CHE COSA SONO I MONOMI
|
|
|
- Flavia Mantovani
- 7 anni fa
- Visualizzazioni
Transcript
1 I MONOMI CHE COSA SONO I MONOMI La parola monomio deriva dall'unione del prefisso greco mònos, che significa «unico», e della parola latina nomen, che significa «nome», «termine». Vuole dire dunque «formato da un solo termine». I monomi sono le espressioni letterali più semplici. Li troviamo spesso in leggi matematiche, fisiche o economiche che legano grandezze di tipo diverso. Per esempio, se in un moto uniforme indichiamo con v la velocità e con t il tempo, lo spazio percorso 5 è dato dalla legge 5 = vt. Il prodotto vt è un monomio. Se indichiamo con ril raggio di una sfera, il suo volume Vè dato dalla for- 4 4 mula V= Tir. Anche il prodotto - Trr è un monomio. Monomio Un monomio è un'espressione letterale in cui, fra le lettere, compaiono solo moltiplicazioni e potenze. Gli esponenti delle lettere sono numeri naturali. a 5 b è un monomio a 5 + b non è un monomio 8 Sono monomi: 2aba i, 1? 6, - bxb 2, xyy, 5 + k Non sono monomi:, 2(a+b), 4a } -b 2, y la MONOMI PARTICOLARI Qualunque numero può essere considerato un monomio. Per esempio, possiamo scrivere il numero 7 anche in tanti altri modi: la 0, 7b, 7a b x 0... Quindi 7 è un monomio. Così pure sono monomi 5,, V2... In particolare, 0 è il monomio nullo.
2 1. CHE COSA SONO I MONOMI LA RIDUZIONE DI UN MONOMIO A FORMA NORMALE Forma normale Un monomio è ridotto a forma normale quando è scritto come prodotto fra un numero e una o più lettere, diverse fra loro, con eventuali esponenti. 6x 4 y 6 è ridotto a forma normale 6x y 6 x non è ridotto a forma normale I Sono monomi ridotti a forma normale: a 2 b, - òxz 4, a Per ridurre a forma normale un monomio, si applicano le proprietà commutativa e associativa della moltiplicazione e la prima proprietà delle potenze. I Riduciamo a forma normale il monomio 2ab 2 5b } a 2 : I monomi 6aab e 12«2 fe ( 2)a non sono ridotti a forma normale. 2ab òba = 2 i 2 Applichiamo la proprietà commutativa della moltiplicazione: = 2 òatftftf = Applichiamo la proprietà associativa della moltiplicazione: = {2-5){aa Xb b) = 2 2 i Moltiplichiamo i numeri e applichiamo la prima proprietà delle potenze: Coefficiente e parte letterale In un monomio ridotto a forma normale, il fattore numerico è il coefficiente, le lettere sono la parte letterale. 6 a 8 bc 2 coefficiente - parte letterale D'ora in poi, parlando di monomi, intenderemo monomi ridotti a forma normale. Se il coefficiente di un monomio è uguale a 1 o a - 1, il numero 1 non si scrive e viene sottinteso. monomio coefficiente parte letterale 4, a 2 b a } b qualunque lettera con esponente 0 a 2 b xz 4-1 xz 4
3 MONOMI IL GRADO DI UN MONOMIO! Grado Il grado di un monomio è la somma di tutti gli esponenti delle lettere. L'esponente con cui compare ogni lettera è detto grado rispetto alla lettera. grado rispetto ad a grado rispetto a b \ 8aV grado del monomio / 2+=5 Se un monomio è costituito soltanto da un numero, il suo grado è 0. Per esempio, 8 è un monomio di grado zero. Al monomio nullo non si attribuisce alcun grado. monomio grado grado rispetto ad a grado rispetto a b a 2 b 1 -a b nessuno nessuno nessuno 2. LE OPERAZIONI CON 1 MONOMI Con i monomi è possibile eseguire le quattro operazioni (addizione, sottrazione, moltiplicazione, divisione) e l'elevamento a potenza, anche se non tutte danno sempre come risultato un monomio. L'ADDIZIONE E LA SOTTRAZIONE DI MONOMI Consideriamo l'addizione la 1 + 5a 2. Se raccogliamo a fattor comune a 2, otteniamo: (2 + 5W = la 2. Il risultato è un monomio. Invece, l'addizione 2a 2 + 5a non può essere ulteriormente semplificata in modo che il risultato sia un monomio. Si ottiene un monomio solo quando i monomi addendi hanno le stesse lettere e ogni lettera ha lo stesso esponente, ossia quando i monomi hanno la stessa parte letterale. CD
4 2. LE OPERAZIONI CON I MONOMI gk Monomi simili Monomi che hanno la stessa parte letterale si dicono simili. a 5 e 4a 5 sono simili 5a 5 e 5a non sono simili La somma o la differenza di due monomi è ancora un monomio solo se i monomi sono simili fra loro. In questo caso basta applicare la proprietà del raccoglimento a fattore comune. 4a 2 b+6a 2 b-8crb= Raccogliamo la parte letterale a fattore comune: = (4+-6-8)fl 2 /; = Eseguiamo la somma algebrica dei coefficienti: I REGOLA = 2a 2 b. Somma di monomi simili La somma algebrica di due o più monomi simili è un monomio simile ai dati, che ha per coefficiente la somma algebrica dei coefficienti. 7b + 8b stessa parte ^letterale 15b j N^ S s x somma E f dei coefficienti I MONOMI OPPOSTI Per i monomi simili possiamo ripetere tutte le considerazioni fatte per i numeri relativi. Due monomi simili sono opposti se sono opposti i loro coefficienti. Per esempio, la e 2a sono monomi opposti. LA MOLTIPLICAZIONE DI MONOMI Consideriamo la moltiplicazione fra monomi: 2a 2 -la ì. Possiamo applicare le proprietà commutativa e associativa della moltiplicazione e la prima proprietà delle potenze. Otteniamo: 2a 2 la ì = 2 7 a 2 a 5 = I4a\ II prodotto di monomi è sempre un monomio.! REGOLA Prodotto fra monomi Il prodotto fra monomi è un monomio che ha per coefficiente il prodotto dei coefficienti e per parte letterale il prodotto delle parti letterali. 5 a 5 * 2 a 2 = 1C prodotto delle parti letterali La somma di due monomi opposti è 0. 5ab + (- 5ab) = = 5ab 5ab = = (5-5)ab = 0. Per moltiplicare due potenze che hanno la stessa base si sommano gli esponenti. prodotto dei coefficienti
5 I MONOMI LA POTENZA DI UN MONOMIO Per eseguire la potenza di un monomio basta applicare le proprietà delle potenze. La potenza di una potenza si calcola moltiplicando gli esponenti. (è ) 5 5V = hi ' 2 =,10 REGOLA (7a y = 7-(fl ) 2 = 49a - 2 = 49a 6 Potenza di un monomio La potenza di un monomio è un monomio che ha per coefficiente la potenza del coefficiente dato e per parte letterale la potenza della parte letterale. potenza della parte letterale (5b 5 ) 2 = 5 2 b' potenza del coefficiente \ 27
I monomi. x 2 a-b +5 6a+b
+3a 2 b -3a I monomi x 2 a-b +5 6a+b xy monomi 3 5 a3 non monomi 5+x a cura di Franca Cavagnero 1 Definizione: il monomio è una espressione algebrica tra numeri e lettere, senza addizioni e sottrazioni.
Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN [email protected]
Esercitazioni di Reti Logiche Lezione 1 Rappresentazione dell'informazione Zeynep KIZILTAN [email protected] Introduzione Zeynep KIZILTAN Si pronuncia Z come la S di Rose altrimenti, si legge come
LA NOTAZIONE SCIENTIFICA
LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo
PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.
Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si
SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO
SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili
Lezione 3: Il problema del consumatore: Il
Corso di Economica Politica prof. Stefano Papa Lezione 3: Il problema del consumatore: Il vincolo di bilancio Facoltà di Economia Università di Roma La Sapienza Il problema del consumatore 2 Applichiamo
Appunti di Algebra Lineare. Antonino Salibra
Appunti di Algebra Lineare Antonino Salibra January 11, 2016 2 Libro di testo: Gilbert Strang, Algebra lineare, Edizioni Apogeo 2008 Programma di Algebra Lineare (2015/16) (da completare): 1. Campi numerici.
Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale
Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli
Indice generale. Modulo 1 Algebra 2
Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi
Pre Test 2008... Matematica
Pre Test 2008... Matematica INSIEMI NUMERICI Gli insiemi numerici (di numeri) sono: numeri naturali N: insieme dei numeri interi e positivi {1; 2; 3; 4;...} numeri interi relativi Z: insieme dei numeri
Percorsi di matematica per il ripasso e il recupero
Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado
Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo
Analisi Ing. Ivano Coccorullo Prof. Ivano Coccorullo ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli possibili. Quando le situazioni diventano
SCHEDA DI RECUPERO SUI NUMERI RELATIVI
SCHEDA DI RECUPERO SUI NUMERI RELATIVI I numeri relativi sono l insieme dei numeri negativi (preceduti dal segno -) numeri positivi (il segno + è spesso omesso) lo zero. Valore assoluto di un numero relativo
ESERCIZI DEL CORSO DI INFORMATICA
ESERCIZI DEL CORSO DI INFORMTIC Questa breve raccolta di esercizi vuole mettere in luce alcuni aspetti della prima parte del corso e fornire qualche spunto di riflessione. Il contenuto del materiale seguente
ISTITUTO DI ISTRUZIONE SUPERIORE I.T.C. GEOMETRI L. EINAUDI - MURAVERA - CLASSE 4A AFM
ISTITUTO DI ISTRUZIONE SUPERIORE I.T.C. GEOMETRI L. EINAUDI - MURAVERA - CLASSE 4A AFM MATEMATICA DOCENTI Marina Pilia Enrico Sedda PROGRAMMA A.S. 2014/2015 PROGRAMMA DI MATEMATICA CLASSE 4A AFM ANNO SCOLASTICO
M. Cerini - R. Fiamenghi - D. Giallongo. Quaderno operativo. Trevisini Editore
M. Cerini - R. Fiamenghi - D. Giallongo Quaderno operativo Trevisini Editore La pubblicazione di un libro è un operazione complessa, che richiede numerosi controlli: sul testo, sulle immagini e sulle relazioni
Protocollo dei saperi imprescindibili Ordine di scuola: professionale
Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure
Matematica con il foglio di calcolo
Matematica con il foglio di calcolo Sottotitolo: Classe: V primaria Argomento: Numeri e operazioni Autore: Guido Gottardi, Alberto Battaini Introduzione: l uso del foglio di calcolo offre l opportunità
7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari
7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,
Codifica binaria dei numeri
Codifica binaria dei numeri Caso più semplice: in modo posizionale (spesso detto codifica binaria tout court) Esempio con numero naturale: con 8 bit 39 = Codifica in virgola fissa dei numeri float: si
Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali
1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata
A-1403. Descrizione: ruota effetti opzionale con supporto/ optional effects wheel with support/ iprofile FLEX MODIFICHE. Codice assemblato:
Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri
Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri 1 Da base 2 a base 10 I seguenti esercizi richiedono di convertire in base 10 la medesima stringa binaria codificata rispettivamente
FISICA Corso di laurea in Informatica e Informatica applicata
FISICA Corso di laurea in Informatica e Informatica applicata I semestre AA 2004-2005 G. Carapella Generalita Programma di massima Testi di riferimento Halliday Resnick Walker CEA Resnick Halliday Krane
SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.
SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno
Alla pagina successiva trovate la tabella
Tabella di riepilogo per le scomposizioni Come si usa la tabella di riepilogo per le scomposizioni Premetto che, secondo me, questa tabella e' una delle pochissime cose che in matematica bisognerebbe "studiare
MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree
MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare
Riconoscere e formalizzare le dipendenze funzionali
Riconoscere e formalizzare le dipendenze funzionali Giorgio Ghelli 25 ottobre 2007 1 Riconoscere e formalizzare le dipendenze funzionali Non sempre è facile indiduare le dipendenze funzionali espresse
STRUTTURE ALGEBRICHE
STRUTTURE ALGEBRICHE 1. Operazioni algebriche binarie Dato un insieme M, chiamiamo operazione algebrica binaria definita su M una qualunque applicazione f che associa ad ogni coppia ordinata (a, b) di
Informatica. Rappresentazione dei numeri Numerazione binaria
Informatica Rappresentazione dei numeri Numerazione binaria Sistemi di numerazione Non posizionali: numerazione romana Posizionali: viene associato un peso a ciascuna posizione all interno della rappresentazione
Sistemi di Numerazione Binaria NB.1
Sistemi di Numerazione Binaria NB.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato
COGNOME... NOME... Classe... Data... 1.a Calcolare le seguenti espressioni: 3. 220 245
Capitolo I radicali Risoluzione algebrica erifica per la classe seconda Espressioni numeriche Equazioni lineari Esistenza Operazioni Espressioni letterali.a Calcolare le seguenti espressioni:. 5. 8 3.
MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO
Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA
Esercitazione Informatica I AA 2012-2013. Nicola Paoletti
Esercitazione Informatica I AA 2012-2013 Nicola Paoletti 4 Gigno 2013 2 Conversioni Effettuare le seguenti conversioni, tenendo conto del numero di bit con cui si rappresenta il numero da convertire/convertito.
VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole.
Excel VBA VBA Visual Basic for Application VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. 2 Prima di iniziare. Che cos è una variabile?
1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica
A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta
Conversione tra le basi binarie
Conversione tra le basi binarie In questa lezione impareremo la conversione tra binario e ottale la conversione tra binario ed esadecimale la conversione tra ottale ed esadecimale LEZIONE 10 Introduzione
STRUTTURE ALGEBRICHE
STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione
Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali
Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa
PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^
PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^ PER RICONOSCERE, RAPPRESENTARE E RISOLVERE PROBLEMI I. Q. II. Q. CONTENUTI / ATTIVITA 1 bim. 2 bim. 3 bim. 4 bim. 1a) Individuazione di situazioni problematiche
I.P.S.S. Severini a.s. 2015-16 Curriculum Verticale MATEMATICA
Curriculum Verticale MATEMATICA I Docenti di Matematica dell IPSS concordano, per l a.s. 2015/16, i seguenti punti: numero minimo di verifiche annue (riferite ad una frequenza regolare): 6, di varia tipologia
UNITA DI MISURA BASE
Revisione del 2/9/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon UNITA DI MISURA BASE Richiami di teoria Il Sistema Internazionale (S.I.) di unità di misura è composto
4 - TEST DI MATEMATICA. Test di Algebra
4 - TEST DI MATEMATICA Test di Algebra 1. Se log 3 x = 5, è x = A) 10 5 B) 243 C) 125 D) 5/3 E) 3/5 2. Le radici dell'equazione (x - a) (x + b) (x - c) = 0 sono: A) -a; b; -c B) a; -b; c C) 1/a; 1/b; 1/c
Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A
Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,
Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico
M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p. 3/43 M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p.
Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.
Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,
Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1
Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1 Indice / Terminologia addendo x L'addizione, la somma, l'addendo, più 1 2a 24 addizionare x L'addizione, la somma, l'addendo, più
L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura
Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica
Corso di Fisica Generale 1
Corso di Fisica Generale 1 corso di laurea in Ingegneria dell'automazione ed Ingegneria Informatica (A-C) 9 lezione (23 / 10 /2015) Dr. Laura VALORE Email : [email protected] / [email protected]
Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.
1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A
L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami
L algebra di Boole Cenni Corso di Reti Logiche B Mariagiovanna Sami Algebra Booleana: sistema algebrico Operazione: Operazione α sull'insieme S={s1,s2,...} = funzione che da SxS (prodotto cartesiano S
DISCIPLINA: MATEMATICA INDIRIZZO: FINANZA E MARKETING CLASSE: 1 FM DOCENTE : MARINA MARTINELLI. Testo in adozione Settembre Ottobre
Pagina 1 di 5 DISCIPLINA: MATEMATICA INDIRIZZO: FINANZA E MARKETING CLASSE: 1 FM DOCENTE : MARINA MARTINELLI Elenco moduli Argomenti Strumenti / Testi 1 I numeri Naturali, Interi e Razionali Addizione,
I sistemi di numerazione
I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono
INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI
2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato
Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p.
Le funzioni elementari Corsi di Laurea in Tecniche di Radiologia... A.A. 200-20 - Analisi Matematica - Le funzioni elementari - p. /43 Funzioni lineari e affini Potenze ad esponente naturale Confronto
QUOTATURA. Affinché un qualsiasi oggetto disegnato possa essere esattamente realizzato deve essere perfettamente individuato in forma e dimensioni
QUOTATURA Affinché un qualsiasi oggetto disegnato possa essere esattamente realizzato deve essere perfettamente individuato in forma e dimensioni Il disegno di un oggetto è quindi completo se descrive
ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI
Lezioni di Fisica della Terra Solida, Università di Chieti, a.a. 999/. Docente A. De Santis ELEMENTI DI ANALISI SPETTRALE I DUE DOMINI È spesso utile pensare alle unzioni ed alle loro trasormate di Fourier
Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN [email protected]
Esercitazioni di Reti Logiche Lezione 2 Algebra Booleana e Porte Logiche Zeynep KIZILTAN [email protected] Argomenti Algebra booleana Funzioni booleane e loro semplificazioni Forme canoniche Porte
APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI
APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................
AA00003 Dire qual è il valore mediano tra i seguenti numeri: 3, a) 10. b) 11. c) 16,5. d) 12,5. b
AA00001 Quale, tra i seguenti, non è un numero primo? a) 17. b) 18. c) 13. d) 3. b AA00002 Moltiplicando il numero 380,065 per 9 e per 0,1 a) 339,0585. b) 342,0585. c) 345,0585. d) 348,0585. b otteniamo...
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classi I C I G
Esercizi Estivi di Matematica a.s. 0/04 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classi I C I G ALUNNO CLASSE Ulteriore ripasso e recupero anche nei siti www.vallauricarpi.it
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f
Capitolo 1 ANALISI COMPLESSA
Capitolo 1 ANALISI COMPLESSA 1 1.4 Serie in campo complesso 1.4.1 Serie di potenze Una serie di potenze è una serie del tipo a k (z z 0 ) k. Per le serie di potenze in campo complesso valgono teoremi analoghi
III ESONERO DI IDRAULICA
III ESONERO DI IDRAULICA Politecnico di Bari, II Facoltà di Ingegneria - Taranto, Corso di Idraulica, A.A. 010-011 Ingegneria Civile e per l Ambiente e il Territorio ESERCIZIO 1 Data la rete aperta riportata
ESERCIZI DI PREPARAZIONE E
ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del
Elettronica I Grandezze elettriche e unità di misura
Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected] http://www.dti.unimi.it/
Il Metodo Scientifico
Unita Naturali Il Metodo Scientifico La Fisica si occupa di descrivere ed interpretare i fenomeni naturali usando il metodo scientifico. Passi del metodo scientifico: Schematizzazione: modello semplificato
Esponenziale e logaritmo nelle prove d ingresso all Università. Daniela Valenti, Treccani Scuola
Esponenziale e logaritmo nelle prove d ingresso all Università 1 Presenza di esponenziale e logaritmo Sono molto numerose le Università italiane e ogni Università offre vari corsi di laurea e propone una
Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon
Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Esercizi di algebra lineare e sistemi di equazioni lineari con applicazioni
31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando
FUNZIONI MATEMATICHE Introduzione Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando tra le due esiste un legame di tipo matematico. La teoria
DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia
DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti
La fisica e la misura
La fisica e la misura La fisica è una scienza fondamentale che ha per oggetto la comprensione dei fenomeni naturali che accadono nel nostro universo. È basata su osservazioni sperimentali e misure quantitative
Frazioni e numeri razionali
Frazioni e numeri razionali I numeri naturali sono i primi numeri che hai incontrato, quando hai cominciato a contare con le dita. Ma vuoi eseguire tutte le sottrazioni. E allora hai bisogno dei numeri
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici. A. A. 2014-2015 L.Doretti
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 2. Insiemi numerici A. A. 2014-2015 L.Doretti 1 INSIEMI NUMERICI rappresentano la base su cui la matematica si è sviluppata costituiscono le tappe
Analisi Matematica di circuiti elettrici
Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto
Matematica C3 Algebra 2
Matematica C Algebra Manuale di algebra per il biennio della scuola secondaria di secondo grado Seconda Edizione Copyright Matematicamente.it 0- Questo libro, eccetto dove diversamente specificato, è rilasciato
Esercizi svolti Esperimentazioni di Fisica 2 A.A. 2009-2010 Elena Pettinelli
Esercizi svolti Esperimentazioni di Fisica A.A. 009-00 Elena Pettinelli Principio di sovrapposizione: l principio di sovrapposizione afferma che la risposta di un circuito dovuta a più sorgenti può essere
4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0
Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice
Fare matematica nelle prime due classi di scuola primaria IL NUMERO. Monica Falleri, Rossana Nencini, 2007
Fare matematica nelle prime due classi di scuola primaria IL NUMERO Monica Falleri, Rossana Nencini, 2007 ATTIVITA MOTORIA E RITMICA In continuità con la scuola dell infanzia Proponiamo esperienze che
7 giorni 30 giorni 365 giorni
Budini, torte, biscotti 7 coppie e un gruppo da tre Tutte le coppie calcolano esattamente i litri di latte necessari per le torte e per i budini. Per i biscotti (2,5 litri di latte al giorno) si hanno
ESEMPIO 1: eseguire il complemento a 10 di 765
COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento
Esercizi svolti. Elettrotecnica
Esercizi svolti di Elettrotecnica a cura del prof. Vincenzo Tucci NOVEMBE 00 NOTA SUL METODO PE LA DEGLI ESECIZI La soluzione degli esercizi è un momento della fase di apprendimento nel quale l allievo
Anno 4 Applicazioni dei teoremi di trigonometria
Anno 4 Applicazioni dei teoremi di trigonometria 1 Introduzione In questa lezione descriveremo le applicazioni dei teoremi di trigonometria. Inizieremo, illustrando alcune formule di trigonometria, utili
Prof. Stefano Capparelli
APPUNTI PER UN SECONDO CORSO DI ALGEBRA LINEARE Prof. Stefano Capparelli A mia madre Prefazione. Brevi Richiami di Algebra Lineare. Forma Canonica di Jordan.. Blocco di Jordan.. Base di Jordan.. Polinomio
Informazione analogica e digitale
L informazione L informazione si può: rappresentare elaborare gestire trasmettere reperire L informatica offre la possibilità di effettuare queste operazioni in modo automatico. Informazione analogica
Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1
Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria R. Vitolo Dipartimento di Matematica Università di Lecce SaLUG! - Salento Linux User Group Il programma OCTAVE per l
PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI
PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 LIBRO DI TESTO:L. Sasso Nuova Matematica a colori Algebra e Geometria 1 edizione Azzurra ed. Petrini TEMA A I numeri e linguaggio della Matemati Unità 1
Test d ingresso di Matematica per la secondaria di secondo grado Test d ingresso di matematica per la secondaria di 2 grado
Test d ingresso di matematica per la secondaria di 2 grado Cognome e nome: Classe Data. Tra i numeri naturali da a 20, quali sono quelli pari e multipli di tre? A.2, 4, 6, 8, 0, 2, 4, 6, 8, 20, 3, 6, 9,
Esercizi svolti. 1 quesito Calcolo del flusso termico q in condizioni stazionarie Il flusso termico è q = T/R (1)
Esercizi svolti Esercizio n.1 Una parete piana è costituita da tre strati omogenei disposti in serie e separa due ambienti a temperatura rispettivamente di 20 C e di 3 C. Gli strati hanno le seguenti caratteristiche:
ESERCIZI SUGLI AUTOMI A STATI FINITI
ESERCIZI SUGLI AUTOMI A STATI FINITI Disegnare il diagramma e scrivere la tabella delle transizioni di stato degli automi sequenziali a stati finiti che rappresentano il comportamento dei seguenti sistemi
Quesito 1 Piano cartesiano. Quesito 2 Equazioni. Quesito 3 Geometria solida. Quesito 4 Leggi di Ohm. x x x
Esame di stato scuola media Esempio di tema d esame 002 UbiMath - 1 Quesito 1 Piano cartesiano Fissando come unità di misura il metro (1 cm = 1 m = unità di misura) rappresenta in un piano cartesiano ortogonale
NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i
NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,
Com è noto, le operazioni inverse dell addizione e della moltiplicazione, la sottrazione e la
GLI INSIEMI NUMERICI Com è noto, le operazioni inverse dell addizione e della moltiplicazione, la sottrazione e la divisione, non sempre si possono eseguire nell'insieme dei numeri naturali. Da ciò nasce
DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1
SEDE LEGALE: Via Roma, 125-04019 - Terracina (LT) - Tel. +39 0773 70 28 77 - +39 0773 87 08 98 - +39 331 18 22 487 SUCCURSALE: Via Roma, 116 - Tel. +39 0773 70 01 75 - +39 331 17 45 691 SUCCURSALE: Via
Funzioni. 1. Introduzione alle funzioni. Tema C13. Che cos è una funzione?
Funzioni Tema C. Introduzione alle funzioni STRUMENTI DIGITALI APPRFNDIMENTI RISRSE IN GEGEBRA FIGURE ANIMATE VIDELEZINI ESERCIZI INTERATTIVI Che cos è una funzione? Dati due insiemi X e Y, si definisce
LINEE AEREE PARALLELE
LINEE AEREE PARALLELE Coefficiente di autoinduzione di una linea bifilare Sia data la linea riportata in fig. 1 Fig. 1 Linea bifilare a conduttori paralleli essa è costituita da due conduttori aerei paralleli
