Politecnico di Milano. Reti Wireless. Seminari didattici. Introduzione all ottimizzazione. Ilario Filippini

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Politecnico di Milano. Reti Wireless. Seminari didattici. Introduzione all ottimizzazione. Ilario Filippini"

Transcript

1 Politecnico di Milano Reti Wireless Seminari didattici Introduzione all ottimizzazione Ilario Filippini

2 2 Esempio 1!

3 3 Esempio 1!!

4 4 Esempio 2!!?

5 5 Ottimizzazione!!!!!! Ottimizzazione

6 6 Approccio matematico all ottimizzazione max min s.t. f (x) x! X

7 7 Ottimizzazione discreta!!!! Ottimizzazione

8 8 Esempi di ottimizzazione combinatoria!!!

9 9 Esempi di ottimizzazione combinatoria!!!

10 10 Esempi di ottimizzazione combinatoria!!!

11 11 Esempi di ottimizzazione combinatoria!!!!

12 12 Esempi di ottimizzazione combinatoria!!!!!

13 13 Approccio a forza bruta!!!!!! Nodi MST TSP Zaino secondi 0.36 millisec. 0.1 microsec giorni 2.17 minuti 3.27 microsec anni 7.7 anni 0.1 millisec trilioni di anni 49 milioni di anni 3.35 millisec.!!!! 1000!! 4 milioni di anni

14 14 Modello generale di Programmazione Matematica max min s.t. f (x) x! X Ottimizzazione max min s.t. f (x) g i (x)!,=," b i i =1,.., m

15 15 Tassonomia dei modelli!!!!!!!!!!!!!!!!

16 16 Modello generale MIP max min n! j=1 n c j x j s.t.! a x ",=,# b $i =1,.., m ij j i j=1 l j # x j # u j $j =1,.., k l j # x j # u j, x j % & $j = k +1,.., n

17 17 Dalla realtà al modello!!!!!!

18 18 Fondamenti di LP! max c T x s.t. Ax = b x! 0!!!!!! max s.t. n! j=1 n c j x j! a ij x j = b i "i =1,.., m j=1 x # 0

19 19 Risolvere LP!!!!

20 20 Esempio in 2 dimensioni max 30x x 2 s.t. 2x 1 + x 2!100 x 1 + x 2! 80 x 1! 40 x 1, x 2 " 0 max 30x x 2 s.t. 2x 1 + x 2 + s 1 =100 x 1 + x 2 + s 2 = 80 x 1 + s 3 = 40 x 1, x 2, s 1, s 2, s 3! 0!!!

21 21 Risolvere MIP max min Ottimizzazione n! j=1 n c j x j s.t.! a ij x j ",=,# b i $i =1,.., m j=1 l j # x j # u j $j =1,.., k!! l j # x j # u j, x j % & $j = k +1,.., n!!!

22 22 Convex Hull!!!!

23 23 Convex Hull!!!

24 24 Unimodularità! max min s.t. ct x Ax! b x " 0, intero!!!!

25 25 Metodi di soluzione per MIP!!!!!! Ottimizzazione

26 26 Piani di taglio!!!!!!!

27 Metodi dei piani di taglio 27!!!!!!!

28 28 Branch and Bound!!!!!!!

29 29 Albero di Branch and Bound!!!!!!!!!

30 30 Albero di Branch and Bound

31 31 Efficienza Branch and Bound!!!!!!!!!!!!!!

32 32 Problemi facili e problemi difficili!!!!!!!!!!!!

33 33 Classe dei problemi NP!!!!!!! Ottimizzazione

34 34 Classe dei problemi P!!!!!!!

35 35 Classe dei problemi NP-completi!!!!!

36 36 Esempi di problemi NP-C!!!!!!!!!!!

37 37 Allora, P = NP o P! NP?!!!!!!

38 38 Classe dei problemi NP-hard!!!!!

39 39 Come interpretare la complessità?!!!!

40 40 Come interpretare la complessità?!!! Ottimizzazione

41 41 La risposta alla nostra domanda!!!!!! Ottimizzazione

42 42 Complessità e rappresentazione!!!!

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Dalla teoria alla soluzione Ilario Filippini 2 Approccio euristico 3 Obiettivo dell approccio euristico 4 Tipi di euristiche Dalla teoria alla soluzione

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore ITTS Vito Volterra Progetto ABACUS Ottimizzazione combinatoria Il problema del commesso viaggiatore Studente: Davide Talon Esame di stato 2013 Anno scolastico 2012-2013 Indice 1. Introduzione........................................

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Introduzione La Ricerca Operativa La Ricerca Operativa è una disciplina relativamente recente. Il termine Ricerca Operativa è stato coniato

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Catasto dei Fabbricati - Situazione al 24/07/ Comune di TRIESTE (L424) - < Sez.Urb.: Q - Foglio: 36 - Particella: 4099/1 - Subalterno: 5 >

Catasto dei Fabbricati - Situazione al 24/07/ Comune di TRIESTE (L424) - < Sez.Urb.: Q - Foglio: 36 - Particella: 4099/1 - Subalterno: 5 > Totale schede: 33 - Formato di acquisizione: A4(210x297) - Formato stampa richiesto: A3(297x420) Totale schede: 33 - Formato di acquisizione: A4(210x297) - Formato stampa richiesto: A3(297x420) Totale

Dettagli

Totale schede: 26 - Formato di acquisizione: A3(297x420) - Formato stampa richiesto: A4(210x297)

Totale schede: 26 - Formato di acquisizione: A3(297x420) - Formato stampa richiesto: A4(210x297) Totale schede: 26 - Formato di acquisizione: A3(297x420) - Formato stampa richiesto: A4(210x297) Totale schede: 26 - Formato di acquisizione: A3(297x420) - Formato stampa richiesto: A4(210x297) Totale

Dettagli

Formulazioni PLI di problemi di decisione. 1 Introduzione: La formulazione dei problemi di ottimizzazione combinatoria

Formulazioni PLI di problemi di decisione. 1 Introduzione: La formulazione dei problemi di ottimizzazione combinatoria Formulazioni PLI di problemi di decisione Dispensa per il modulo di Analisi e Ottimizzazione dei Processi di Produzione Università di Roma Tor Vergata a cura di Andrea Pacifici, Claudio Cavalletti, Daniela

Dettagli

SISTEMI DI CONDOTTE: Il dimensionamento idraulico

SISTEMI DI CONDOTTE: Il dimensionamento idraulico SISTEMI DI CONDOTTE: Il dimensionamento idraulico Carlo Ciaponi Università degli Studi di Pavia Dipartimento di Ingegneria Idraulica e Ambientale Posizione del del problema Rete da progettare di cui è

Dettagli

Algoritmi e Strutture Dati (Mod. B) Introduzione

Algoritmi e Strutture Dati (Mod. B) Introduzione Algoritmi e Strutture Dati (Mod. B) Introduzione Modulo B Orari Lunedì ore 11-13 aula A6 Mercoledì ore 14-16 aula A6 Ricevimento Martedì ore 14-16 Ufficio 2M13 Dip. Fisica (2 piano edificio M) Laboratori

Dettagli

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa XI Nota degli autori 1 Capitolo 1 Introduzione alla ricerca operativa 1 1.1 Premessa 1 1.2 Problemi di ottimizzazione 6 1.3 Primi approcci ai modelli di ottimizzazione 13 1.4 Uso del risolutore della Microsoft

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

Introduzione al Corso di Algoritmi

Introduzione al Corso di Algoritmi Università di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Accademico 2014/15 p. 1/36 Introduzione al Corso di Algoritmi Di cosa parliamo oggi: Una discussione generale su cosa studieremo, perchè

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Laboratory for innovation MUSP. Macchine utensili e sistemi di produzione. Laboratorio MUSP www.musp.it

Laboratory for innovation MUSP. Macchine utensili e sistemi di produzione. Laboratorio MUSP www.musp.it Laboratory for innovation MUSP Macchine utensili e sistemi di produzione www.musp.it Sommario La schedulazione della produzione Gli obiettivi nella schedulazione Le problematiche legate alla schedulazione

Dettagli

Tecniche Reticolari. Problema: determinare l istante di inizio di ogni attività in modo che la durata complessiva del progetto sia minima

Tecniche Reticolari. Problema: determinare l istante di inizio di ogni attività in modo che la durata complessiva del progetto sia minima Project Management Tecniche Reticolari Metodologie per risolvere problemi di pianificazione di progetti Progetto insieme di attività A i di durata d i, (=,...,n) insieme di relazioni di precedenza tra

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni CARLO MANNINO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

Programmazione Lineare Intera: Piani di Taglio

Programmazione Lineare Intera: Piani di Taglio Programmazione Lineare Intera: Piani di Taglio Andrea Scozzari a.a. 2014-2015 April 22, 2015 Andrea Scozzari (a.a. 2014-2015) Programmazione Lineare Intera: Piani di Taglio April 22, 2015 1 / 23 Programmazione

Dettagli

Ant Colony Optimization (ACO) e Swarm Intelligence

Ant Colony Optimization (ACO) e Swarm Intelligence Università degli Studi di Milano Facoltà di scienze Matematiche, Fisiche e Naturali Ant Colony Optimization (ACO) e Swarm Intelligence Seminario per il corso di Sistemi Intelligenti Prof. N. Alberto BORGHESE

Dettagli

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati Informatica 3 Informatica 3 LEZIONE 10: Introduzione agli algoritmi e alle strutture dati Modulo 1: Perchè studiare algoritmi e strutture dati Modulo 2: Definizioni di base Lezione 10 - Modulo 1 Perchè

Dettagli

(3,4) (1,3) (2,2) (0,2) (3,4) (2,4) t (2,3) (3,5) (2,4) (3,5) (6,8) (3,4) (1,2) 1 (1,3)

(3,4) (1,3) (2,2) (0,2) (3,4) (2,4) t (2,3) (3,5) (2,4) (3,5) (6,8) (3,4) (1,2) 1 (1,3) Prova Scritta di RICERCA OPERATIVA èinformaticiè 2èè98 - Esame æ Cognome: æ Nome:. Una compagnia petrolifera possiede 3 depositi dai quali puço prelevare benzina e trasportarla ai 5 impianti di distribuzione.

Dettagli

5.3 Metodo dei piani di taglio

5.3 Metodo dei piani di taglio 5.3 Metodo dei piani di taglio (PLI) min s.v. c T x Ax b x interi X Ipotesi: a ij, c j e b i interi Osservazione: La regione ammissibile di un PLI può essere descritta mediante dei vincoli più o meno stringenti

Dettagli

Complessità e Approssimazione

Complessità e Approssimazione 1 Complessità e Approssimazione Corso di Laurea in Scienze dell'informazione Corso di Laurea Specialistica in Matematica Docente: Mauro Leoncini 2 Aspetti organizzativi Sito web: http://algo.ing.unimo.it/people/mauro

Dettagli

Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling Supply Chain

Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling Supply Chain 1 PROGRAMMAZIONE LINEARE 1 1 Programmazione lineare 1.1 Modelli matematici Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling

Dettagli

Università del Salento

Università del Salento Università del Salento Dipartimento di Matematica DAI SISTEMI DI DISEQUAZIONI LINEARI.. ALLA PROGRAMMAZIONE LINEARE Chefi Triki La Ricerca Operativa Fornisce strumenti matematici di supporto alle attività

Dettagli

Programmazione Lineare Intera (PLI)

Programmazione Lineare Intera (PLI) PLI.1 Programmazione Lineare Intera (PLI) z P LI = min c T x Ax b x 0 x intero vincoli di interezza non lineari: es. sin(πx) = 0 Rimuovendo il vincolo di interezza PL (rilassamento continuo di PLI), tale

Dettagli

UNIVERSITÀ DEGLI STUDI. La formazione in rete: e-learning per i dipendenti all'università di Pavia

UNIVERSITÀ DEGLI STUDI. La formazione in rete: e-learning per i dipendenti all'università di Pavia UNIVERSITÀ DEGLI STUDI La formazione in rete: e-learning per i dipendenti all'università di Pavia PAVIA Flavio Ferlini & Elena Caldirola Torino, 27 ottobre 2010 - Conferenza GARR 2010 FORMAZIONE PROFESSIONALE

Dettagli

Energy Management DI PRIMO LIVELLO

Energy Management DI PRIMO LIVELLO Energy Management MASTER MIP POLITECNICO DI MILANO DI PRIMO LIVELLO A PORDENONE Energy Management MASTER MIP POLITECNICO DI MILANO DI PRIMO LIVELLO Il Master si propone nel territorio in risposta alla

Dettagli

Appunti di Logistica. F. Mason E. Moretti F. Piccinonno

Appunti di Logistica. F. Mason E. Moretti F. Piccinonno Appunti di Logistica F. Mason E. Moretti F. Piccinonno 2 1 Introduzione La Logistica è una disciplina molto vasta che, in prima approssimazione, si suddivide in logistica interna (alle aziende) e logistica

Dettagli

Valor Team S.r.l. (Gruppo MC) Via Savona, 52 20144 Milano

Valor Team S.r.l. (Gruppo MC) Via Savona, 52 20144 Milano CURRICULUM VITAE DI GIUSEPPE SBARBARO ALLEGATO 2 INFORMAZIONI PERSONALI Nome Indirizzo Cellulare Telefono Fax E-mail Nazionalità Giuseppe Sbarbaro g.sbarbaro@utiliteam.it Italiana Data di nascita 09 marzo

Dettagli

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli

Dettagli

Analisi del movimento: l arrampicata sportiva

Analisi del movimento: l arrampicata sportiva BergamoScienza 2007 Analisi del movimento: l arrampicata sportiva 1/30 Sommario Introduzione Acquisizione ed elaborazione dei dati Alcuni dati interessanti Conclusione e sviluppi futuri 2/30 1 Alcune domande

Dettagli

Rilassamento Lagrangiano

Rilassamento Lagrangiano RILASSAMENTO LAGRANGIANO 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il seguente problema

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna 9 Algoritmi Euristici introduzione Vittorio Maniezzo Università di Bologna 1 Molti problemi reali richiedono soluzioni algoritmiche I camion devono essere instradati VRP, NP-hard I depositi o i punti di

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

Programmazione a numeri interi: il metodo del Branch and Bound

Programmazione a numeri interi: il metodo del Branch and Bound Programmazione a numeri interi: il metodo del Branch and Bound L. De Giovanni G. Zambelli Un problema di programmazione lineare intera è una problema della forma z I = maxc T x Ax b x 0 x i Z, i I. (1)

Dettagli

SEZIONE OTTAVA FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI ART. 1

SEZIONE OTTAVA FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI ART. 1 SEZIONE OTTAVA FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI ART. 1 Alla Facoltà di Scienze matematiche, fisiche e naturali afferiscono i seguenti corsi di laurea: a) corso di laurea quadriennale

Dettagli

Seminario Sicurezza Informatica. VoIP Attack

Seminario Sicurezza Informatica. VoIP Attack UNIVERSITA' DEGLI STUDI DI PERUGIA Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Magistrale in Informatica Seminario Sicurezza Informatica VoIP Attack Studenti Alfredo Parisi Saverio

Dettagli

Progetto e Ottimizzazione di Reti 1. Presentazione del Corso

Progetto e Ottimizzazione di Reti 1. Presentazione del Corso Progetto e Ottimizzazione di Reti 1. Presentazione del Corso PAOLO NOBILI (M-Z) ANTONIO SASSANO (A-L) Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Laurea in Ingegneria

Dettagli

Automazione Industriale

Automazione Industriale Politecnico di Milano Prof. Luca Ferrarini Tel. 02-2399-3672 e-mail luca.ferrarini@polimi.it http://www.elet.polimi.it/upload/ferrarin/ miai2004/corso.html 1 Orario del corso Lunedì 8.15-10.15 T.1.1 Martedì

Dettagli

Programmazione lineare

Programmazione lineare Programmazione lineare Dualitá: definizione, teoremi ed interpretazione economica Raffaele Pesenti 1 Dualità 1.1 Definizione e teoremi Definizione 1 Dato un problema di LP in forma canonica max x = ct

Dettagli

Ottimizzazione delle interrogazioni (parte I)

Ottimizzazione delle interrogazioni (parte I) Ottimizzazione delle interrogazioni I Basi di Dati / Complementi di Basi di Dati 1 Ottimizzazione delle interrogazioni (parte I) Angelo Montanari Dipartimento di Matematica e Informatica Università di

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

Università di Pisa Facoltà di Scienze Matematiche Fisiche e Naturali

Università di Pisa Facoltà di Scienze Matematiche Fisiche e Naturali Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea Specialistica in Informatica (classe 23/S: Informatica) Corso di Laurea Specialistica in Tecnologie Informatiche (classe 23/S: Informatica)

Dettagli

Corso Programmazione 2011-2012

Corso Programmazione 2011-2012 Corso Programmazione 2011-2012 (docente) Fabio Aiolli E-mail: aiolli@math.unipd.it Web: www.math.unipd.it/~aiolli (docenti laboratorio) E. Caniato, A. Ceccato Dipartimento di Matematica Pura ed Applicata

Dettagli

Massimo Rundo Politecnico di Torino Dipartimento Energia Fluid Power Research Laboratory

Massimo Rundo Politecnico di Torino Dipartimento Energia Fluid Power Research Laboratory La simulazione delle pompe oleodinamiche Massimo Rundo Politecnico di Torino Dipartimento Energia Fluid Power Research Laboratory Politecnico di Torino Dipartimento Energia Macchine a fluido Laboratorio

Dettagli

RELAZIONE SEMINARIO SSB PER LE UNIVERSITÀ. MILANO, 19 FEBBRAIO 2003

RELAZIONE SEMINARIO SSB PER LE UNIVERSITÀ. MILANO, 19 FEBBRAIO 2003 RELAZIONE SEMINARIO SSB PER LE UNIVERSITÀ. MILANO, 19 FEBBRAIO 2003 INDICE Introduzione...2 Il sistema università....2 Il ruolo della smart card a supporto dei servizi universitari...3 L esperienza dell

Dettagli

Complessità computazionale degli algoritmi

Complessità computazionale degli algoritmi Complessità computazionale degli algoritmi Lezione n. 3.bis I precursori dei calcolatore Calcolatore di Rodi o di Andikithira 65 a.c. Blaise Pascale pascalina XVII secolo Gottfried Leibniz Joseph Jacquard

Dettagli

ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE

ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE Algebra lineare numerica 121 Ax = b A, b affetti dall errore di round-off si risolve sempre un sistema perturbato: con (A + A)(x + x) = b + b A = ( a i,j

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera Teoria della Programmazione Lineare Intera Laura Galli Dipartimento di Informatica Largo B. Pontecorvo, 567 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 7 Ottobre 0 Ricerca Operativa Laurea

Dettagli

Università degli Studi di Genova Corso di Laurea Magistrale in Ingegneria Gestionale

Università degli Studi di Genova Corso di Laurea Magistrale in Ingegneria Gestionale Pianificazione di una rete logistica per lo smaltimento e il riutilizzo dei rifiuti di apparecchiature elettriche ed elettroniche: applicazione del progetto WEEENMODELS nel Comune di Genova Candidata:

Dettagli

Algoritmi. a.a. 2013/14 Classe 2: matricole dispari

Algoritmi. a.a. 2013/14 Classe 2: matricole dispari Algoritmi a.a. 2013/14 Classe 2: matricole dispari Marcella Anselmo Presentazioni Info: http://www.di.unisa.it/professori/anselmo/ Orario ricevimento: Lunedì 15-17 Giovedì 12-13 Il mio studio è il n 57

Dettagli

Simulazioni accoppiate 1D-3D per scenari d incendio

Simulazioni accoppiate 1D-3D per scenari d incendio Simulazioni accoppiate 1D-3D per scenari d incendio Applicazione a tunnel stradali e linee metropolitane Luca Iannantuoni Dipartimento di Energia - Politecnico di Milano 29 Ottobre 2009 Luca Iannantuoni

Dettagli

1 Breve introduzione ad AMPL

1 Breve introduzione ad AMPL 1 Breve introduzione ad AMPL Il primo passo per risolvere un problema reale attraverso strumenti matematici consiste nel passare dalla descrizione a parole del problema al modello matematico dello stesso.

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Stage di Ricerca Operativa in università

Stage di Ricerca Operativa in università Stage di Ricerca Operativa in università Ottimizziamo! Progetto Lauree Scientifiche Ufficio Scolastico Regionale Lombardia Università degli Studi di Milano Quando? Lunedì 8 Giugno e Martedì 9 Giugno 2009,

Dettagli

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP Contenuto e scopo presentazione Vehicle Scheduling 08/03/2005 18.00 Contenuto vengono introdotti modelli e metodi per problemi di Vehicle Scheduling Problem (VSP) Scopo fornire strumenti di supporto alle

Dettagli

Il monitoraggio ambientale come supporto al controllo del territorio. Francesco Antolini Emanuele Tavelli

Il monitoraggio ambientale come supporto al controllo del territorio. Francesco Antolini Emanuele Tavelli Il monitoraggio ambientale come supporto al controllo del territorio Francesco Antolini Emanuele Tavelli Geosciences and Information Technologies GIT 2015 - San Leo (RN), 17 Giugno 2015 Winet Srl Vu Pham

Dettagli

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni Scopo intervento Integrazione scorte e distribuzione Modelli a domanda costante Presentare modelli e metodi utili per problemi di logistica distributiva Indicare limiti degli stessi e come scegliere tra

Dettagli

Appunti del corso di Informatica Generale 1 (IN110 Fondamenti) 1 Presentazione del corso

Appunti del corso di Informatica Generale 1 (IN110 Fondamenti) 1 Presentazione del corso Università Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica Generale 1 (IN110 Fondamenti) 1 Presentazione del corso Prof. Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo Rilassamento continuo - generazione

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

Esame di Ricerca Operativa del 07/09/2016

Esame di Ricerca Operativa del 07/09/2016 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

1 a Facoltà di Ingegneria SEDE DI FOGGIA

1 a Facoltà di Ingegneria SEDE DI FOGGIA POLITECNICO DI BARI Regolamento Didattico del Corso di Laurea in INGEGNERIA GESTIONALE Classe 10 INGEGNERIA INDUSTRIALE 1 a Facoltà di Ingegneria SEDE DI FOGGIA ALLEGATO N.3 al Verbale n. 20 del Consiglio

Dettagli

SCHEDA DI PROGRAMMAZIONE DISCIPLINARE PER LA CERTIFICAZIONE DELLE COMPETENZE NEL BIENNIO DELL OBBLIGO DA RIPORTARE SUL P.O.F. A.S.

SCHEDA DI PROGRAMMAZIONE DISCIPLINARE PER LA CERTIFICAZIONE DELLE COMPETENZE NEL BIENNIO DELL OBBLIGO DA RIPORTARE SUL P.O.F. A.S. SCHEDA DI PROGRAMMAZIONE DISCIPLINARE PER LA CERTIFICAZIONE DELLE COMPETENZE NEL BIENNIO DELL OBBLIGO DA RIPORTARE SUL P.O.F. A.S. 2015-2016 ASSE DISCIPLINA DOCENTE MATEMATICO INFORMATICA Francesco Battini

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Posizionamento di antenne È dato un insieme A di possibili siti in cui installare antenne, a ciascuno

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 2011/2012 Lezione 10: Variabili e vincoli logici Variabili logiche Spesso nei problemi reali che dobbiamo affrontare ci sono dei

Dettagli

SETTIMANA DEL PIANO NAZIONALE SCUOLA DIGITALE L ORA DEL CODICE

SETTIMANA DEL PIANO NAZIONALE SCUOLA DIGITALE L ORA DEL CODICE SETTIMANA DEL PIANO NAZIONALE SCUOLA DIGITALE L ORA DEL CODICE INTRODUZIONE Con il decreto del Ministro dell istruzione, dell università e della ricerca 27 ottobre 2015, n. 851, è stato adottato il Piano

Dettagli

montagna ai trasporti internazionali Luca Bertazzi

montagna ai trasporti internazionali Luca Bertazzi Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0 Il problema dello zaino Zaino: - capacità B Oggetti (items): - numero n - indice i =1,2,...,n - valore p i -

Dettagli

FORMAZIONE AVANZATA. Risk management Internal auditing e governance dei processi per il Ministero del Lavoro e delle Politiche Sociali

FORMAZIONE AVANZATA. Risk management Internal auditing e governance dei processi per il Ministero del Lavoro e delle Politiche Sociali FORMAZIONE AVANZATA Risk management Internal auditing e governance dei processi per il Ministero del Lavoro e delle Politiche Sociali INDICE 1. Obiettivi didattici pag. 3 2. Destinatari pag. 3 3. Coordinamento

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Luigi De Giovanni 1 Modelli di programmazione lineare I modelli di programmazione lineare sono una

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 1. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 1. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 1 Docente: Laura Palagi Homework n. o 1 Problema di Revenue management aereo in sistema Hub and Spoke

Dettagli

Produzione e forza lavoro

Produzione e forza lavoro Produzione e forza lavoro Testo Un azienda produce i modelli I, II e III di un certo prodotto a partire dai materiali grezzi A e B, di cui sono disponibili 4000 e 6000 unità, rispettivamente. In particolare,

Dettagli

Equilibri di Nash e di tipo Leadership con applicazione ai Patrolling Games

Equilibri di Nash e di tipo Leadership con applicazione ai Patrolling Games POLITECNICO DI MILANO FACOLTÀ DI INGEGNERIA INDUSTRIALE E DELL INFORMAZIONE CORSO DI STUDI IN INGEGNERIA MATEMATICA Equilibri di Nash e di tipo Leadership con applicazione ai Patrolling Games Stefania

Dettagli

Il progetto PP&S: una comunità di docenti che lavora in piattaforma utilizzando ACE e strumenti di autovalutazione

Il progetto PP&S: una comunità di docenti che lavora in piattaforma utilizzando ACE e strumenti di autovalutazione Il progetto PP&S: una comunità di docenti che lavora in piattaforma utilizzando ACE e strumenti di autovalutazione Università degli Studi di Torino MIUR Promosso da MIUR Direzione Generale Ordinamenti

Dettagli

Rilassamento Lagrangiano

Rilassamento Lagrangiano Rilassamento Lagrangiano AA 2009/10 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il

Dettagli

Soluzione di problemi di ottimizzazione

Soluzione di problemi di ottimizzazione Soluzione di problemi di ottimizzazione Problema di programmazione lineare: Possibili ulteriori vincoli (Es.: x INTERO) Soluzione: Trovare x* tale che per ogni LE.1 Input: Solutori di problemi di PL/PLI

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Bibliografia. Gestione operativa della produzione. Terminologia. Schedulazione. Schedulazione operativa della produzione

Bibliografia. Gestione operativa della produzione. Terminologia. Schedulazione. Schedulazione operativa della produzione Bibliografia Gestione operativa della produzione Schedulazione operativa della produzione 14/12/2001 11.54 E.L. Lawler, J.K. Lenstra, A.G.H. Rinnoy Kan, D.B. Shmoys, Sequencing and Scheduling: Algorithms

Dettagli

Quadratic assignment Problem: The Hospital Layout

Quadratic assignment Problem: The Hospital Layout Università degli Studi di Modena e Reggio Emilia Corso di Laurea Magistrale in Ingegneria Gestionale Metodi di ottimizzazione per la logistica e la produzione Quadratic assignment Problem: The Hospital

Dettagli

Problemi di Programmazione Lineare Intera

Problemi di Programmazione Lineare Intera Capitolo 4 Problemi di Programmazione Lineare Intera La Programmazione Lineare Intera (PLI) tratta il problema della massimizzazione (minimizzazione) di una funzione di più variabili, soggetta a vincoli

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria L. De Giovanni 1 Introduzione I metodi visti finora garantiscono, almeno in linea teorica, di risolvere

Dettagli