Standard Model. Nadia Drenska

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Standard Model. Nadia Drenska"

Transcript

1 Standard Model Nada Drenska

2 Struttura generale Voglamo descrvere la teora ElettroDebole partendo dalle nterazon tra le corrent d Isospn e le corrent d Ipercarca co rspettv camp da gauge. Seguremo questo schema generale: - modello d Glashow-enberg-Salam GS: come defnre le corrent carche e come dentfcare la corrente EM e la NC debole; - relazon fondamentale tra parametr predett dello S.M.; - nvaranza d gauge: vedremo come rendere la lagrangana ElettroDebole nvarante sotto trasformazon d gauge local.

3 Perché l unfcazone? Abbamo una relazone fondamentale che mplca che la terza componente della corrente d Isospn debole e la corrente ElettroMagnetca sono legate tra loro. em Il gruppo d smmetra dell Isospn è SU: lo stesso dello Spn, qund le caratterstche d tale smmetra c sono gà note. I generator della smmetra sono le matrc d Paul, che ndcheremo con I, I, I e costtuscono la base per la costruzone de vettor. Il gruppo d smmetra dell Ipercarca è nvece U. Come nel caso del fotone abbamo un solo generatore. Sappamo noltre che l numero d generator d una smmetra è esattamente uguale al numero d boson d gauge della stessa smmetra. Nello S.M. la smmetra necessara e suffcente è l gruppo SUU qund c aspettamo 4 boson d gauge.

4 GS: nterazone ElettroDebole Il termne d nterazone che tene conto delle tre corrent d Isospn e della corrente d Ipercarca s può scrvere come g g' n analoga alla QED dove abbamo la sola corrente ElettroMagnetca em e A e quanttà ntrodotte sono: - le costant d accoppamento - le corrent g,,,, g', - camp d gauge

5 Corrent carche e corrent neutre Defnamo le corrent carche come ± ± e n modo analogo per camp carch d gauge abbamo ± m a componente neutra dell nterazone s rscrve come g Abbamo qund due camp neutr e sappamo che un opportuna C.. d ess deve restture l campo del fotone dell nterazone ElettroMagnetca. Con un opportuna rotazone dobbamo costrure ver camp neutr g', Z, A

6 Angolo d mng Introducamo qund l angolo d mng A A snϑ cosϑ Z Z cosϑ snϑ g g' uotando gl ass dell angolo d enberg ottenamo camp del fotone e dello Z Queste nserte nell espressone della componente neutra nzale c danno le vere corrent e ver camp

7 e vere corrent g snϑ g'cosϑ A g cosϑ g'snϑ Z Imponamo che torn la fsca del fotone e em A e em A g snϑ g' cosϑ e ~ elazone fondamentale tra parametr lber Imponamo che torn la NC NC Z NC e ne determnamo l espressone em sn ϑ Gl accoppament suggerscono bosone Z massvo Il contrbuto neutro rsulta g g' e em A g cosϑ NC Z

8 Costant d accoppamento predette dallo S.M. Possamo esprmere la NC sa n termn delle costant c A, c V sa n termn degl operator I, Q. NC f f 5 f u f γ cv caγ γ u f[ γ 5 I γ sn ϑ Q] u u f f Il proettore selezona la componente left dello spnore Dal confronto s rcavano gl accoppament Assal e Vettoral c c f V f A I Q ϑ I f f sn f I f e Q sono valor della terza componente dell Isospn e della Carca. I sgolett hanno accoppament puramente vettoral; le partcelle neutre sono d tpo V-A.

9 Accoppament assal e vettoral e predzon dello S.M. sugl accoppament Assal e Vettoral d tutt fermon al bosone Z s possono leggere n tabella c c f V f A I ϑ I f f Q sn f

10 Matrce d Massa Per ora non abbamo ma preso n consderazone la massa delle partcelle n goco, ma sappamo che bosone Z e sono massv, al contraro del fotone. a matrce d massa lega valor delle masse M m m m 0 0 m0 matrce d massa nella base, m è la massa d,, m 0 è assocata al campo m 0 a termn mst Ma come ottenere la massa dello Z? Gl autovalor danno la massa de camp d gauge: qund un autovalore è necessaramente nullo, l altro s ottene dall nvaranza della tracca. Gl autovettor danno le espresson de camp d gauge e abbamo Z A cosϑ snϑ snϑ cosϑ Imponamo che l fotone abba massa nulla e rcavamo la massa dello Z Dalla rchesta d autovalore nullo segue det M 0 m 0 m m0

11 Matrce d massa Calcolamo l autovalore non nullo. Stamo dagonalzzando la matrce d massa e ne dobbamo estrarre gl element sulla dagonale. Tenendo n conto che un elemento è nullo, la massa dello Z sarà semplcemente: m Z m m 0 cosϑ cosϑ, snϑ M mcosϑ m snϑ snϑ o Z è pù massvo del e vale la relazone m Z 0 m cos ϑ Possamo anche controllare che nterazon d NC e nterazon EM hanno scale d ntenstà determnate dalla stessa costante G F. Questo permette la cancellazone delle dvergenze nella produzone e e

12 Scala delle nterazon ampezza d process ad un vertce G F ~ con flusso d CC porta un fattore In realtà l processo è a due vertc con scambo d un bosone carco ~ g 8m a teora d Ferm funzona secondo l uguaglanza G F g 8m e 8 sn ϑm Per le NC, consderando gl accoppament a vertc precedentemente sottolneat, possamo scrvere cos ϑm m Z g ~ 8 cos ϑm Z G NC cordando la relazone tra le masse de boson carch rsulta vero NC G G F

13 Invaranza d gauge Abbamo nzato scrvendo termn d nterazone corrent-camp d gauge. Dalla QED sappamo che camp d gauge gocano un ruolo fondamentale nell nvaranza della lagrangana: -entrano nella dervata covarante -hanno una legge d trasformazone determnata dal gruppo d smmetra Inzamo consderando l gruppo SU e qund la teora d ang-mlls Vedamo cosa succede rchedendo l nvaranza d gauge locale per due camp fermonc a massa nulla γ a sarà la somma d due termn ugual e può essere scrtta n modo compatto ψ ψ ψ Assumamo che camp trasformano come un doppetto sotto la smmetra SU d Isospn U e gλ I E rchedamo che valga l nvaranza sotto tale rotazone

14 ang-mlls Per trasformazon nfntesme vale lo svluppo Generator della smmetra SU matrc d Paul [ gλ I] U In QED abbamo la sosttuzone della dervata con la dervata covarante [ qλ ] Vettore d Isospn Vettore arbtraro dello sp. Isospn, I ε I I, I, I [ ] k k I I SU Ora dobbamo operare n modo del tutto analogo ma abbamo a che fare con una smmetra non Abelana e l numero d generator è salto a. D qa A A Λ D ' UD D Λ gi gε k Λ k

15 Invaranza d gauge locale sotto SU e U a teora svluppata da &M era basata sulla smmetra d Isospn Forte n,p. Ma l algebra svluppata s applca senza varazon alla smmetra d Isospn Debole, essendo dello stesso gruppo SU. altra smmetra necessara nella teora d GS è U, ma d questa sappamo tutto graze alla QED. e partcelle n goco sono organzzate n doppett e sngolett e trasformano secondo lo schema ν e u SU doppetto,, e d u SU sngoletto e,, d U, e partcelle left-handed trasformano n modo non trvale sa sotto la smmetra d Isospn, sa sotto Ipercarca. e partcelle rght-handed sono stat d sngoletto sotto la smmetra d SU.

16 ε Λ g Λ k k λ SU U g I Λ ' ' g g λ λ g g D ' I U SU. e trasformazon nfntesme de camp fermonc sotto le qual voglamo nvaranza d gauge locale sono. a dervata covarante che sosttusce la dervata ordnara è. chedendo che la dervata s trasform come l campo della partcella ottenamo le trasformazon de camp d gauge

17 agrangana ElettroDebole Samo ora n grado d scrvere la ElettroDebole, nvarante per trasformazon d gauge local per costruzone Att! Dobbamo aggungere termn cnetc de boson d gauge. Nel caso d campo scalare abbamo l tensore a due ndc del tutto analogo alla QED ν ν ν γ γ 4 4 ν ν ν gi ν g' g' Ma l campo d gauge nasce da una smmetra non abelana e qund dobbamo tener conto della relazon tra generator d SU. S verfca faclmente che vale ν ν ν g ν Termne d auto nterazone de camp

18 a massa rompe la smmetra E vero che abbamo vsto la matrce d massa, ma bsogna rcordare che la teora d GS prevede massa nulla per fermon e per boson d gauge. Possamo fare l conto dando massa al campo fermonco e convncerc che la smmetra SU vene rotta. m m P P mp P mp P m Ma fermon left-handed e rghthanded sono classfcat n doppett e sngolett d SU!! E rmasto a lungo msteroso come s potesse dare massa alle partcelle senza rompere la smmetra costruta. a soluzone del problema s trova nel fenomeno d Hggs.

19 blografa - urcham and Jobes: Nuclear and Partcle Physcs cap. - Maan: Teore d gauge cap. 4

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Interazioni Elettrodeboli. Lezione n. 5

Interazioni Elettrodeboli. Lezione n. 5 Interazon Elettrodebol prof. Francesco Ragusa Unverstà d Mlano Lezone n. 5 6..8 Proettor d spn. Effett polarzzator nello scatterng Coulombano. Anals d Fourer del campo d Klen Gordon e del campo elettromagnetco

Dettagli

Statistica di Bose-Einstein

Statistica di Bose-Einstein Statstca d Bose-Ensten Esstono sstem compost d partcelle dentche e ndstngubl che non sono soggette al prncpo d esclusone. In quest sstem non esste un lmte al numero d partcelle che possono essere osptate

Dettagli

5.1 Controllo di un sistema non lineare

5.1 Controllo di un sistema non lineare 5.1 Controllo d un sstema non lneare Sa dato l sstema non lneare rappresentato n fgura 5.1, con h g θ Θ,m,r Fgura 5.1: Sstema non lneare F m (,d) = k m la forza che esercta l elettromagnete percorso da

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA CAPITOLO 33 LA CORRENTE ELETTRICA CONTINUA 1 L INTENSITÀ DELLA CORRENTE ELETTRICA 1! v! a t! F m e! E m t v! e t m! E Fssato l ntervallo d tempo t, s può scrvere! v! E 2 Q t 4,0 10 2 A 5,0 s 0,20 C 3 t

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Esercizi 3 Scattering elettromagnetico e fattori di forma elastici. 1. Sez. d urto di Rutherford (statica)

Esercizi 3 Scattering elettromagnetico e fattori di forma elastici. 1. Sez. d urto di Rutherford (statica) Esercz Scatterng elettromagnetco e fattor forma elastc 1. Sez. urto Rutherfor (statca) Scatterng a un potenzale coulombano statco: Sez. urto Rutherfor (v. cors preceent ): m 4 4 4 p sn. Sez. urto Rutherfor

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

L equazione di Dirac. Fenomenologia delle Interazioni Forti. Diego Bettoni Anno Accademico

L equazione di Dirac. Fenomenologia delle Interazioni Forti. Diego Bettoni Anno Accademico equazone d Drac Fenoenologa delle Interazon Fort Dego Betton Anno Accadeco 8-9 D Betton Fenoenologa Interazon Fort Equazone relatvstca er descrvere l elettrone (ncluso lo sn) Conservazone della robabltà

Dettagli

6.1- Sistemi punti, forze interne ed esterne

6.1- Sistemi punti, forze interne ed esterne 1 CAP 6 - SISTEMI DI PUNTI MATERIALI Parte I 1 Cap 6 - Sstem d punt materal Cap 6 - Sstem d punt materal Il punto materale è un astrazone alla quale poch cas s possono assmlare. La maggor parte degl oggett

Dettagli

Interazioni Elettrodeboli. Lezione n. 4. Equazione di Dirac 3 Scattering di Coulomb. Effetti polarizzatori Tecniche di tracce di matrici γ

Interazioni Elettrodeboli. Lezione n. 4. Equazione di Dirac 3 Scattering di Coulomb. Effetti polarizzatori Tecniche di tracce di matrici γ Interazon Elettrodebol pro. Francesco Ragusa Unverstà d Mlano Lezone n. 4 11.10.018 Equazone d Drac 3 Scatterng d Coulomb. Eett polarzzator Tecnche d tracce d matrc γ anno accademco 018-019 Interazone

Dettagli

Istituzioni di Fis. Nucl. e Subnucl.

Istituzioni di Fis. Nucl. e Subnucl. Isttuzon d Fs. Nucl. e Subnucl. R.Sparvol-R.D Salvo-P.Dmopoulos Lezone 12 R.Sparvol-R.D Salvo-P.Dmopoulos Isttuzon d Fs. Nucl. e Subnucl. Lezone 12 1 / 34 Matrce S Supponamo che al tempo t l sstema fsco

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II.

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II. Corso d Logca I. Modulo sul Calcolo de Sequent. Dspensa Lezone II. Govann Casn Teorema d corrspondenza fra l calcolo su sequent SND e l calcolo de sequent SC. Rproponamo per esteso la dmostrazone della

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

Sistemi punti, forze interne ed esterne

Sistemi punti, forze interne ed esterne Ncola GglettoA.A. 2017/18 3 6.2- IL CENTRO DI MASSA Parte I 1 Cap 6 - Sstem d punt materal Cap 6 - Sstem d punt materal Il punto materale è un astrazone alla quale poch cas s possono assmlare. La maggor

Dettagli

Interazioni Elettrodeboli. Lezione n. 4. Equazione di Dirac 3 Interazione E.M. Scattering di Coulomb

Interazioni Elettrodeboli. Lezione n. 4. Equazione di Dirac 3 Interazione E.M. Scattering di Coulomb Interazon Elettrodebol pro. Francesco Ragusa Unverstà d Mlano Lezone n. 4.0.07 Equazone d Drac 3 Interazone E.M. Scatterng d Coulomb anno accademco 07-08 Scatterng Coulombano: spn 0 Venamo adesso alla

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo L equazone d Slutsky. Problema dell ntegrabltà. Maro Sortell Dartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I-70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fax: +39

Dettagli

La corrente vale metà del valore finale quando 0,2(1 e ) = 0, 1; risolvendo l equazione si

La corrente vale metà del valore finale quando 0,2(1 e ) = 0, 1; risolvendo l equazione si 7.6 La corrente nzale è edentemente nulla. on l nterruttore chuso la costante d tempo è τ = L/ = 1/200 s. Il alore fnale è ( ) = 20/100 = 0,2 A. on l espressone (7.13b) a pag. 235 del lbro s ottene 200t

Dettagli

Teoria dell informazione e Meccanica Statistica

Teoria dell informazione e Meccanica Statistica Teora dell nformazone e Meccanca Statstca L. P. Gugno 2007 Rporto qu una breve rassegna dell approcco alla Meccanca Statstca medante la teora dell nformazone. Partamo dalla consderazone che la probabltà

Dettagli

Strani spazi vettoriali

Strani spazi vettoriali Stran spaz vettoral Enrco Gregoro 19 novembre 2009 Consderamo l nseme S delle successon d numer compless; gl element d S saranno ndcat con smbol come a[ ]. Le parentes quadre servono per denotare gl element

Dettagli

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann FISICA DEI FLUIDI Lezone 5-5 Maggo 202 Le equazon per le varabl macroscopche: moment dell equazone d Boltzmann Teorema H a parte, non è facle estrarre altre consderazon general sulla funzone denstà d probabltà

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

G. Parmeggiani 3/6/2019. Algebra e matematica discreta, a.a. 2018/2019, Scuola di Scienze - Corso di laurea:

G. Parmeggiani 3/6/2019. Algebra e matematica discreta, a.a. 2018/2019, Scuola di Scienze - Corso di laurea: G. Parmeggan 3/6/9 Algebra e matematca dscreta, a.a. 8/9, Scuola d Scenze - Corso d laurea: parte d Algebra Informatca ESERCIZIO TIPO Sa A(α) α, dove α è un numero reale non negatvo. (a) Per qual α real

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energa e Lavoro Fnora abbamo descrtto l moto de corp (puntform) usando le legg d Newton, tramte le forze; abbamo scrtto l equazone del moto, determnato spostamento e veloctà n funzone del tempo. E possble

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Trasformazioni e Simmetrie

Trasformazioni e Simmetrie Trasformazon e Smmetre Ncola Cabbbo e Omar Benhar 20 gugno 2007 1 Premessa In questo captolo voglamo costrure, a partre dal metodo d Feynman, alcune propretà general della meccanca quantstca (MQ) e della

Dettagli

Interazioni Elettrodeboli. Lezione n. 8

Interazioni Elettrodeboli. Lezione n. 8 Interazon Elettrodebol pro. Francesco Ragusa Unverstà d Mlano Lezone n. 8 6.0.07 Quantzzazone del campo elettromagnetco Camp nteragent. Scatterng. Matrce S Scatterng d Coulomb spn 0 anno accademco 07-08

Dettagli

CIRCUITI ELETTRICI 1) Calcolare la resistenza equivalente del seguente circuito:

CIRCUITI ELETTRICI 1) Calcolare la resistenza equivalente del seguente circuito: CICUITI LTTICI ) Calcolare la resstenza equvalente del seguente crcuto: Dall esame del crcuto s deduce che la resstenza equvalente del crcuto è: 6 6 6 ( ) Ω ) Determna l ntenstà della corrente nel crcuto,

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

1. La domanda di moneta

1. La domanda di moneta 1. La domanda d moneta Esercz svolt Eserczo 1.1 (a) S consder l modello della domanda d moneta a scopo speculatvo d Keynes. Un ndvduo può sceglere d allocare la propra rcchezza sottoscrvendo un ttolo rredmble

Dettagli

Hartree-Fock 10/19/12 HF.DOC 0

Hartree-Fock 10/19/12 HF.DOC 0 Hartree-Fock 0/9/ HF.DO 0 Hamltonano per elettr. per elettron e M nucle H Ψ = EΨ H = M Z A µ A R A 44444 3 µ µ op. mono elettronco µ < ν µν M A B Z Z A B AB { r < 4 R43 op. b elettronco repulsone nucleare

Dettagli

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3 serctazone 4 Dcembre 0 Sstem trfase e potenze serczo L L L 00 f 50 Hz smmetrco Fg : Sstema trfase a stella S consder l crcuto d Fg e s calcolno le tre corrent d fase e le potenze attve, reattve ed apparent

Dettagli

Termodinamica della radiazione di corpo nero

Termodinamica della radiazione di corpo nero Termodnamca della radazone d corpo nero L. P. 5 Dcembre 2007 La teora termodnamca della radazone d corpo nero, svluppata da Stefan, Boltzmann e Wen negl ultm decenn del 19 secolo, è d estrema mportanza

Dettagli

Elementi di strutturistica cristallina I

Elementi di strutturistica cristallina I Chmca fsca superore Modulo 1 Element d strutturstca crstallna I Sergo Brutt Impacchettamento compatto n 2D Esstono 2 dfferent mod d arrangare n un pano 2D crconferenze dentche n modo da tassellare n modo

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

FISICA. S = Q rev 373K

FISICA. S = Q rev 373K FISICA Sere 9: Soluzon II lceo Eserczo 1 ranszone d fase Poché l entropa è una funzone d stato possamo calcolare la sua varazone lungo un processo reversble. Questo lo s può realzzare sottraendo delle

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P . Il Teorema Ergodco er le catene d Markov * Defnzone Una catena d Markov dscreta con sazo degl stat E; s dce regolare se, detta P = (P ) la matrce delle robablt a d transzone assocata, esstono un ntero

Dettagli

I polaroni. ˆn iˆn j + ω 0

I polaroni. ˆn iˆn j + ω 0 I polaron Un elettrone all nterno del retcolo crstallno d un soldo, non vede una struttura ordnata e rgorosamente perodca, ma ncontra delle dsomogenetà dovute agl spostament degl atom dalle loro poszon

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Anna Nobl 1 Defnzone e grad d lbertà S consder un corpo d massa totale M formato da N partcelle cascuna d massa m, = 1,..., N. Il corpo s dce rgdo se le dstanze mutue tra tutte le partcelle che lo compongono

Dettagli

Elementi di Algebra e Analisi Tensoriale

Elementi di Algebra e Analisi Tensoriale M. Moscon ppunt d Scenza delle Costruzon Gugno 000 Element d lgebra e nals ensorale M. Moscon Element d algebra e anals tensorale INDICE. lgebra vettorale e tensorale. Calcolo vettorale e tensorale. Identtà

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono Captolo 1 INTRODUZIONE 21 Anals Modale S facca rfermento al sstema tempo-dscreto e al sstema tempo-contnuo x(k +1)=Ax(k) ẋ(t) =Ax(t) Le evoluzon lbere de due sstem a partre dalla condzone nzale x() = x

Dettagli

links utili:

links utili: dspensa d Govann Bachelet Meccanca de Sstem, maggo 2003 lnks utl: http://scenceworld.wolfram.com/physcs/angularmomentum.html http://hyperphyscs.phy-astr.gsu.edu/hbase/necon.html Momento della quanttà d

Dettagli

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

INDICE. Scaricabile su:   Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata P r o f Gu d of r a n c n Anteprma Anteprma Anteprma www l e z o n j md o c o m Scarcable su: ttp://lezonjmdocom/ INDICE TEORIA Dervata n un punto Sgnfcato geometrco della dervata Funzone dervata e dervate

Dettagli

IL CALCOLO DELLE FREQUENZE VIBRAZIONALI

IL CALCOLO DELLE FREQUENZE VIBRAZIONALI IL CALCOLO DELLE FREQUENZE VIBRAZIONALI Il calcolo della frequenze rchede l calcolo della matrce delle costant d forza, coè le dervate seconde dell energa, valutate nella geometra d equlbro. Sa la geometra

Dettagli

Elasticità nei mezzi continui

Elasticità nei mezzi continui Elastctà ne mezz contnu l tensore degl sforz o tensore d stress, σ j Consderamo un cubo d dmenson untare n un mezzo elastco deformato. l cubo è deformato dalle forze eserctate sulle sue facce dal resto

Dettagli

Considerazioni teoriche su nuove osservazioni ottiche 1 della teoria della relatività. M. v. Laue (Berlin)

Considerazioni teoriche su nuove osservazioni ottiche 1 della teoria della relatività. M. v. Laue (Berlin) Consderazon teorche su nuove osservazon ottche 1 della teora della relatvtà. M. v. Laue (Berln) 1. Il calcolo della deflessone della luce da parte del sole s fonda sulla legge che la propagazone della

Dettagli

4.2 IL PRINCIPIO DEI LAVORI VIRTUALI 4.1 INTRODUZIONE

4.2 IL PRINCIPIO DEI LAVORI VIRTUALI 4.1 INTRODUZIONE Cap 4 PRINCIPIO DEI LAORI IRTUALI 4. IL PRINCIPIO DEI LAORI IRTUALI 4. INTRODUZIONE Fno ad ora s è condotto lo stdo del problema della deformazone e d qello della tensone per n corpo contno gngendo alla

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA I TUTELA E BEESSERE AIMALE Corso d : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chucch Rccardo mal:rchucch@unte.t Medcna Veternara: CFU 5 (corso ntegrato

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

Il tensore di energia-impulso di Bopp. per il campo elettromagnetico Friedrich Hehl

Il tensore di energia-impulso di Bopp. per il campo elettromagnetico Friedrich Hehl Il tensore d energa-mpulso d Bopp 12 per l campo elettromagnetco Fredrch Hehl BOPP ha presentato un tensore d energa-mpulso per l campo elettromagnetco, che s può ottenere dal tensore d MINKOWSKI con l

Dettagli

Analisi agli elementi finiti di campi vettoriali

Analisi agli elementi finiti di campi vettoriali Anals agl element fnt d camp vettoral Carlo Forestere December, 04 Formulazone n forma debole d equazon d campo vettorale Sa R un domno bdmensonale Fg. rempto da un materale lneare, sotropo, tempo nvarante,

Dettagli

Carla Seatzu, 18 Marzo 2008

Carla Seatzu, 18 Marzo 2008 8. Ret d Code Carla Seatzu, 8 Marzo 008 Nella maggor parte de process produttv rsulta troppo restrttvo consderare una sola rsorsa. Esempo: lea tandem arrv µ µ v partenze V sono dverse stazon cu una parte

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Si dice corpo rigido un oggetto ideale che mantiene la stessa forma e le stesse dimensioni qualunque sia la sollecitazione cui lo si sottopone.

Si dice corpo rigido un oggetto ideale che mantiene la stessa forma e le stesse dimensioni qualunque sia la sollecitazione cui lo si sottopone. Captolo 7 I corp estes 1. I movment d un corpo rgdo Che cosa s ntende per corpo esteso? Con l termne d corpo esteso c s rfersce ad oggett per qual non è lecto adoperare l approssmazone d partcella, coè

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

L arcobaleno. Giovanni Mancarella. n = n = n = α( o )

L arcobaleno. Giovanni Mancarella. n = n = n = α( o ) Govann Mancarella L arcobaleno I(α) (a.u.) n =.3338 n =.336 39 40 4 4 43 α( o ) In questa nota utlzzeremo l termne dstrbuzone per ndcare la denstà d probabltà d una varable casuale. Il fenomeno dell arcobaleno

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

3 = 3 Ω. quindi se v g = 24 V, i = 1,89 A Dobbiamo studiare tre circuiti; in tutti e tre i casi si ottiene un partitore di corrente.

3 = 3 Ω. quindi se v g = 24 V, i = 1,89 A Dobbiamo studiare tre circuiti; in tutti e tre i casi si ottiene un partitore di corrente. 5. Per la propretà d lneartà la tensone può essere espressa come = k g, doe g è la corrente del generatore. Utlzzando dat n Fgura a abbamo - = k 6, qund k = - ½. In Fgura b la corrente del generatore è

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04 Rccardo Sabatno 463/1 Progetto d un telao n c.a. A.A. 003/04 3.3 Il metodo degl spostament per la rsoluzone del telao Il metodo degl spostament è basato sulla valutazone de moment flettent ce agscono sugl

Dettagli

Interazioni Elettrodeboli. Lezione n. 18

Interazioni Elettrodeboli. Lezione n. 18 Interazon Elettrodebol rof. Francesco Ragusa Unverstà d Mlano Lezone n. 8..07 Partcelle d sn Proagatore del fotone e del IVB Neutrno dee nelastc scatterng Modello a arton del nucleone anno accademco 07-08

Dettagli

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi. orso d Laurea n Matematca Prova scrtta d Fsca 2 (Prof. E. Santovett) 11 settembre 2017 Nome: La rsposta numerca deve essere scrtta nell apposto rquadro e gustfcata accludendo calcol relatv. Problema 1.

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

QUANTITA DI MOTO LEGGE DI CONSERVAZIONE DELLA QUANTITA DI MOTO. Kg m/s. p tot. = p 1. + p 2

QUANTITA DI MOTO LEGGE DI CONSERVAZIONE DELLA QUANTITA DI MOTO. Kg m/s. p tot. = p 1. + p 2 QUANTITA DI MOTO r p = r mv Kg m/s LEGGE DI CONSERVAZIONE DELLA QUANTITA DI MOTO La quanttà d moto totale n un sstema solato s conserva, coè rmane costante nel tempo p tot = p 1 + p 2 = m 1 v 1 + m 2 v

Dettagli

Correnti e circuiti resistivi

Correnti e circuiti resistivi Corrent e crcut resstv Intensta d corrente Densta d corrente Resstenza Resstvta Legge d Ohm Potenza dsspata n una resstenza R Carche n un conduttore cos(θ ) v m N v 0 Se un conduttore e n equlbro l campo

Dettagli

La teoria cinetica dei gas

La teoria cinetica dei gas La teora cnetca de gas Gas: un numero grandssmo gandssmodmolecole n moto caotco. Interazone tra molecole solo n caso d urto. Calcolando la pressone come dovuta all urto d tutte le molecole con le paret

Dettagli

Problemi attuali di fisica delle particelle

Problemi attuali di fisica delle particelle Problemi attuali di fisica delle particelle Incontri di Fisica 2007 LNF, Frascati, 1/3 Ottobre 2007 Riccardo Barbieri SNS Pisa Le particelle elementari in una pagina L SM = 1 4 Fa µνf aµν + i ψ Dψ +ψ i

Dettagli

Support Vector Machines. Macchine a vettori di supporto

Support Vector Machines. Macchine a vettori di supporto Support Vector Machnes Macchne a vettor d supporto Separator Lnear Percettrone La classfcazone bnara può essere vsta come un problema d separazone d class nello spazo delle feature m b b b > 0 b 0 b

Dettagli

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema DINAMICA DEI SISTEMI Sstema costtuto da N punt materal P 1, P 2,, P N F E rsultante t delle forze esterne agent su P F E F forza eserctata t sul generco punto P j del sstema da P : forza nterna al sstema

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE In presenza d una almentazone alternata snusodale tutte le grandezze elettrche saranno alternate snusodal. Le equazon d funzonamento n regme comunque varale

Dettagli

(1) (2) 1 N. Bohr, Phil. Mag., 9,1 (1922). 2 D. R. Hartree, PTOC. Cambridge Phil. Soc., 24, 89 (1928).

(1) (2) 1 N. Bohr, Phil. Mag., 9,1 (1922). 2 D. R. Hartree, PTOC. Cambridge Phil. Soc., 24, 89 (1928). Il metodo SCF d Hartree ( Self-Consstent-Feld) Dscuteremo un approcco che utlzza alcun de vantagg del metodo a partcelle ndpendent, ma che tene conto sstematcamente delle repulson elettronche. el 922,

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

Elettrostatica. L e l e g g i dell Elettrostatica

Elettrostatica. L e l e g g i dell Elettrostatica Elettrostatca L e l e g g dell Elettrostatca E = ρ ε 0 E = d B dt B = 0 c 2 B J = + d E ε 0 dt Tutto l elettromagnetsmo è descrtto tramte quatto equazon Equazon d Maxwell Come samo pervenut ad esse? Qual

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. La

Dettagli

Ora, per un fotone, che è poi una «particella» con massa a riposo nulla, si ha

Ora, per un fotone, che è poi una «particella» con massa a riposo nulla, si ha EQUAZIONE DI DIRAC (e la resunta quarta dmensone) (una rova dell essenza osllatora dell unverso e dell essenza trdmensonale della quarta dmensone relatvsta) Leonardo Rubno Gennao 9 Abstrat : dmostramo

Dettagli

Prova scritta del corso di Fisica

Prova scritta del corso di Fisica Prova scrtta d corso d Fsca Prof F Rcc-Tersengh 30/01/014 Quest 1 S supponga d applcare una forza F n orzzontale su d un corpo d massa m = 10 kg che è appoggato su un pano scabro (µ s = 08) nclnato d un

Dettagli

Vibrazioni nelle molecole poliatomiche

Vibrazioni nelle molecole poliatomiche Vbrazon nelle molecole polatomche Voglamo descrvere l moto vbrazonale d una molecola polatomca con N atom In un sstema d rfermento con ass fss ogn atomo è descrtto da 3 coordnate cartesane 3N grad d lbertà

Dettagli

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 4

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 4 Teora de Goch Dr. Guseppe Rose Unverstà degl Stud della Calabra Corso d Laurea Magstrale n Economa Applcata a.a 011/01 Handout 4 1 L equlbro d Bertrand Nel modello d Bertrand, abbamo un duopolo esattamente

Dettagli

LA SCOMPOSIZIONE DEI POLINOMI

LA SCOMPOSIZIONE DEI POLINOMI LA SCOMPOSIZIONE DEI POLINOMI 8 Per rcordare H Scomporre un polnomo sgnfca scrverlo come prodotto d altr polnom. Nella scomposzone d un polnomo non devono qund comparre operazon d addzone o sottrazone

Dettagli

Dinamica dei sistemi particellari

Dinamica dei sistemi particellari Dnamca de sstem partcellar Marco Favrett Aprl 11, 2010 1 Cnematca Sa dato un sstema d rfermento nerzale (O, e ), = 1, 2, 3 e consderamo un sstema d punt materal (sstema partcellare) S = {(OP, m )}, = 1,,

Dettagli

Secondo Principio della Termodinamica

Secondo Principio della Termodinamica Secondo Prncpo della ermodnamca Problema: n che modo s puo pedere se un processo è spontaneo e quale è la drezone d un processo spontaneo Notamo: Il I prncpo della D stablsce che un sstema puo modfcare

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 15 23 novembre 211 Funzon Eulerane - robabltà professor Danele Rtell www.unbo.t/docent/danele.rtell 1/2? Cambo

Dettagli

Ability of matter or radiation to do work because of its motion or its mass or its electric charge

Ability of matter or radiation to do work because of its motion or its mass or its electric charge L energa Una defnzone (Oxford Dctonary) Ablty of matter or radaton to do work because of ts moton or ts mass or ts electrc charge L energa è l concetto fsco pù mportante che s ncontra n tutta la scenza.

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli