Ora, per un fotone, che è poi una «particella» con massa a riposo nulla, si ha

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ora, per un fotone, che è poi una «particella» con massa a riposo nulla, si ha"

Transcript

1 EQUAZIONE DI DIRAC (e la resunta quarta dmensone) (una rova dell essenza osllatora dell unverso e dell essenza trdmensonale della quarta dmensone relatvsta) Leonardo Rubno Gennao 9 Abstrat : dmostramo he l Equazone delle Onde d d Alembert, quella d Shrodnger, quella d Klen-Gordon e quella d Dra sono tutte arent tra loro e denotano l enttà osllatora dell unverso. Inoltre, l Equazone d Klen-Gordon fornse un nterretazone trdmensonale delle quarte omonent relatvsthe e dell energa d roso. Saamo dalla relatvtà he, er l energa totale E, s ha: 4 E m (.) Questa è l esressone, er l energa, ù generale he abbamo e vale aunto er una artella anhe relatvsta. Vedere, a tal roosto, l seguente lnk a agna 5: htts://senzauffaleattendblta.weebly.om/uloads//3/9//39584/la-teora-della-relatvt%c3%8-generale.df E, ossa: E (.) Ora, er un fotone, he è o una «artella» on massa a roso nulla, s ha Per una artella non relatvstva, saamo nvee he vale, er la sua energa neta, la seguente esressone: mv ù generale, aunto. Infatt, la (.) uò essere osì rsrtta: ( ) m, ma quest ultma è nasosta roro nella (.), he è d valore E m (.3) e rordando he, er gl svlu d Taylor, s ha: f ( x) x ( x) x, segue he, er la (.3): E m dunque: ( m ) m ( m E m mv vd. m Consderamo ora l esressone generale d un onda: n quanto: k x k Ae kˆ, ˆ kx v ) m m e, er l energa neta, s ha, (.4) v f T ; Tale onda, ontemoraneamente, s roaga nello sazo (x) ed oslla nel temo t; nfatt, se s one t=, s vede he s ha un osllazone lungo x ( A e osllazone nel temo ( A e ). Saamo noltre he: h E hf f e, valendo anhe la (.), s ha: k x) ) e se s one x= s ha una (.5)

2 , da u : k e la (.4) dventa : E x (.7) Per semle sosttuzone dretta d tale Ψ nelle seguent equazon: ( ) E ( ) t ( ) ( k ) (.8) s ha he esse danno delle denttà, ossa sono guste. Nel aso monodmensonale : (.6) ; (.9) ( ) ( k) x Dunque, ossamo rlevare le seguent orrsondenze oeratoral: ; ( gradente) E t (.) (.) Valendo o la (.), ossa: E, s ha: ( ) ( ), (.) t ossa: t (.3) o anhe (, lalaano, dvergenza del gradente):, x y z t he è l Equazone delle Onde, o d d Alembert. S not he tale equazone, d dervazone relatvsta (fotone, ossa artella he s roaga a velotà e on massa d roso zero) è nvarante er trasformazon d Lorentz. S veda, a tal roosto, l seguente lnk a agna 55: htts://senzauffaleattendblta.weebly.om/uloads//3/9//39584/la-teora-della-relatvt%c3%8-generale.df Passando ora al aso d artelle non relatvsthe (gl atom, ordnaramente, sono tal), otterremo un equazone d onda non relatvsta, ossa l Equazone d Shrodnger. Infatt, se nella (.7) onsderamo nvee non ù ottenamo: Ek x E x m, ma mv (equazone aunto non relatvsta), Ae (.4) e, roro ome abbamo fatto er ottenere la (.), er sosttuzone dretta della (.4) nella seguente equazone:

3 ( ) ( ) (.5) t m t m x ( ) ( ), nel aso monodmensonale ) ( s ottene un denttà. Dunque, la (.5) è vera. Attenzone, erò, erhé nella (.4) abbamo usato non ù una E totale, ma solo la Ek, fatto d u tenamo onto. Il rmo membro della (.5) vale ( ), ma saamo he Ek=H-V, da u, semre er t la (.5): m ( H V ) m ( H V ), ossa: he altro non è he l Equazone d Shrodnger. Consderamo ora l aso ù generale, ossa artella relatvsta e on massa a roso non nulla. Come abbamo fatto n reedenza, vsto he er la (.) s ha: sosttuendo tale E semre nella (.7) x 4 m E x, s avrà: E (.6) 4 m, allora, (.7) e, ome al solto, semre er sosttuzone, s vede he tale Ψ è soluzone della seguente: m ( ) t (.8) he altro non è he l Equazone d Klen-Gordon e he è smle a quella d d Alembert, ma ha un elemento n ù. Provamo ad effettuare veramente tale sosttuzone della (.7) nella (.8), er verfare he ( ) e E 4 ( ) ( m ) t davvero vale tutto ò. S ha he Ponamo ora e dunque: 4 m ( m ), ossa =. m l ; tale l ha le dmenson del vettore d onda k. Con tale l, s ha he le (.7) ed (.8) s rsrvono osì: Ae k x ( k l ) Ae k x' (.9)

4 l t (.) on ' (k l ). La Relatvtà de dunque he un oro he ha velotà nulla, rsetto a no, ha erò una quarta omonente sazale ar a t, una quarta omonente del quadrmulso ar ad m ed un energa ntrnsea (a roso) ar ad m. Dunque, nel assare dal fotone, he ha m nulla, ad una artella relatvsta, he ha massa d roso m, l equazone d onda assa dall essere quella d d Alembert (.3) a quella d Klen-Gordon (.), on funzone d onda (.9) nvee he (.4) e la dfferenza sta nel fatto he la omonente d massa a roso m, he determna l esstenza d un energa da fermo m (d essenza quadrdmensonale, n quanto omare on la Relatvtà e ol quadrvettore momento-energa) n realtà altro non è he un nremento d osllazone temorale, dove s assa da una frequenza angolare ω ad una ' (k l ) suerore! Questa è l nterretazone trdmensonale d una enttà d natura resunta quadrdmensonale. Altre obezon all esstenza d una resunta quarta dmensone reale ossono essere trovate al seguente lnk a ag. 3: htts://senzauffaleattendblta.weebly.om/uloads//3/9//39584/ovveta_mbarazzant-unfazone_gravta_elettromagnetsmo.df Rsrvamo ora l Equazone d Klen-Gordon (.) n questo modo: t l e rordando he e ( a b)( a b) a b (.), s ha he tale equazone uò essere osì rsrtta: ( m )][ ( m )], (.) t t [ ossa anhe: { [ ( m )] t [ ( m)] (.3) t e la (.) uò essere osì svluata: [ t ( ) m ( ) m ( ) m ] (.4) Quest ultma equazone onde on la (.) se: 4,, j se =j e j j se j Le due ultme ondzon sugl alfa mongono he s ottenga roro solo l e non termn mst n. La (.3), he qu rsrvamo: ( m) (.5) t

5 uò essere onsderata ome l Equazone d Dra, he soltamente vene resentata nella seguente forma, n untà natural ( ): ( m)], (.6) dove x, he ontene una sommatora n onvenzone d Ensten, fornse, al varare d μ, la dervata sul temo e su x, y e z d (,, ) t x y z : t Ulteror arofondment sull Equazone d Dra non verranno effettuat, n questa sede. Graze er l attenzone. Leonardo RUBINO

Considerazioni teoriche su nuove osservazioni ottiche 1 della teoria della relatività. M. v. Laue (Berlin)

Considerazioni teoriche su nuove osservazioni ottiche 1 della teoria della relatività. M. v. Laue (Berlin) Consderazon teorche su nuove osservazon ottche 1 della teora della relatvtà. M. v. Laue (Berln) 1. Il calcolo della deflessone della luce da parte del sole s fonda sulla legge che la propagazone della

Dettagli

Inizialmente il pistone è bloccato in una posizione = C. sull ambiente,

Inizialmente il pistone è bloccato in una posizione = C. sull ambiente, In un lndro huso munto d un stone d massa trasurable, a tenuta eretta, e sorrevole senza attrto sono ontenute n mol d ossgeno, assmlable a un gas eretto batomo. Inzalmente l stone è bloato n una oszone

Dettagli

CINEMATICA DIFFERENZIALE

CINEMATICA DIFFERENZIALE CINEMATICA DIFFERENZIALE Paolo Forn Dartmento d Informatca Unverstà degl Stud d Verona ALTAIR -- Comuter Scence Deartment Unversty of Verona Master n Informatca Medca, Corso d Robotca, Parte 8 Introduzone

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

L equazione di Dirac. Fenomenologia delle Interazioni Forti. Diego Bettoni Anno Accademico

L equazione di Dirac. Fenomenologia delle Interazioni Forti. Diego Bettoni Anno Accademico equazone d Drac Fenoenologa delle Interazon Fort Dego Betton Anno Accadeco 8-9 D Betton Fenoenologa Interazon Fort Equazone relatvstca er descrvere l elettrone (ncluso lo sn) Conservazone della robabltà

Dettagli

Massimizzazione del profitto e offerta concorrenziale

Massimizzazione del profitto e offerta concorrenziale Massmzzazone del roftto e offerta concorrenzale Eserczo Un mresa roduce un bene megando un solo nut. La sua funzone d roduzone è f(x)=4 x dove x è l numero d untà del fattore roduttvo. Una untà del rodotto

Dettagli

Equilibri Chimici. Processi chimici indipendenti & reazioni in fase gas

Equilibri Chimici. Processi chimici indipendenti & reazioni in fase gas Equlbr Chmc Process chmc ndendent & reazon n fase gas Process stechometrc ndendent (1) Un rocesso stechometrco ndendente è costtuto da un nseme d relazon quanttatve tra le varazon del numero d mol d cascun

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

SCIENZA DEI MATERIALI. Chimica Fisica. VIII Lezione. Dr. Fabio Mavelli. Dipartimento di Chimica Università degli Studi di Bari

SCIENZA DEI MATERIALI. Chimica Fisica. VIII Lezione. Dr. Fabio Mavelli. Dipartimento di Chimica Università degli Studi di Bari SCIENZA DEI MATERIALI Chmca Fsca VIII Lezone Dr. Fabo Mavell Dartmento d Chmca Unverstà degl Stud d Bar Sstem a comoszone varable Abbamo vsto n recedenza come, er sstem a comoszone costante d to PVT, l

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo L equazone d Slutsky. Problema dell ntegrabltà. Maro Sortell Dartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I-70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fax: +39

Dettagli

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P . Il Teorema Ergodco er le catene d Markov * Defnzone Una catena d Markov dscreta con sazo degl stat E; s dce regolare se, detta P = (P ) la matrce delle robablt a d transzone assocata, esstono un ntero

Dettagli

I O R 2 R 1 E O. i 1 I X R 3. (figura - 2.0) (figura - 2.0a)

I O R 2 R 1 E O. i 1 I X R 3. (figura - 2.0) (figura - 2.0a) ESEZO.0: ssegnata la rete lneare d fgura.0, realzzata con l collegamento d generator ndpendent, generator plotat ed element passv, s determn la corrente X che crcola nella resstenza. Sono not: ; O ; b

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Dall appello del 16/7/04

Dall appello del 16/7/04 Dall aello del 6/7/04 Due lent sottl una convergente d ocale 0cm e l altra dvergente d ocale 5cm dstano tra loro D +. Un ago d altezza hcm è osto a dstanza s0cm dalla lente d ocale. S determn la oszone

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

1. La domanda di moneta

1. La domanda di moneta 1. La domanda d moneta Esercz svolt Eserczo 1.1 (a) S consder l modello della domanda d moneta a scopo speculatvo d Keynes. Un ndvduo può sceglere d allocare la propra rcchezza sottoscrvendo un ttolo rredmble

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2007-2008 lezone 18 professor Danele Rtell danele.rtell@unbo.t 1/11? Questo esempo nteressa la gestone delle scorte.

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine Polteno d orno aurea a Dstanza n Ingegnera Meana Corso d Mahne SRCIZI SVOI Sono d seguto svolt gl serz 4 6 e 7 roost al terne del Ca 4 (Moto d un fludo aerfore n un ondotto) al eserz non sono stat svolt

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

Analisi agli elementi finiti di campi vettoriali

Analisi agli elementi finiti di campi vettoriali Anals agl element fnt d camp vettoral Carlo Forestere December, 04 Formulazone n forma debole d equazon d campo vettorale Sa R un domno bdmensonale Fg. rempto da un materale lneare, sotropo, tempo nvarante,

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Standard Model. Nadia Drenska

Standard Model. Nadia Drenska Standard Model Nada Drenska Struttura generale Voglamo descrvere la teora ElettroDebole partendo dalle nterazon tra le corrent d Isospn e le corrent d Ipercarca co rspettv camp da gauge. Seguremo questo

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

CINEMATICA INVERSA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

CINEMATICA INVERSA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona CINEMATICA INVERSA Paolo Forn Dpartmento d Informata Unvertà degl Stud d Verona Introduzone Cnemata Dretta Dat: angol a gunt Calola: pozone e orentamento organo termnale Cnemata Invera Dat: pozone e orentamento

Dettagli

7. METODO DELLE FORZE IMPOSTAZIONE GENERALE INFLUENZA DEGLI SPOSTAMENTI DEI VINCOLI

7. METODO DELLE FORZE IMPOSTAZIONE GENERALE INFLUENZA DEGLI SPOSTAMENTI DEI VINCOLI aptolo7 ETODO DEE FORZE - IPOSTZIONE GENERE 7. ETODO DEE FORZE IPOSTZIONE GENERE INFUENZ DEGI SPOSTENTI DEI VINOI SPOSTENTI SSEGNTI DEI VINOI Supponamo he alun vnol abbano spostament / rotaon assegnat

Dettagli

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof.ssa Ragni Ferrara 08 giugno 2017

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof.ssa Ragni Ferrara 08 giugno 2017 Matematca Fnanzara a.a. 206-7 Prof.ssa Ragn Ferrara 08 gugno 207 Cognome Nome matrcola Frma e posta elettronca (solo per ch non s è regstrato sul sto) NOTA BENE: s accetta una sola correzone nel gruppo

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 16: 13 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Eserczo Nell ammortamento d un prestto

Dettagli

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

INDICE. Scaricabile su:   Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata P r o f Gu d of r a n c n Anteprma Anteprma Anteprma www l e z o n j md o c o m Scarcable su: ttp://lezonjmdocom/ INDICE TEORIA Dervata n un punto Sgnfcato geometrco della dervata Funzone dervata e dervate

Dettagli

Support Vector Machines. Macchine a vettori di supporto

Support Vector Machines. Macchine a vettori di supporto Support Vector Machnes Macchne a vettor d supporto Separator Lnear Percettrone La classfcazone bnara può essere vsta come un problema d separazone d class nello spazo delle feature m b b b > 0 b 0 b

Dettagli

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE Enrio Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE E. Borghi - Variabili dinamihe del ampo salare reale Rihiami a studi presenti in fisiarivisitata Leggendo Le variabili dinamihe del ampo salare

Dettagli

Capitolo 3 - Sistemi a coda (parte I)

Capitolo 3 - Sistemi a coda (parte I) Aunt d Ret d Telecomuncazon Catolo 3 - Sstem a coda (arte I) Introduzone... Legge d Lttle...4 Fattore d utlzzazone...9 Esemo: sstema G/G///... Sstema a coda M/M/... Introduzone: uso delle catene d Marov...

Dettagli

Gas ideale (perfetto):

Gas ideale (perfetto): Gas deale (erfetto): non esste n realtà drogeno e elo assomglano d ù a un gas deale - le molecole sono untform; - nteragscono tra loro e con le aret del recente medante urt erfettamente elastc (ovvero

Dettagli

Enrico Borghi QUANTIZZAZIONE DEL CAMPO DI KLEIN-GORDON

Enrico Borghi QUANTIZZAZIONE DEL CAMPO DI KLEIN-GORDON Enrio Borghi QUANTIZZAZIONE DEL CAMPO DI KLEIN-GORDON Rihiami a studi presenti in fisiarivisitata Leggendo la Quantizzazione del ampo di Klein-Gordon si inontrano rihiami ai seguenti studi: a) Introduzione

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 7: 6 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/29? Defnzone Se è un prestto se m {1, 2,..., n}

Dettagli

Statistica di Bose-Einstein

Statistica di Bose-Einstein Statstca d Bose-Ensten Esstono sstem compost d partcelle dentche e ndstngubl che non sono soggette al prncpo d esclusone. In quest sstem non esste un lmte al numero d partcelle che possono essere osptate

Dettagli

Elementi di calcolo numerico

Elementi di calcolo numerico Element d calcolo numerco Molto sesso nel calcolo scentco sorge la necesstà d calcolare l valore numerco d ntegral che non ossono essere calcolat analtcamente oure occorre calcolare l valore del mnmo d

Dettagli

5.3 LE TURBINE RADIALI

5.3 LE TURBINE RADIALI 5.3 LE TURBINE RADIALI 5.3. INTRODUZIONE Se la omponente d portata della velotà del fludo, nvee he parallela all asse d rotazone della mahna, è ad esso ortogonale, la turbna s de radale, entrfuga o entrpeta

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 3: 27 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? S può dmostrare che 1. se 0 < t < 1 allora

Dettagli

Lezione 12. RL in evoluzione libera. = Ri. = L di dt v R. di dt + R L i = 0. Ri + L di. i( 0) = I 0. Es. I-4

Lezione 12. RL in evoluzione libera. = Ri. = L di dt v R. di dt + R L i = 0. Ri + L di. i( 0) = I 0. Es. I-4 Lezone 1 RL n evoluzone lbera R L (0) = I 0 Esamnamo ora un caso smle al precedente n cu al posto del condensatore sa presente un nduttore L; la stora è la stessa, cambano solo protagonst. lmteremo ad

Dettagli

La regola dei quanti di Sommerfeld ed Epstein di A. Einstein

La regola dei quanti di Sommerfeld ed Epstein di A. Einstein 1 La regola de uant d Sommerfeld ed Esten d A. Ensten (comuncata nella seduta dell 11 maggo) 1. Formulazone recedente. Non sussste ù alcun dubbo che er sstem meccanc erodc con un grado d lbertà la condzone

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

Elasticità nei mezzi continui

Elasticità nei mezzi continui Elastctà ne mezz contnu l tensore degl sforz o tensore d stress, σ j Consderamo un cubo d dmenson untare n un mezzo elastco deformato. l cubo è deformato dalle forze eserctate sulle sue facce dal resto

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

ESERCIZI UNITA Z SOMMARIO. Scelta di una soluzione di accoppiamento processore/dissipatore

ESERCIZI UNITA Z SOMMARIO. Scelta di una soluzione di accoppiamento processore/dissipatore ontrollo Termo de Sstem d alolo Es.Z/0 ESEIZI UNIT Z SOMMIO Z. ONTOLLO TEMIO IN ELETTONI Z.I. Z.II. Z.III. Z.IV. Z.V. Z.VI. Selta d un dssatore Selta d un dsostvo d ventlazone Selta d una soluzone d aoamento

Dettagli

Interazioni Elettrodeboli. Lezione n. 18

Interazioni Elettrodeboli. Lezione n. 18 Interazon Elettrodebol rof. Francesco Ragusa Unverstà d Mlano Lezone n. 8..07 Partcelle d sn Proagatore del fotone e del IVB Neutrno dee nelastc scatterng Modello a arton del nucleone anno accademco 07-08

Dettagli

La teoria cinetica dei gas

La teoria cinetica dei gas La teora cnetca de gas Gas: un numero grandssmo gandssmodmolecole n moto caotco. Interazone tra molecole solo n caso d urto. Calcolando la pressone come dovuta all urto d tutte le molecole con le paret

Dettagli

Sensori Segnali Rumore - Prof. S. Cova - appello 20/07/2012 P1-1

Sensori Segnali Rumore - Prof. S. Cova - appello 20/07/2012 P1-1 Sensor Segnal Rumore - Prof. S. Coa - aello /7/ P - PROBEMA Quadro de dat R MΩ resstenza d carco C 5 F caactà totale d carco segnale d corrente dal relatore a mulso rettangolare con durata µs amezza D

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

STATO DI TENSIONE IN SEZIONI MASSICCE. Sforzo normale

STATO DI TENSIONE IN SEZIONI MASSICCE. Sforzo normale STATO DI TENSIONE IN SEZIONI MASSICCE Sforzo normale In caso d sforzo normale trazone o comressone, s assume che nelle sezon della trave suffcentemente lontane da vcolo e dalle forze alcate, essta solo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 9: 20 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? an d ammortamento La rata α k scadente al tempo

Dettagli

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete Una sere storca o temporale è un nseme d dat costtut da una sequenza d osservazon su un fenomeno d nteresse X, effettuate n stant (per le

Dettagli

Argomenti I verifica in itinere

Argomenti I verifica in itinere Argoment I erfa n tnere Orgne e lassfazone de segnal d orgne bologa I bootenzal (otenzale a roso; otenzale d azone; erod d refrattartà; orrent boelettrhe; grandezza trasdotta) Strumentazone bomeda (lassfazone;

Dettagli

Problemi variazionali invarianti 1

Problemi variazionali invarianti 1 Problem varazonal nvarant 1 A F. Klen per l cnquantesmo annversaro del dottorato. Emmy Noether a Gottnga. Comuncazone presentata da F. Klen nella seduta del 26 luglo 1918 2. 1 Invarante Varatonsprobleme,

Dettagli

Un approccio alla relatività ristretta

Un approccio alla relatività ristretta Un approcco alla relatvtà rstretta Smone Zuccher 9 marzo 07 Indce I postulat della relatvtà rstretta Le trasformazon d Galle Propretà delle trasformazon d Galle 3 Le trasformazon d Lorentz 3 La smultanetà

Dettagli

Enrico Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI

Enrico Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI Enrio Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI E. Borghi - L equazione di Dira nella approssimazione di Pauli Rihiami a studi presenti in fisiarivisitata Leggendo L equazione di Dira

Dettagli

CIRCUITI ELETTRICI 1) Calcolare la resistenza equivalente del seguente circuito:

CIRCUITI ELETTRICI 1) Calcolare la resistenza equivalente del seguente circuito: CICUITI LTTICI ) Calcolare la resstenza equvalente del seguente crcuto: Dall esame del crcuto s deduce che la resstenza equvalente del crcuto è: 6 6 6 ( ) Ω ) Determna l ntenstà della corrente nel crcuto,

Dettagli

2.1 Parabola nella forma canonica

2.1 Parabola nella forma canonica 5 Clc per tutt gl appunt (AUTOMAZIONE TRATTAMENTI TERMICI ACCIAIO SCIENZA delle COSTRUZIONI ) e-mal per suggerment. Paraola nella forma canonca Studamo con metod general la conca nella espressone canonca

Dettagli

6.1- Sistemi punti, forze interne ed esterne

6.1- Sistemi punti, forze interne ed esterne 1 CAP 6 - SISTEMI DI PUNTI MATERIALI Parte I 1 Cap 6 - Sstem d punt materal Cap 6 - Sstem d punt materal Il punto materale è un astrazone alla quale poch cas s possono assmlare. La maggor parte degl oggett

Dettagli

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni Introduzone al calcolo numerco Dervazone Integrazone Soluzone d equazon Dervazone numerca Il calcolo della dervata d una unzone n un punto mplca un processo al lmte ce può solo essere approssmato da un

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 16: 2 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? CCT/CCTEu S tratta d un ttolo a cedola varable:

Dettagli

Prova di verifica parziale N Dic 2008

Prova di verifica parziale N Dic 2008 Corso d GEOTECNICA Ingegnera Edle-Arhtettura a.a. 8/9 Prova d verfa parzale N. 7 D 8 Eserzo q kpa SABBIA LIMOSA γ 8 kn/m φ' SABBIA E GHIAIA γ 9 kn/m φ' Con rfermento al muro d sostegno n fgura alolare:

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 18: 18 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 18: 18 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 18: 18 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Eserczo Il sgnor ancrazo Topazo decde

Dettagli

E L E Z I O N I A N N O S E G G I O 0 1 F O G L I O N B N L M S M 6 0 B 1 6 A M B A N E L L A M A S S I M O 1 6 / 0 2 / 6 0 A C Q

E L E Z I O N I A N N O S E G G I O 0 1 F O G L I O N B N L M S M 6 0 B 1 6 A M B A N E L L A M A S S I M O 1 6 / 0 2 / 6 0 A C Q E L E Z I O N I A N N O 2 0 1 6 S E G G I O 0 1 F O G L I O N 1 1 0 0 0 9 6 4 4 0 5 5 7 A. T. I. A T T I V I T A ` T U R I S T I C H E I T A L I A N E S. R 4 0, 0 0 I 2 D M A N D R 4 7 E 2 0 A 9 4 9 B

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE In presenza d una almentazone alternata snusodale tutte le grandezze elettrche saranno alternate snusodal. Le equazon d funzonamento n regme comunque varale

Dettagli

Controllo dei robot. (Prof. Rocco) Appello del 19 Luglio 2007

Controllo dei robot. (Prof. Rocco) Appello del 19 Luglio 2007 Controllo de robot (Prof. Roo) Appello del 19 Luglo 27 Cognome:... Nome:... Matrola:... Frma:... Avvertenze: Il preente faolo ompone d 8 pagne (omprea la opertna). Tutte le pagne utlzzate vanno frmate.

Dettagli

1 S t u d i o l e g a l e T e d i o l i v i a F r a t t i n i, M a n t o v a m a i t e d i o l i. c o m

1 S t u d i o l e g a l e T e d i o l i v i a F r a t t i n i, M a n t o v a m a i t e d i o l i. c o m C o n v e n z i o n e E u r o p e a d e l L u s s e m b u r g o, 2 0-0 5-1 9 8 0. C o n v e n z i o n e e u r o p e a s u l r i c o n o s c i m e n t o e l ' e s e c u z i o n e d e l l e d e c i s i o

Dettagli

Esercizi sui gas perfetti

Esercizi sui gas perfetti Eserz su gas perett Eserzo In un repente d esertata dal gas è d delle oleole d elo. 0 d sono ontenute ol d He. La pressone 5.5 Trasorao l volue n untà SI: 0d 0 Pa. Deternare la velotà quadrata eda Ravao

Dettagli

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive.

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive. Spin La hamiltoniana lassia di una partiella di massa m e aria q in presenza di un potenziale elettromagnetio Φ, A si srive Sviluppando il quadrato si ha H = H = p q A 2 + qφ p 2 + A 2 2q A p + qφ 2 Se

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

ω 0 =, abbiamo L = 1 H. LC 8.1 Per t il condensatore si comporta come un circuito aperto pertanto la corrente tende a zero: la R

ω 0 =, abbiamo L = 1 H. LC 8.1 Per t il condensatore si comporta come un circuito aperto pertanto la corrente tende a zero: la R 8. Per t l condensatore s comporta come un crcuto aperto pertanto la corrente tende a zero: la funzone non può essere la (c). caando α e ω 0 s ottengono seguent alor: α 5 0 e ω 0 0. Essendo α > ω 0 l crcuto

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

Tangenti a una conica: il metodo del Doppio sdoppiamento 1

Tangenti a una conica: il metodo del Doppio sdoppiamento 1 Tangent a una conca: l metodo del Doppo sdoppamento 1 Franco Goacchno Sunto Ecco un metodo alternatvo per determnare le tangent a una conca da un qualsas punto del pano. Esso consste nell applcare volte

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Elettronica dello Stato Solido Esercitazione di Laboratorio 1: Soluzione numerica dell equazione

Elettronica dello Stato Solido Esercitazione di Laboratorio 1: Soluzione numerica dell equazione Elettronca dello Stato Soldo Eserctazone d Laboratoro 1: Soluzone nuerca dell equazone d Scrödnger 1D Danele Ieln DEI Poltecnco d Mlano eln@elet.pol.t Contenut del Laboratoro Costruzone d un etodo nuercoper

Dettagli

1 S t u d i o l e g a l e T e d i o l i v i a F r a t t i n i, M a n t o v a m a i t e d i o l i. c o m

1 S t u d i o l e g a l e T e d i o l i v i a F r a t t i n i, M a n t o v a m a i t e d i o l i. c o m C o n v e n z i o n e d e l l A j a 2 5-1 0-1 9 8 0 C o n v e n z i o n e s u g l i a s p e t t i c i v i l i d e l l a s o t t r a z i o n e i n t e r n a z i o n a l e d i m i n o r i P r e a m b o l

Dettagli

ESERCITAZIONE DEL 3 MARZO 2005

ESERCITAZIONE DEL 3 MARZO 2005 ESERCITAZIONE DEL 3 MARZO 2005 Ela lnda (on passo p ostante) Equazon dell ela: x = R os θ y = R sn θ z = p 2π θ 5 La uva appatene al lndo olae, on geneat paallele all asse z, d equazone: x 2 + y 2 = R

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

I coefficienti di elasticità della domanda: un esposizione algebrico-grafica 1

I coefficienti di elasticità della domanda: un esposizione algebrico-grafica 1 ppendce 4 I coeffcent d elastctà della domanda: un esposzone algebrco-grafca 1 Il calcolo de coeffcent d elastctà della domanda La teora e l ndagne economca hanno dentfcato numerosevarablchenflusconosullaquanttàdomandatadunbeneoservzo.traquestevsonol

Dettagli

Effetto Zeeman anomalo

Effetto Zeeman anomalo Effetto Zeeman anomalo Direzione del campo B esempio: : j=3/2 Direzione del campo B j=1+1/2 = 3/2 s m j =+3/2 m j =+1/2 l m j =-1/2 m j =-3/2 La separazione tra i livelli é diversa l e µ l antiparalleli

Dettagli

L. Zarri Azionamenti Elettrici T

L. Zarri Azionamenti Elettrici T L. Zarr zonament Eettr T zonament Eettr T. 2010/2011 Rham d eettrotena Ing. Lua Zarr DIE - Unerstá deg tud d oogna Vae Rsorgmento, 2-40136 oogna Te. 051-2093572/ Fax 051-2093941 E-ma: ua.zarr@ma.ng.unbo.t

Dettagli

SVM learning. WM&R a.a. 2010/11. A. Moschitti, R. Basili

SVM learning. WM&R a.a. 2010/11. A. Moschitti, R. Basili SVM learnng WM&R a.a. 2010/11 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e Produzone Unverstà d Roma Tor Vergata Emal: basl@nfo.unroma2.t 1 Sommaro Perceptron Learnng Lmt de classfcator lnear Support

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Esercizio 1 Un asta rigida di lunghezza L = 0.8 m e massa M è vincolata nell estremo A ad un perno liscio ed è appesa all altro estremo

Dettagli

5.1 Controllo di un sistema non lineare

5.1 Controllo di un sistema non lineare 5.1 Controllo d un sstema non lneare Sa dato l sstema non lneare rappresentato n fgura 5.1, con h g θ Θ,m,r Fgura 5.1: Sstema non lneare F m (,d) = k m la forza che esercta l elettromagnete percorso da

Dettagli

Elementi di Algebra e Analisi Tensoriale

Elementi di Algebra e Analisi Tensoriale M. Moscon ppunt d Scenza delle Costruzon Gugno 000 Element d lgebra e nals ensorale M. Moscon Element d algebra e anals tensorale INDICE. lgebra vettorale e tensorale. Calcolo vettorale e tensorale. Identtà

Dettagli

Dinamica dei sistemi particellari

Dinamica dei sistemi particellari Dnamca de sstem partcellar Marco Favrett Aprl 11, 2010 1 Cnematca Sa dato un sstema d rfermento nerzale (O, e ), = 1, 2, 3 e consderamo un sstema d punt materal (sstema partcellare) S = {(OP, m )}, = 1,,

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli