineare viscoso a più gradi di libertà con il metodo dello Spettro di Risposta Prof. Adolfo Santini - Dinamica delle Strutture 1 Analisi sismica con lo spettro di risposta

Dettagli

Sistemi vibranti ad 1 gdl

Sistemi vibranti ad 1 gdl Università degli Studi di Bergamo Dipartimento di Ingegneria Sistemi vibranti ad 1 gdl - vibrazioni forzate - rev. 1. Le vibrazioni forzate di un sistema ad 1 gdl sono descritte dall equazione: mẍ + cẋ

Dettagli

Lezione 5: Sistemi ad un grado di libertà: l oscillatore elementare (5)

Lezione 5: Sistemi ad un grado di libertà: l oscillatore elementare (5) Lezione 5: Sistei ad un grado di libertà: l oscillatore eleentare (5) Federico Cluni 7 arzo 25 Risposta sotto forzante qualsiasi - Integrale di Duhael. Sovrapposizione degli effetti L equazione del oto

Dettagli

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà)

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà) Foglio di Esercizi 5 Meccanica Razionale a.a. 017/18 Canale A-L (P. Buttà) Esercizio 1. Su un piano orizzontale sono poste due guide immateriali circolari di centri fissi O 1 e O e uguale raggio r; sia

Dettagli

Soluzione del Secondo Esonero A.A , del 28/05/2013

Soluzione del Secondo Esonero A.A , del 28/05/2013 Soluzione del Secondo Esonero A.A. 01-013, del 8/05/013 Primo esercizio a) Sia v la velocità del secondo punto materiale subito dopo l urto, all inizio del tratto orizzontale con attrito. Tra il punto

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 07-08 Dinamica del punto materiale 9 pprossimazioni per piccoli angoli v ± gl sin tan v gl Limite di piccoli angoli: 0 6 cos +... 3 tan + +... 3 3 sin +... Serie di Taylor: pprossimazioni per

Dettagli

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale Prova Scritta di di Meccanica Analitica 8 Giugno 018 Problema 1 Si consideri un punto materiale di massa unitaria soggetto ad un potenziale V (x) = 1 x + x x > 0 determinare le frequenze delle piccole

Dettagli

1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata:

1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata: Università del Salento Facoltà di Ingegneria Corsi di Laurea in Ingegneria Industriale e Civile Prova scritta di Meccanica Razionale 20 giugno 2016 Soluzioni Parte 1: Domande a risposta multipla. 1. Siano

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Lezione 19: Sistemi a più gradi di libertà: sistemi discreti (10)

Lezione 19: Sistemi a più gradi di libertà: sistemi discreti (10) Lezione 9: Sistemi a più gradi di libertà: sistemi discreti () Federico Cluni 3 aprile 25 Coefficenti di massa partecipante Si abbia un sistema discreto a più gradi di libertà descritto dalle seguenti:

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica III parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

EFFETTI DELLA DEFORMABILITÀ DINAMICA (MECCANICA DELLE VIBRAZIONI) In realtà essi sono approssimati, pertanto i nostri schemi sono approssimati.

EFFETTI DELLA DEFORMABILITÀ DINAMICA (MECCANICA DELLE VIBRAZIONI) In realtà essi sono approssimati, pertanto i nostri schemi sono approssimati. EFFETTI DELLA DEFORMABILITÀ DINAMICA (MECCANICA DELLE VIBRAZIONI Per le macchine viste finora, è quasi sempre possibile effettuare uno studio considerandole a un solo grado di libertà, dove ogni elemento

Dettagli

Vibrazioni Meccaniche

Vibrazioni Meccaniche Vibrazioni Meccaniche A.A. 2-22 Esempi di scrittura dell equazione di moto per sistemi a 2 gdl Turbina Una turbina pone in rotazione un generatore elettrico per mezzo della trasmissione schematizzata in

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica I parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8)

Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Federico Cluni 3 marzo 205 Fattore di amplificazione in termini di velocità e accelerazione Nel caso l oscillatore elementare sia

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Controlli Automatici (AUT) - 09AKSBL Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Sistemi dinamici - Introduzione Concetto di sistema. Si parla

Dettagli

DIPARTIMENTO DI INGEGNERIA MECCANICA E STRUTTURALE FACOLTA DI INGEGNERIA, UNIVERSITÀ DEGLI STUDI DI TRENTO

DIPARTIMENTO DI INGEGNERIA MECCANICA E STRUTTURALE FACOLTA DI INGEGNERIA, UNIVERSITÀ DEGLI STUDI DI TRENTO DIPARTIMENTO DI INGEGNERIA MECCANICA E STRUTTURALE FACOLTA DI INGEGNERIA, UNIVERSITÀ DEGLI STUDI DI TRENTO Corso di Aggiornamento su Problematiche Strutturali Verona, Aprile - Maggio 2005 INTRODUZIONE

Dettagli

Modellistica dei Manipolatori Industriali 01BTT Esame del 18/02/2002 Soluzione

Modellistica dei Manipolatori Industriali 01BTT Esame del 18/02/2002 Soluzione Modellistica dei Manipolatori Industriali BTT Esame del 8/2/22 Soluzione Sistemi di riferimento e cinematica di posizione In Figura a) il manipolatore è stato ridisegnato per mettere in evidenza variabili

Dettagli

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32 Corso di Controllo Digitale Antitrasformate Zeta e calcolo della risposta Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo Istituto per la Sistemistica

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Prima Prova di Esonero [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Prima Prova di Esonero [ ] Corsi di laurea in Matematica e Fisica - Anno Accademico 017/18 FM10 / MA Prima Prova di Esonero [9-4-018] 1. Un punto materiale di massa m si muove in una dimensione sotto l effetto di una forza posizionale,

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 6/7 Marzo 7 - Esercizi Compito B Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t) = sin(3

Dettagli

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,

Dettagli

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1)

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1) ESERCIZI DI ANALISI MATEMATICA II Equazioni differenziali ED 1 Stabilire se l equazione integrale f(t) 1/2 0 sin(tv) v f(v) dv = (1 + t) (e 1/t + 1) ammette una soluzione nello spazio C([0, 1/2]). (Suggerimento:

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Cesare Fantuzzi (cesare.fantuzzi@unimore.it)

Dettagli

Compito di gennaio 2001

Compito di gennaio 2001 Compito di gennaio 001 Un asta omogenea A di massa m e lunghezza l è libera di ruotare attorno al proprio estremo mantenendosi in un piano verticale All estremità A dell asta è saldato il baricentro di

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2. ORDINE CA 05 Sistemi Elementari

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2. ORDINE CA 05 Sistemi Elementari Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Sistemi Elementari Cesare Fantuzzi

Dettagli

γ = & & Lezione XXVII Sistemi vibranti a 1 gdl (VHPSLGLVLVWHPLQRQOLQHDUL

γ = & & Lezione XXVII Sistemi vibranti a 1 gdl (VHPSLGLVLVWHPLQRQOLQHDUL (HPLGLLWHPLQRQOLQHDUL Molle ad aria Ricordando quanto detto a proposito dell isolamento delle vibrazioni, possiamo dimostrare che utilizzando un sistema di molle ad aria è possibile avere frequenze proprie

Dettagli

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy)

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy) Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: 0000695216 Cognome e nome: (dati nascosti per tutela privacy) 1. Di quanto ruota in un giorno sidereo il piano di oscillazione del pendolo di

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Risposta a regime (per ingresso costante e per ingresso sinusoidale)

Risposta a regime (per ingresso costante e per ingresso sinusoidale) Risposta a regime (per ingresso costante e per ingresso sinusoidale) Esercizio 1 (es. 1 del Tema d esame del 18-9-00) s + 3) 10 ( s + 1)( s + 4s ) della risposta all ingresso u ( a gradino unitario. Non

Dettagli

Meccanica del continuo

Meccanica del continuo 0_Materiali areonautici:layout -07-00 :4 Pagina 5 Meccanica del continuo La meccanica del continuo solido è un argomento estremamente vasto e complesso nell ambito ingegneristico [], [], [3]. Tuttavia

Dettagli

OSCILLAZIONI SMORZATE E FORZATE

OSCILLAZIONI SMORZATE E FORZATE OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore

Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore Attenzione: Riconsegnerete DUE fogli (protocollo bianco, a 4 facciate), scriverete chiaramente cognome e nome, data

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

Dinamica delle Strutture

Dinamica delle Strutture Corso di Laurea magistrale in Ingegneria Civile e per l Ambiente e il Territorio Dinamica delle Strutture Prof. Adolfo SANTINI Ing. Francesco NUCERA Prof. Adolfo Santini - Dinamica delle Strutture 1 Dinamica

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Soluzione Compito di isica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Esercizio 1 1) Scriviamo le equazioni del moto della sfera sul piano inclinato. Le forze agenti sono il peso

Dettagli

Relazioni fondamentali nella dinamica dei sistemi

Relazioni fondamentali nella dinamica dei sistemi Relazioni fondamentali nella dinamica dei sistemi L. P. 2 Maggio 2010 1. Quantità di moto e centro di massa Consideriamo un sistema S costituito da N punti materiali. Il punto i (i = 1,..., N) possiede

Dettagli

1.3 Sistemi non lineari ad 1 grado di libertà. 1.4 Sistemi non lineari a 2 gradi di libertà 1.5 Sistemi multicorpo. 1.6 La dinamica del corpo rigido

1.3 Sistemi non lineari ad 1 grado di libertà. 1.4 Sistemi non lineari a 2 gradi di libertà 1.5 Sistemi multicorpo. 1.6 La dinamica del corpo rigido V Indice XIII XVII 1 1 12 13 19 21 23 25 26 27 27 34 43 52 54 57 62 64 67 67 69 73 75 79 82 Prefazione Introduzione Cap. 1 Sistemi multi-corpo a 1-n gradi di libertà 1.1 Coordinate cartesiane, gradi di

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Federica Grossi Tel. 59 256333

Dettagli

COMPITO DI SEGNALI E SISTEMI 23 Luglio 2003

COMPITO DI SEGNALI E SISTEMI 23 Luglio 2003 COMPITO DI SEGNALI E SISTEMI 3 Luglio 003 Esercizio. Si consideri il sistema a tempo discreto, LTI e causale, descritto dalla seguente equazione alle differenze ( v(k) a + ) v(k ) + a v(k ) = bu(k) + cu(k

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 2008

COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 2008 COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 28 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo descritto dalla seguente equazione differenziale: a d2 y(t) 2 con a parametro reale.

Dettagli

Fisica 2C. 3 Novembre Domande

Fisica 2C. 3 Novembre Domande Fisica 2C 3 Novembre 2006 Domande ˆ i) Si consideri un oscillatore armonico smorzato e forzato da una sollecitazione sinusoidale esterna, la cui equazione é tipicamente s + 2γṡ + ω0s 2 = F cos ωt m 1)

Dettagli

Si consideri il moto di un punto materiale di massa m soggetto ad un poten- ziale centrale. 1 r

Si consideri il moto di un punto materiale di massa m soggetto ad un poten- ziale centrale. 1 r 1 3 o tutorato - FM - 4/3/017 Si consideri il moto di un punto materiale di massa m soggetto ad un poten- Esercizio 1 ziale centrale dove V 0, r 0 > 0. V ( r ) = V 0 ( 1 10 ( r0 r ) 10 1 6 ( r0 ) ) 6 r

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Sistemi LTI a tempo continuo

Sistemi LTI a tempo continuo Esercizi 4, 1 Sistemi LTI a tempo continuo Equazioni di stato, funzioni di trasferimento, calcolo di risposta di sistemi LTI a tempo continuo. Equilibrio di sistemi nonlineari a tempo continuo. Esercizi

Dettagli

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 2 Sistemi LTI a tempo continuo Trasformando con Laplace si ottiene la seguente espressione

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Numero progressivo: 15 Turno: 1 Fila: 2 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy)

Numero progressivo: 15 Turno: 1 Fila: 2 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy) Numero progressivo: 15 Turno: 1 Fila: 2 Posto: 1 Matricola: 0000731097 Cognome e nome: (dati nascosti per tutela privacy) 1. Un corpo di peso pari a 10 N è appoggiato su di un tavolo, in quiete. Qual è

Dettagli

SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT

SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccanica e del Veicolo SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

FISICA. MECCANICA: Principio conservazione momento angolare. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. MECCANICA: Principio conservazione momento angolare. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA MECCANICA: Principio conservazione momento angolare Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica MOMENTO ANGOLARE Fino a questo punto abbiamo esaminato soltanto moti di traslazione.

Dettagli

1 Risposta dinamica di strutture elastiche: forme periodiche

1 Risposta dinamica di strutture elastiche: forme periodiche 1 Risposta dinamica di strutture elastiche: forme periodiche Le equazioni di equilibrio del sistema elastico ai vari gradi di libertà si presenta nella forma generica ove: Mẍ + Cẋ + Kx = F t), x = xt)

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 016/017. Prof. M. Bramanti 1 Tema n 1 4 5 6 Tot. Cognome e nome in stampatello) codice persona

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Lezione 1/ Prof. Adolfo Santini - Dinamica delle Strutture 1 Disaccoppiamento delle equazioni

Dettagli

FISICA MATEMATICA (Ingegneria Civile) V APPELLO ( ) A.A.2017/18

FISICA MATEMATICA (Ingegneria Civile) V APPELLO ( ) A.A.2017/18 FISICA ATEATICA Ingegneria Civile V APPELLO 05.09.208 A.A.207/8 COGNOE E NOE.............................. N.Ro ATR.................................................. LUOGO E DATA DI NASCITA....................................................................................

Dettagli

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D =

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D = n. 101 cognome nome corso di laurea Analisi e Simulazione di Sistemi Dinamici 18/11/2003 Risposte Domande 1 2 3 4 5 6 7 8 9 10 N. matricola Scrivere il numero della risposta sopra alla corrispondente domanda.

Dettagli

Scritto di Analisi II e Meccanica razionale del

Scritto di Analisi II e Meccanica razionale del Scritto di Analisi II e Meccanica razionale del 06.09.01 Meccanica razionale. Esercizio 1 Un recipiente cilindrico omogeneo, di massa m, area di base A e altezza h, completamente chiuso, poggia sul piano

Dettagli

Meccanica Razionale

Meccanica Razionale Meccanica Razionale 5-7-01 1. In un piano verticale un asta omogenea di lunghezza epeso è incernierata in ein con un semidisco omogeneo di diametro epeso. Al carrello viene applicata una forza costante

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame

Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizio Sia T > 0 e f : R R la funzione reale T -periodica la cui restrizione all intervallo [0, T ] vale f(t) := t(t

Dettagli

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Anno Accademico 2017-2018 A. Ponno (aggiornato al 20 dicembre 2017) 2 Ottobre 2017 2/10/17 Benvenuto, presentazione

Dettagli

Valutazione della capacità dissipativa di un sistema strutturale

Valutazione della capacità dissipativa di un sistema strutturale Tecniche innovative per l identificazione delle caratteristiche dinamiche delle strutture e del danno Valutazione della capacità dissipativa di un sistema strutturale Prof. Ing. Felice Carlo PONZO - Ing.

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 11-07 - 2014 g A l h M, J O d B M B, J B moto definita ai punti precedenti. C m Esercizio 1. Il sistema in figura, posto nel piano verticale, è costituito

Dettagli

ESERCIZI 121. P 1 z 1 y x. a) P 2. Figura 12.25: Sistema discusso nell esercizio 41.

ESERCIZI 121. P 1 z 1 y x. a) P 2. Figura 12.25: Sistema discusso nell esercizio 41. ESERCIZI 121 Esercizio 41 Un sistema meccanico è costituito da 3 punti 0, 1 e 2 di massa m vincolati a muoversi sulla superficie di un cilindro circolare retto di raggio r = 1. Si scelga un sistema di

Dettagli

Prova di Meccanica Analitica I

Prova di Meccanica Analitica I Prova di Meccanica Analitica I 8 febbraio 7 Esercizio a) Le derivate del potenziale per x > sono date da 8x 3 x se x < V (x) = x ( + x ) se x > Quindi si ha V (x) = per x = x = ± Si ha quindi V (x) = x.

Dettagli

Elementi di dinamica delle strutture,

Elementi di dinamica delle strutture, INTRODUZIONE Una struttura o qualunque sistema meccanico è caratterizzato dinamicamente quando è nota la posizione nello spazio di tutte le masse che lo compongono in ogni istante del suo moto. Un sistema

Dettagli

Lezione 7: Sistemi ad un grado di libertà: l oscillatore elementare (7)

Lezione 7: Sistemi ad un grado di libertà: l oscillatore elementare (7) Lezione 7: Sistemi ad un grado di libertà: l oscillatore elementare (7) Federico Cluni 19 marzo 015 1 Pseudo accelerazione La risposta di un oscillatore elementare con massa m, fattore di smorzamento ν,

Dettagli

Esercizi terzo principio

Esercizi terzo principio Esercizi terzo principio Esercitazioni di Fisica LA per ingegneri - A.A. 4-5 Esercizio 1 Una ruota di massa m = 1 kg e raggio R = 1 m viene tirata contro un gradino di altezza h = 3 cm con una velocità

Dettagli

Risposta all impulso

Risposta all impulso ...3 Risposta all impulso Sistemi lineari tempo invarianti: x(t) Sistema y(t) n a lineare i D i y(t) = i= m b i D i x(t) i= La funzione di trasferimento G(s) è definita a condizioni iniziali nulle: X(s)

Dettagli

Modelli I/0 Sistemi LTI a tempo continuo

Modelli I/0 Sistemi LTI a tempo continuo Modelli I/0 Sistemi LTI a tempo continuo Andrea Roberti andrea.roberti@univr.it 11 aprile 2019 1 Esercizio 1.1 Si consideri il sistema dinamico SISO a tempo continuo descritto dalla seguente equazione

Dettagli

Modellistica dei Manipolatori Industriali 01BTT Esame del 23/11/2001 Soluzione

Modellistica dei Manipolatori Industriali 01BTT Esame del 23/11/2001 Soluzione Modellistica dei Manipolatori Industriali 1BTT Esame del 23/11/21 Soluzione 1 Sistemi di riferimento e cinematica di posizione In Figura 1 il manipolatore è stato ridisegnato per mettere in evidenza variabili

Dettagli