Stabilità esterna e analisi della risposta

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Stabilità esterna e analisi della risposta"

Transcript

1 Stabilità esterna e analisi della risposta

2 Risposte di sistemi del 1 e 2 ordine Introduzione Risposta al gradino di sistemi del 1 ordine Determinazione di un modello del 1 ordine Risposta al gradino di sistemi del 2 ordine Determinazione di un modello del 2 ordine 2

3 Risposte di sistemi del 1 e 2 ordine

4 Motivazioni (1/4) Lo studio della risposta al gradino di un sistema dinamico LTI esternamente stabile è importante per due motivi: Permette di studiare il comportamento del sistema dato nella transizione tra una situazione di equilibrio ed un altra In alcuni casi, consente di determinare, a partire dal suo rilievo sperimentale, la funzione di trasferimento del sistema dinamico 4

5 Motivazioni (2/4) Il comportamento della risposta al gradino di sistemi dinamici LTI esternamente stabili sarà studiato solo nel caso TC Si farà quindi riferimento alla descrizione di tali sistemi mediante la funzione di trasferimento H (s ): H( s) = N D H H ( s) ( s) H (s ) funzione razionale fratta in s N H (s ) polinomio del numeratore D H (s ) polinomio del denominatore N H (s ) e D H (s ) non hanno radici in comune 5

6 Motivazioni (3/4) H( s) = N D H H ( s) ( s) In questo contesto, l attenzione sarà concentrata sui Sistemi del 1 ordine D H (s ) polinomio di 1 grado Sistemi del 2 ordine D H (s ) polinomio di 2 grado i cui poli hanno parte reale strettamente negativa Inoltre, studieremo solo il caso di sistemi del 1 e del 2 ordine elementari N H (s ) di grado zero (polinomio costante) 6

7 Motivazioni (4/4) Nei due casi considerati, si procederà nello studio in base ai seguenti punti: Calcolo della risposta al gradino Tracciamento della risposta al gradino Definizione dei parametri caratteristici della risposta al gradino 7

8 Risposte di sistemi del 1 e 2 ordine

9 Funzione di trasferimento La funzione di trasferimento di un sistema del primo ordine elementare può essere espressa come: H( s) * * K K guadagno = s p p polo Ponendo: * 1 K τ =, K = p p Si ottiene la forma: H( s) K = 1 + τs 9

10 Risposta al gradino: espressione analitica Se al sistema descritto dalla funzione di trasferimento K H( s) = 1 + τs viene applicato un ingresso u (t ) a gradino di ampiezza ū : si ottiene la risposta: L u ut ( ) = uε( t) Us ( ) = s 1 L t K u τ Y ( s) = H( s) U( s) = y( t) = u K 1 e, t τss 10

11 Risposta al gradino: andamento grafico y(t ) t τ y( t) = u K 1 e, t 0 t 11

12 Valore a regime Valore a regime y è il valore a cui tende la risposta y (t ) per t y(t ) y y = lim y( t) = s 0 t = lim s Y ( s) = K u = lims = s τs s = K u t / τ 12

13 y(t ) 0.9 y Tempo di salita 10% 90% è il tempo Tempo di salita 10% 90% t r richiesto perché la risposta passi, per la prima volta dal 10% al 90% del valore di regime y = y y t r 0.1 y t / τ 13

14 Tempo di assestamento Tempo di assestamento a ± ε% t a,ε% è il tempo necessario perché la risposta differisca definitivamente dal valore di regime y per una quantità pari all ε % di quest ultimo. Valori tipici di ε sono: ε = 1, ε = 2, ε = 5 In pratica, il tempo di assestamento è il tempo necessario affinché la risposta entri nella fascia [(1 0.01ε, ε ]y e non vi esca più 14

15 Andamento grafico e tempo di assestamento 0.95 y Osservazione: dopo che è trascorso un tempo pari a tre volte la costante di tempo τ, la risposta del sistema raggiunge il 95% del valore a regime y t a,5% = 3 τ y(t ) t / τ y 15

16 Andamento grafico e costante di tempo y(t ) y 0.63 y Osservazione: dopo che è trascorso un tempo pari alla costante di tempo τ, la risposta del sistema raggiunge il 63% circa del valore a regime y t / τ 16

17 Risposte di sistemi del 1 e 2 ordine

18 Formulazione del problema Dato il seguente sistema dinamico del 1 ordine: H( s) K = 1 + τs determinare i parametri K e τ in modo che la sua risposta ad un gradino di ampiezza unitaria (ū = 1) sia quella illustrata in figura

19 Calcolo di K 3 2 y = 3 1 Poiché si ottiene: y = K u = 3, u = 1 y K = = u 3 19

20 Calcolo di τ y = y = τ τ = 0.25 s 20

21 Calcolo di τ (metodo alternativo) 0.95 y = y = τ τ = 0.75 /3 = 0.25 s 21

22 Risposta al gradino di sistemi del 1 e 2 ordine

23 ω H( s) = K s s Funzione di trasferimento Consideriamo sistemi elementari del 2 ordine descritti dalla funzione di trasferimento: 2 n ζωn + ωn K guadagno ωn pulsazione naturale 0 < ζ < 1 smorzamento 1 τ = costante di tempo ζω n 23

24 Risposta al gradino: espressione analitica Applicando al sistema del 2 ordine ω H( s) = K s s 2 n ζω + ω n n un ingresso u (t ) a gradino di ampiezza ū : L u ut ( ) = uε( t) Us ( ) = s si ottiene la risposta: 1 L ω u Y ( s) = H( s) U( s) = K y( t) = s s s 2 n ζωn + ωn 1 ( 1 ) ζωnt = uk e ω ζ t + n ( ζ ) t 1 ζ 2 1 sin arccos,

25 Risposta al gradino: andamento grafico 1 ( 1 ) ζωnt y t u K e ω ζ t n ( ζ ) t 1 ζ 2 ( ) = 1 sin + arccos, 0 2 y(t ) t 25

26 Valore a regime e valore di picco (1/2) Valore a regime y è il valore a cui tende la risposta y (t ) per t y = lim y( t) = lim s Y ( s) = t s 0 ω u = lims K = K u s 0 s s s 2 n ζωn + ωn Valore di picco y max è il valore istantaneo massimo della risposta y (t ) y max = max y( t) t 26

27 Valore a regime e valore di picco (2/2) y(t ) y max y 0 t 27

28 Sovraelongazione massima, tempo di picco (1/3) Sovraelongazione massima ŝ è il rapporto tra il massimo scostamento in ampiezza della risposta rispetto al valore di regime ed il valore di regime ˆ s = y max y y 28

29 Sovraelongazione massima, tempo di picco (1/3) La sovraelongazione massima può anche essere espressa in termini percentuali ŝ % ˆ s % = 100 ˆ s ˆt Tempo di picco è l istante in cui la risposta raggiunge il valore di picco y ( ˆt ) =y max 29

30 Sovraelongazione massima, tempo di picco (2/3) y(t ) y max ˆ s = y max y y y max - y = ŝ y y 0 t 30

31 Sovraelongazione massima, tempo di picco (2/3) y(t ) y max 0 ˆt t 31

32 Sovraelongazione massima, tempo di picco (3/3) La sovraelongazione massima ŝ dipende solo dallo smorzamento ζ: ˆ s e πζ 2 1 ζ = ζ = ˆt ln( ˆ s ) 2 2 ln ( ˆ s ) Il tempo di picco dipende sia dallo smorzamento ζ sia dalla pulsazione naturale ω n : π + ˆ t = ω n π 1 ζ 2 32

33 Tempi di salita Tempo di salita t s è il primo istante in cui la risposta raggiunge il valore di regime y =y Tempo di salita 10% 90% t r è il tempo richiesto perché la risposta passi, per la prima volta dal 10% al 90% del valore di regime y = y Entrambi dipendono sia dallo smorzamento ζ sia dalla pulsazione naturale ω n t s ζ = ( π arccos ( ζ) ), t 2 r ω 1 ζ ωn n 33

34 Tempo di salita y(t ) y 0 t s t 34

35 Tempo di salita 10% - 90% y(t ) 0.9 y y 0.1 y t r 0 t 35

36 Tempo di assestamento (1/2) Tempo di assestamento a ± ε% t a,ε% è il tempo necessario perché la risposta differisca definitivamente dal valore di regime y per una quantità pari all ε % di quest ultimo. Valori tipici di ε sono: ε = 1, ε = 2, ε = 5 In pratica, il tempo di assestamento è il tempo necessario affinché la risposta entri nella fascia [1 0.01ε, ε ]y e non vi esca più Dipende sia dallo smorzamento ζ sia dalla pulsazione naturale ω n t a, ε % ln(0.01 ε) ζω n 36

37 Tempo di assestamento (2/2) y(t ) (1+0.01ε) y ±ε (1 0.01ε) y y 0 t a,ε% t 37

38 Comportamento al variare di ζ y(t ) t ω n =1 rad/s ζ = 0.8, 0.6, 0.4,

39 Comportamento al variare di ω n y(t ) ζ = 0.4 ω n = 0.5, 1, 2, 4 rad/s t 39

40 Caso ζ = 1 (1/3) Nel caso ζ = 1, la funzione di trasferimento: diventa: ω H( s) = K s s K 1 τ ( + τs ) 2 H( s) =, = 1 n 2 n ζω + ω n n due poli R coincidenti in s = 1 /τ La risposta ad un gradino di ampiezza ū è ω t t t τ τ y() t = u K 1 e e, t 0 τ 40

41 Il corrispondente andamento grafico è: y(t ) Caso ζ = 1 (2/3) y Si noti l assenza di oscillazioni e di sovraelongazione nel transitorio che precede il raggiungimento del t valore di regime y 41

42 Le caratteristiche della risposta possono essere studiate considerando i seguenti parametri (già definiti in precedenza): Valore a regime y Tempo di salita 10% - 90% t r Tempo di assestamento a ± ε% t a, ε% Caso ζ = 1 (3/3) La seguente tabella fornisce dei legami approssimati tra i parametri y, t r, t a, ε% e quelli della fdt K e τ y ū K t r 3.36 τ t a, 5% 4.74 τ t a, 1% 6.64 τ 42

43 Caso ζ = 1 andamento al variare di τ ζ= 1 τ = 2, 1, 0.5, 0.25 s 43

44 Risposta al gradino di sistemi del 1 e 2 ordine

45 Formulazione del problema Dato il seguente sistema dinamico del 2 ordine: 2 ωn H( s) = K s ζω s + ω determinare i parametri K, ζ e ω n in modo che la sua risposta ad un gradino di ampiezza unitaria (ū = 1) sia quella illustrata in figura n n 45

46 si ottiene: y = K u = 5, u = 1 Calcolo di K y = Poiché y K = = u 5 46

47 y max 5.81 Poiché y = = 5, y max 5.81 Calcolo di ζ (1/2) y = si ottiene: y max y ˆ s = = y 47

48 Calcolo di ζ (2/2) Inoltre, dal momento che risulta: ζ = π ln( ˆ s ) + ln ( ˆ s ) 2 2 si ottiene: ln( ˆ s ) ζ = 2 2 π + ln ( ˆ s ) s ˆ=

49 ˆ t y max Si ha: Calcolo di ω n ˆ t = 1.81 s π π = ω = = 2 n 2 ω 1 ζ ˆ t 1 ζ n ζ = 0.5, ˆ t = rad/s 49

Stabilità esterna e risposta a regime Esercizi risolti. 1 Esercizio (proposto il 16/11/2007, es. #10)

Stabilità esterna e risposta a regime Esercizi risolti. 1 Esercizio (proposto il 16/11/2007, es. #10) Stabilità esterna e risposta a regime Esercizi risolti 1 Esercizio (proposto il 16/11/27, es. #1) s+ H(s) = Y(s)/U(s) = (s+3)(s+8) calcolare analiticamente, se possibile, la risposta in regime permanente

Dettagli

Risposte allo scalino di sistemi del I e II ordine. Marcello Farina

Risposte allo scalino di sistemi del I e II ordine. Marcello Farina Risposte allo scalino di sistemi del I e II ordine Sommario 2 Struttura generale delle funzioni di trasferimento Caratteristiche della risposta allo scalino di principale interesse Risposte allo scalino

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o

Dettagli

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ).

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ). RISPOSTA FORZATA SISTEMI LINEARI STAZIONARI u(t) G(s) = B(s) A(s) = b ns n + + b 0 s n + + a 0 y f (t) Classe di funzioni di ingresso. U := l Q(s) u( ) : U(s) = P (s) = i= (s z i ) ri= (s p i ), l r, A(p

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Studio dei sistemi dinamici tramite FdT. Risposta allo scalino. Risposta allo scalino di sistemi LTI a tempo continuo.

Studio dei sistemi dinamici tramite FdT. Risposta allo scalino. Risposta allo scalino di sistemi LTI a tempo continuo. Parte 7, 1 Parte 7, 2 Introduzione Studio dei sistemi dinamici tramite FdT Risposta allo scalino Assegnato un sistema dinamico LTI descritto tramite una Funzione di Trasferimento (a tempo continuo oppure

Dettagli

Studio dei sistemi dinamici tramite FdT. Risposta allo scalino

Studio dei sistemi dinamici tramite FdT. Risposta allo scalino Parte 7, 1 Studio dei sistemi dinamici tramite FdT Risposta allo scalino Parte 7, 2 Introduzione Assegnato un sistema dinamico LTI descritto tramite una Funzione di Trasferimento (a tempo continuo oppure

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Cesare Fantuzzi (cesare.fantuzzi@unimore.it)

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2. ORDINE CA 05 Sistemi Elementari

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2. ORDINE CA 05 Sistemi Elementari Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Sistemi Elementari Cesare Fantuzzi

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

Prova Scritta di Fondamenti di Automatica del 13 Settembre Studente: Matricola: calcolare l'espressione analitica della risposta indiciale.

Prova Scritta di Fondamenti di Automatica del 13 Settembre Studente: Matricola: calcolare l'espressione analitica della risposta indiciale. Prova Scritta di Fondamenti di Automatica del 3 Settembre 006 Studente: Matricola: ) Una persona del peso di 75 Kg decide di provare il salto con l'elastico (bungee jumping) da una piattaforma posta a

Dettagli

s +6 s 3 s 2 +(K 3)s +6K. 6(s +6) s 2 +3s +36. (1) i) Prima di tutto fattorizziamo opportunamente la funzione di trasferimento (1)

s +6 s 3 s 2 +(K 3)s +6K. 6(s +6) s 2 +3s +36. (1) i) Prima di tutto fattorizziamo opportunamente la funzione di trasferimento (1) Esercizio. Con riferimento al sistema di figura, calcolare: u(t) + K s s +6 s 3 y(t) a) la funzione di trasferimento a ciclo chiuso tra u(t) e y(t); b) i valori di K per i quali il sistema a ciclo chiuso

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 8: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Federica Grossi Tel. 59 256333

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

Rappresentazioni e parametri della funzione di trasferimento

Rappresentazioni e parametri della funzione di trasferimento FUNZIONE DI TRASFERIMENTO Definizione e proprietà Rappresentazioni e parametri della funzione di trasferimento Risposta allo scalino Illustrazioni dal Testo di Riferimento per gentile concessione degli

Dettagli

Risposta a regime (per ingresso costante e per ingresso sinusoidale)

Risposta a regime (per ingresso costante e per ingresso sinusoidale) Risposta a regime (per ingresso costante e per ingresso sinusoidale) Esercizio 1 (es. 1 del Tema d esame del 18-9-00) s + 3) 10 ( s + 1)( s + 4s ) della risposta all ingresso u ( a gradino unitario. Non

Dettagli

Sistemi Elementari. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Sistemi Elementari. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi Elementari Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Rappresentazioni di una funzione di trasferimento Una funzione di trasferimento espressa in forma polinomiale

Dettagli

K 1 + T s. W (s) = dove T è la costante di tempo e K è il guadagno di Bode. Nel seguito supporremo K = 1. L 1 T e t/t δ ( 1) = w(t) (13.

K 1 + T s. W (s) = dove T è la costante di tempo e K è il guadagno di Bode. Nel seguito supporremo K = 1. L 1 T e t/t δ ( 1) = w(t) (13. Capitolo 3 Sistemi elementari 3. Introduzione In questo capitolo intendiamo esaminare il comportamento dei sistemi del primo e del secondo ordine. Lo studio ha un duplice scopo. Anzitutto, esso consentirà

Dettagli

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo 1 Corso di Fondamenti di Automatica A.A. 2017/18 Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e Clinica Università degli

Dettagli

Parte 7, 1. Prof. Thomas Parisini. Parte 7, 3. Prof. Thomas Parisini. Parte 7, 5 - Risposta allo scalino: I ordine. B) Non strettamente proprio

Parte 7, 1. Prof. Thomas Parisini. Parte 7, 3. Prof. Thomas Parisini. Parte 7, 5 - Risposta allo scalino: I ordine. B) Non strettamente proprio Parte 7, 1 Parte 7, 2 - Risposta allo scalino Studio dei sistemi dinamici tramite FdT - Risposta allo scalino In sistemi asint. stabili descrive la transizione da un equilibrio ad un altro Parte 7, 3 -

Dettagli

Controlli Automatici 2 27 Settembre 2007 COGNOME...NOME... MATR...CDL (ELETTR, GEST, MECC)

Controlli Automatici 2 27 Settembre 2007 COGNOME...NOME... MATR...CDL (ELETTR, GEST, MECC) Controlli Automatici 2 27 Settembre 27 COGNOME...NOME... MATR...CDL (ELETTR, GEST, MECC) Per il processo descritto dalla funzione di trasferimento P(s) = s + 4 (s + )(s +.) a.) Si tracci il diagramma di

Dettagli

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Controlli Automatici (AUT) - 09AKSBL Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Sistemi dinamici - Introduzione Concetto di sistema. Si parla

Dettagli

Risposta all impulso

Risposta all impulso ...3 Risposta all impulso Sistemi lineari tempo invarianti: x(t) Sistema y(t) n a lineare i D i y(t) = i= m b i D i x(t) i= La funzione di trasferimento G(s) è definita a condizioni iniziali nulle: X(s)

Dettagli

Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco)

Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco) Sintesi diretta (Complementi di Controlli Automatici: prof. Giuseppe Fusco) La tecnica di progetto denominata sintesi diretta ha come obiettivo il progetto di un controllore C(s) il quale assicuri che

Dettagli

Regolazione e Controllo dei Sistemi Meccanici 23 Novembre 2005

Regolazione e Controllo dei Sistemi Meccanici 23 Novembre 2005 Regolazione e Controllo dei Sistemi Meccanici 23 Novembre 25 Numero di matricola A) Si consideri la risposta al gradino unitario riportata in fig. e si determini qualitativamente la funzione di trasferimento

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 12 gennaio 218 - Quiz Per ciascuno

Dettagli

Antitrasformando questa funzione, otteniamo l'andamento dell'uscita nel tempo:

Antitrasformando questa funzione, otteniamo l'andamento dell'uscita nel tempo: INTRODUZIONE Si definisce sistema (elementare) del primo ordine un sistema (lineare tempoinvariante) che sia caratterizzato da una funzione di trasferimento che, a meno di un fattore costante, si può porre

Dettagli

Teoria dei Sistemi s + 1 (s + 1)(s s + 100)

Teoria dei Sistemi s + 1 (s + 1)(s s + 100) Teoria dei Sistemi 03-07-2015 A Dato il sistema dinamico rappresentato dalla funzione di trasferimento 10s + 1 (s + 1)(s 2 + 16s + 100) A.1 Si disegnino i diagrammi di Bode, Nyquist e i luoghi delle radici.

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 2 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

Quattro sistemi dinamici presentano poli e zeri disposti nel piano complesso come indicato nelle seguenti figure

Quattro sistemi dinamici presentano poli e zeri disposti nel piano complesso come indicato nelle seguenti figure -Es Stab Quattro sistemi dinamici presentano poli e zeri disposti nel piano complesso come indicato nelle seguenti figure Per ciascuno di essi si dica, giustificando la risposta, se il sistema e: a) asintoticamente

Dettagli

Corso di Fondamenti di Automatica. Università di Roma La Sapienza. Diagrammi di Bode. L. Lanari. Dipartimento di Informatica e Sistemistica

Corso di Fondamenti di Automatica. Università di Roma La Sapienza. Diagrammi di Bode. L. Lanari. Dipartimento di Informatica e Sistemistica Corso di Fondamenti di Automatica Università di Roma La Sapienza Diagrammi di Bode L. Lanari Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Roma, Italy Ultima modifica May 8,

Dettagli

Appunti: Rappresentazione delle funzioni razionali fratte

Appunti: Rappresentazione delle funzioni razionali fratte Appunti: Rappresentazione delle funzioni razionali fratte Giulio Cazzoli v1.0 (AA. 2018-2019) 1 Rappresentazione di una funzione razionale 2 1.1 Forma polinomiale............................................

Dettagli

Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace -

Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace - Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace - Alpigiani Cristiano 17 novembre 2005 Introduzione Scopo di questa esperienza è quello di familiarizzare con alcune proprietà

Dettagli

MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili

MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili MODELLO COMPLETO PER IL CONTROLLO D m (s) D r (s) Y o (s) U(s) P (s) Y (s) d m (t): disturbi misurabili d r (t): disturbi non misurabili y o (t): andamento desiderato della variabile controllata u(t):

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 20 Febbraio 2014

COMPITO DI CONTROLLI AUTOMATICI 20 Febbraio 2014 COMPITO DI CONTROLLI AUTOMATICI Febbraio 14 Esercizio 1. [11 punti] Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1 3 s(s + 1)(s + 1) (s

Dettagli

Studio di sistemi dinamici a tempo discreto tramite FdT. Risposta allo scalino

Studio di sistemi dinamici a tempo discreto tramite FdT. Risposta allo scalino Parte 6, 1 Studio di sistemi dinamici a tempo discreto tramite FdT Risposta allo scalino Risposta allo scalino Parte 6, 2 Valore iniziale e finale Parte 6, 3 Valore iniziale Uso il teorema del valore iniziale

Dettagli

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo 1 Corso di Fondamenti di Automatica A.A. 2016/17 Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e Clinica Università degli

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 18 febbraio 2014 Anno Accademico 2012/2013 ESERCIZIO 1 Si consideri il sistema descritto dalle

Dettagli

Calcolo del movimento di sistemi dinamici LTI. Esempi di soluzione per sistemi dinamici LTI TC

Calcolo del movimento di sistemi dinamici LTI. Esempi di soluzione per sistemi dinamici LTI TC Calcolo del movimento di sistemi dinamici LTI Esempi di soluzione per sistemi dinamici LTI TC Esempi di soluzione per sistemi LTI TC Scomposizione in fratti semplici (parte I) Esempio di soluzione 1 Scomposizione

Dettagli

Stabilità e risposte di sistemi elementari

Stabilità e risposte di sistemi elementari Parte 4 Aggiornamento: Settembre 2010 Parte 4, 1 Stabilità e risposte di sistemi elementari Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL: www-lar.deis.unibo.it/~lmarconi

Dettagli

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona Corso di laurea in Informatica Regolatori Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Scelta delle specifiche 1. Picco di risonanza e massima sovraelongazione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Stabilità esterna e analisi della risposta Stabilità esterna e risposta a regime Risposte di sistemi del I e II ordine 2 Stabilità esterna e analisi della risposta Stabilità esterna

Dettagli

Progetto dei sistemi di controllo

Progetto dei sistemi di controllo Lucidi del corso di Progetto dei sistemi di controllo Corso di Laurea triennale in Ingegneria dell Automazione Università di Siena, Facoltà di Ingegneria Parte III Sistemi dinamici lineari a tempo continuo

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 2 febbraio 217 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte

Dettagli

Prova scritta di Controlli Automatici e sistemi elettrici lineari

Prova scritta di Controlli Automatici e sistemi elettrici lineari Prova scritta di Controlli Automatici e sistemi elettrici lineari Corso di Laurea in Ingegneria Meccatronica, AA 202 203 9 Settembre 203 Domande a Risposta Multipla Per ognuna delle seguenti domande a

Dettagli

Analisi dei sistemi in retroazione

Analisi dei sistemi in retroazione Facoltà di Ingegneria di Reggio Emilia Corso di Controlli Automatici Corsi di laurea in Ingegneria Meccatronica ed in Ingegneria della Gestione Industriale Ing. Alessandro Macchelli e-mail: amacchelli@deis.unibo.it

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/2004 4 gennaio 2004 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi. La chiarezza

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 8 giugno 217 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte

Dettagli

Progetto delle reti correttrici

Progetto delle reti correttrici 6.1. IL PROGETTO DEI REGOLATORI - Dati di specifica 6.1 1 Progetto delle reti correttrici Si consideri il seguente sistema retroazionato: r e m y C(s) G(s) I dati di specifica sui quali si basa il progetto

Dettagli

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32 Corso di Controllo Digitale Antitrasformate Zeta e calcolo della risposta Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo Istituto per la Sistemistica

Dettagli

FONDAMENTI DI AUTOMATICA 11 novembre 2018 Prima prova in itinere Cognome Nome Matricola

FONDAMENTI DI AUTOMATICA 11 novembre 2018 Prima prova in itinere Cognome Nome Matricola FONDAMENTI DI AUTOMATICA novembre 28 Prima prova in itinere Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da 7 pagine compresi il foglio di carta semilogaritmica. Scrivere

Dettagli

Chapter 1. Risposta a segnali canonici. 1.1 Risposta a regime a segnali sinusoidali: risposta in frequenza

Chapter 1. Risposta a segnali canonici. 1.1 Risposta a regime a segnali sinusoidali: risposta in frequenza Chapter Risposta a segnali canonici In questo capitolo analizziamo la risposta forzata di un sistema descritto da una funzione di trasferimento quando sia alimentato da segnali canonici. I segnali canonici

Dettagli

Risposta al gradino di un sistema del primo ordine

Risposta al gradino di un sistema del primo ordine 0.0..4 Risposta al gradino di un sistema del primo ordine Diagramma Si consideri il seguente sistema lineare del primo ordine: G(s) = +τ s L unico parametro che caratterizza il sistema è la costante di

Dettagli

Esercizi per il corso di Fondamenti di Automatica I

Esercizi per il corso di Fondamenti di Automatica I Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 Febbraio 2009 Exercise. Si determini la trasformata di Laplace dei segnali: x (t) = cos(ωt

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/ giugno 2014

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/ giugno 2014 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/2014 30 giugno 2014 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm La determinazione dell'evoluzione

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici - Prima parte 18 Aprile 216 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.1) Calcolare la trasformata di Laplace X(s) dei seguenti

Dettagli

Esercizi per il corso di Fondamenti di Automatica I

Esercizi per il corso di Fondamenti di Automatica I Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 novembre 2009 Parte I Exercise. Si determini la trasformata di Laplace dei segnali: x (t) =

Dettagli

Tracciamento dei Diagrammi di Bode

Tracciamento dei Diagrammi di Bode Tracciamento dei Diagrammi di Bode L. Lanari, G. Oriolo Dipartimento di Ingegneria Informatica, Automatica e Gestionale Sapienza Università di Roma October 24, 24 diagrammi di Bode rappresentazioni grafiche

Dettagli

Teoria dei Sistemi

Teoria dei Sistemi Teoria dei Sistemi 13-06-2016 Esercizio 1 In Figura sono riportati un sottomarino telecomandato da remoto (ROV) ed il suo modello nel piano di pitch (beccheggio). Il sistema ha massa M e momento di inerzia

Dettagli

Fondamenti di automatica

Fondamenti di automatica Corso di laurea in Ingegneria dell Automazione - Anno accademico 04-05 Fondamenti di automatica Esercizio 21 Calcolare le funzioni di trasferimento da u a y e da d a e nel seguente schema a blocchi. d

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 11 1 11 Giugno 1 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono

Dettagli

Regolazione e Controllo dei Sistemi Meccanici 1 Giugno 2006

Regolazione e Controllo dei Sistemi Meccanici 1 Giugno 2006 Regolazione e Controllo dei Sistemi Meccanici 1 Giugno 26 Numero di matricola = 1α 1 = 1β 1 Si consideri lo schema di azionamento di una valvola rotativa riportato in fig1 Il sistema è costituito da tre

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 4/5 settembre 5 TESTO E Esercizio In riferimento allo schema a blocchi in figura. y y u - s5 sk y k s y 4 Domanda.. Determinare una realizzazione in equazioni

Dettagli

Esercizi. Funzioni di trasferimento. Dato un sistema LTI descritto dalle equazioni di stato:

Esercizi. Funzioni di trasferimento. Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Trasformando con Laplace si ottiene la seguente espressione per l uscita: Risposta libera Risposta

Dettagli

Soluzione per sistemi dinamici LTI TC Esercizi risolti

Soluzione per sistemi dinamici LTI TC Esercizi risolti Eserciio per sistemi dinamici LTI TC Esercii risolti Dato il seguente sistema dinamico LTI a tempo continuo: [ [ 5 ẋ(t) x(t) + u(t) 4 8 y(t) [ x(t) + 8u(t) determinare l espressione analitica del dello

Dettagli

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s .. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:

Dettagli

Sistemi LTI a tempo continuo

Sistemi LTI a tempo continuo Esercizi 4, 1 Sistemi LTI a tempo continuo Equazioni di stato, funzioni di trasferimento, calcolo di risposta di sistemi LTI a tempo continuo. Equilibrio di sistemi nonlineari a tempo continuo. Esercizi

Dettagli

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 2 Sistemi LTI a tempo continuo Trasformando con Laplace si ottiene la seguente espressione

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 8 settembre 2017 SOLUZIONE ESERCIZIO 1. Si consideri il seguente circuito elettrico passivo: Applicando le leggi di Kirchhoff

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 17 luglio 18 - Quiz Per ciascuno dei

Dettagli

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA

ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%20industriale.htm ANTITRAFORMATE DI LAPLACE MODI DI UN SISTEMA Ing. Luigi Biagiotti Tel. 051

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 1 febbraio 18 - Quiz Per ciascuno dei

Dettagli

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 21 Febbraio 2012

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 21 Febbraio 2012 COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 21 Febbraio 212 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1

Dettagli

Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi.

Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi. .. 3.2 Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ febbraio 2006 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ febbraio 2006 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 25/26 13 febbraio 26 TESTO E SOLUZIONE Esercizio 1 Si consideri il sistema lineare descritto dalle equazioni di stato seguenti: ẋ 1 (t) = 2x 1 (t) αx 2 (t)

Dettagli

COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 6 Settembre 2013

COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 6 Settembre 2013 COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 6 Settembre 213 Esercizio 1. [9. + 1 punti] Sia G(s) = (s 2 +1)(s+1) (s.1)(s 2 +.2s+1) la funzione di trasferimento di un

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 09/02/2017 Prof. Marcello Farina SOLUZIONI Anno Accademico 2015/2016 ESERCIZIO 1 Si consideri il sistema a tempo discreto non lineare descritto dalle seguenti

Dettagli

Esercizi sul luogo delle radici

Esercizi sul luogo delle radici FA Esercizi 6, 1 Esercizi sul luogo delle radici Analisi di prestazioni a ciclo chiuso, progetto di regolatori facendo uso del luogo delle radici. Analisi di prestazioni FA Esercizi 6, 2 Consideriamo il

Dettagli

Esercizi di Controlli Automatici

Esercizi di Controlli Automatici Esercizi di Controlli Automatici L. Magni Esercizio Si studi la stabilità dei seguenti sistemi retroazionati negativamente con guadagno d anello L(s) al variare di > utilizzando il luogo delle radici e

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 2008

COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 2008 COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 28 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo descritto dalla seguente equazione differenziale: a d2 y(t) 2 con a parametro reale.

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1 FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 21: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema descritto dalle seguenti equazioni: ẋ 1 = x 2 2 + x 1 ẋ 2 =

Dettagli

Cognome Nome Matricola Corso

Cognome Nome Matricola Corso Fondamenti di Controlli Automatici - A.A. 212/13 6 novembre 213 - Quiz di Teoria Cognome Nome Matricola Corso Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che

Dettagli

Schema a campionamento dell uscita

Schema a campionamento dell uscita Schema a campionamento dell uscita Introduzione Il progetto di un controllore digitale può svilupparsi secondo due linee alternative: La prima si basa su tecniche di progetto a tempo continuo basate su

Dettagli

Legami s-t per sistemi del secondo ordine

Legami s-t per sistemi del secondo ordine Legami s-t per sistemi del secondo ordine Sia dato il sistema del secondo ordine di funzione di trasferimento W(s) = k 1 + 2ζs + s2 2 i cui poli sono dati da s = α ± jω con α =-ζ, ω = 1 ζ 2. La risposta

Dettagli

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.

Dettagli