FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE
|
|
|
- Annunziata Giuliana Cara
- 6 anni fa
- Visualizzazioni
Transcript
1 FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE Si definisce la funzione tangente, tanθ, (talvolta indicata tgθ), nel modo seguente tanθ =sinθ/cosθ La funzione tangente non è definita dove si annulla il coseno, quindi è definita per θ π/2 +kπ per ogni k Z tanθ è periodica di periodo π tan(θ +kπ) = tanθ La funzione tangente è una funzione dispari tan( θ) = tanθ
2 FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE tanθ è strettamente crescente in ciascun intervallo (kπ - π/2, kπ + π/2), per ogni k Z tanθ è positiva in ciascun intervallo (kπ, kπ + π/2), per ogni k Z Il grafico di tanθ ha un asintoto verticale nei punti di singolarità lim θ (π/2+k π) + tanθ = lim θ (π/2+k π) - tanθ =+ L insieme immagine è tutto R
3 Grafico della funzione tanx
4 Alcuni limiti: lim x 0 sinx/x = 1
5 Alcuni limiti: lim x 0 sinx/x = 1 Consideriamo il caso α 0 +, analogo è il caso α 0 -. Con riferimento alla figura precedente, si osserva che l area del triangolo di vertici ABC, è minore dell area del settore circolare ABE, che a sua volta è minore dell area del triangolo ADE (essendo questi insiemi contenuti uno dentro l altro). Poiché l area di un settore circolare è proporzionale alla lunghezza dell arco, essendo l area del cerchio unitario, sotteso ad un arco di lunghezza 2π, uguale a π, la costante di proporzionalità è 1/2 e quindi l area del settore circolare ABE è α/2
6 Alcuni limiti: lim x 0 sinx/x = 1 1/2 sinα cosα < α/2 < 1/2 tan α Dividiamo per sinα (che per α>0 è positivo) e moltiplichiamo per 2 cosα < α/sinα < 1/cosα Passiamo ai reciproci cosα < sinα/α < 1/cosα Da cui, per il teorema del confronto, otteniamo lim x 0 +sin α/α = 1 Analogo risultato si ha per il limite sinistro
7 Alcuni limiti Dal precedente limite ricaviamo anche lim x 0 (1-cosx)/x 2 = 1/2
8 Funzioni inverse: arcsinx La funzione sinx non è iniettiva e quindi non può essere globalmente invertibile, ma se la restringiamo a opportuni intervalli, è possibile determinare una funzione inversa. Nell intervallo [-π/2, π/2 ] la funzione seno è strettamente crescente e quindi iniettiva, se consideriamo come codominio l intervallo [-1, 1] possiamo definire la funzione inversa arcoseno, arcsin: [-1, 1] [-π/2, π/2 ] arcsinx è l unica soluzione nell intervallo [-π/2, π/2 ] dell equazione sinθ =x
9 Grafico della funzione arcsinx
10 Funzioni inverse: arccosx Analogamente, considerando la funzione coseno ristretta all intervallo [0, π], dove è strettamente decrescente, e con codominio l intervallo [-1, 1], otteniamo una funzione invertibile. Definiamo la funzione inversa arcocoseno arccos: [-1, 1] [0, π], arcocosx è l unica soluzione nell intervallo [0, π] dell equazione cosθ =x Attenzione! L equazione cosθ =x ha infinite soluzioni, ma per θ [0, π] la soluzione è unica.
11 Grafico della funzione arccosx
12 Funzioni inverse: arctanx Infine, considerando la funzione tanx ristretta all intervallo (-π/2, π/2), dove è strettamente crescente, e con codominio R, otteniamo una funzione invertibile. Definiamo la funzione inversa arcotangente arctan: R (-π/2, π/2), arctanx è l unica soluzione nell intervallo (-π/2, π/2), dell equazione tanθ =x Attenzione! L equazione tanθ =x ha infinite soluzioni, ma per θ (-π/2, π/2), la soluzione è unica.
13 Grafico della funzione arctanx
14 FUNZIONI SINUSOIDALI Diremo curva sinusoidale una curva ottenuta dal grafico della funzione seno tramite traslazioni o moltiplicazioni di ascisse e /o ordinate, la funzione di cui la curva è grafico si dirà funzione sinusoidale.
15 FUNZIONI SINUSOIDALI Una funzione sinusoidale è determinata da: - il periodo (per seno e coseno 2π) - l ampiezza, data da (M-m)/2, dove M è il valore massimo, ed m è il valore minimo, è, quindi, metà dell intervallo di variazione (per seno e coseno è 1) - il valor medio, dato da (M+m)/2, punto centrale dell intervallo di variazione, (per seno e coseno è 0) - la fase, primo punto non negativo in cui la funzione assume valore massimo M (per il coseno la fase è 0, per il seno la fase è π/2)
16 FUNZIONI SINUSOIDALI: UN ESEMPIO Una popolazione di uccelli varia stagionalmente da un minimo di circa 1000 (inizio aprile) individui ad un massimo di circa 1500 (inizio ottobre). Cerchiamo una funzione sinusoidale che rappresenti questo andamento in funzione dei giorni dell anno. La funzione sinusoidale che cerchiamo deve avere: Periodo 365 giorni Ampiezza ( )/2 = 250 e valor medio ( )/2 =1250 Fase : il primo massimo si ha all inizio di ottobre, quindi il giorno 274
17 FUNZIONI SINUSOIDALI: UN ESEMPIO Partiamo dalla funzione cosx e modifichiamo il periodo per passare dall intervallo [0, 2π] all intervallo [0, 365] cos[(2π/365)x] Sistemiamo la fase, perché la precedente funzione ha il primo massimo in 0, mentre la funzione che cerchiamo deve averlo in 274 cos[(2π/365)(x - 274)] Sistemiamo l ampiezza, la funzione precedente ha ampiezza 1, quella che cerchiamo deve avere ampiezza cos[(2π/365)(x - 274)]
18 FUNZIONI SINUSOIDALI: UN ESEMPIO Il valore massimo deve essere 1500, la funzione precedente ha valore massimo 250, quindi la funzione che cerchiamo è 250cos[(2π/365)(x - 274)] è il valor medio A questa funzione corrisponde valore minimo giusto 1000, assunto per x*= 91.5, quindi inizi aprile come deve essere. Per avere 0 x* 365 basta porre (2π/365)(x - 274) = (2k +1)π
19 FUNZIONI SINUSOIDALI In generale, se cerchiamo una funzione sinusoidale di periodo P, ampiezza A, valor medio y*, fase F, avremo, analogamente a quanto visto nell esempio precedente, una funzione f(x) = Acos[(2π/P)(x-F)] + y* Il numero f= 1/P è chiamato frequenza della funzione La quantità ω=2π/p viene detta frequenza angolare della funzione, e, talvolta la funzione sinusoidale è espressa come f(x) = Acos[ω(x-F)] + y*
FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE
FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE f: R R è detta funzione periodica di periodo T>0 se per ogni x R f(x+t) = f(x) Gli angoli hanno natura periodica: un angolo di 30 o un angolo di 30 +360 =
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce
Funzione seno. A partire dalla conoscenza del grafico di f(x) = sinx disegna il grafico delle seguenti funzioni g(x) = sin(x/3)
Funzione seno A partire dalla conoscenza del grafico di f(x) = sinx disegna il grafico delle seguenti funzioni g(x) =sin(x+π/4); g(x) = sin(x-π/3) g(x) =sin(2x); g(x) = sin(x/3) g(x) =1+sinx; g(x)= 3sinx
Funzioni elementari: funzioni trigonometriche 1 / 17
Funzioni elementari: funzioni trigonometriche 1 / 17 La circonferenza di equazione x 2 + y 2 = 1 é detta circonferenza goniometrica. La circonferenza goniometrica 1 P 1 α 0 A 1 2 / 17 La circonferenza
Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y
Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.
Equazioni goniometriche elementari. Daniela Valenti, Treccani scuola
Equazioni goniometriche elementari 1 Questa presentazione è dedicata a risolvere equazioni trigonometriche elementari Sono dette elementari le equazioni del tipo sin(x)=m, cos(x) = m e tan(x) = m, con
FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI. 4 Liceo Scientifico a.s. 2017/18
FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI 4 Liceo Scientifico a.s. 2017/18 FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI Presentiamo il grafico delle funzioni elementari e delle funzioni che si ottengono trasformando
Funzioni (parte II).
Funzioni (parte II). Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 21 ottobre 214 Paola Mannucci e Alvise Sommariva Introduzione. 1/ 55 Funzioni trigonometriche.
Corso di Analisi Matematica. Funzioni continue
a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
Esercizi con soluzioni dell esercitazione del 31/10/17
Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare
Proprietà globali delle funzioni continue
Limiti e continuità Teorema di esistenza degli zeri Teorema dei valori intermedi Teorema di Weierstrass Teoremi sulla continuità della funzione inversa 2 2006 Politecnico di Torino 1 Data una funzione
Capitolo 3. Le funzioni elementari
Capitolo 3 Le funzioni elementari Uno degli scopi di questo capitolo è lo studio delle funzioni reali di variabile reale, ossia funzioni che hanno come dominio un sottoinsieme di R e codominio R. Lo studio
Esercizi sulle Funzioni
AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Funzioni Esercizio svolto. Trovare i domini di definizione delle seguenti funzioni: a) f) sin + cos ; b) g) log ) ; c) h) sin + e sin. Soluzione. a) La
Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1
FUNZIONI TRIGONOMETRICHE E IPERBOLICHE
FUNZIONI TRIGONOMETRICHE E IPERBOLICHE Indice. Qualche formula di trigonometria.. Identità fondamentale.. Periodicità.. Alcune formule notevoli.4. Alcuni valori notevoli.5. Formule di addizione 5.6. Formule
05 - Funzioni di una Variabile
Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016
Dispensa sulle funzioni trigonometriche
Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa
QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE
QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a TRIGONOMETRIA a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1 1) Un angolo misura 315 o. La sua misura
Soluzioni dei problemi della maturità scientifica A.S. 2011/2012
Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sunra J.N. Mosconi giugno Problema. Per determinare il periodo di g occorre determinare il più piccolo T > per cui valga, per ogni
Le funzioni periodiche e il ritmo della vita Molti fenomeni naturali hanno un andamento ciclico ( o periodico), cioè ad intervalli di tempo fissati,
Le funzioni periodiche e il ritmo della vita Molti fenomeni naturali hanno un andamento ciclico ( o periodico), cioè ad intervalli di tempo fissati, detti periodi, si ripetono con le stesse modalità: il
Funzioni e grafici. prof. Andres Manzini
Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni
che ci permette di passare da un sistema di misura all'altro con le:
Goniometria Misura degli angoli Gli angoli vengono spesso misurati in gradi sessagesimali (1 = 1/360 dell'angolo giro), anche se una Legge dello Stato italiano del 1960 impone di esprimerli in radianti.
Note di trigonometria
Note di trigonometria Daniel Gessuti indice Elementi di Trigonometria Seno, coseno e tangente Relazione fondamentale Secante, cosecante e cotangente 3 Le funzioni seno, coseno e tangente e le loro inverse
FUNZIONI E INSIEMI DI DEFINIZIONE
FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge
f: x R sen x [0, 1] g: x R cos x [0, 1] 1.Il dominio della funzione sen x è R. 1. Il dominio della funzione cos x è R.
Le funzioni seno e coseno. Ogni numero reale è la misura in radianti di un angolo goniometrico; pertanto possiamo definire il seno e il coseno di un numero reale ricorrendo al seno e coseno dell angolo
Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1
( 1 ) AB:A B =BC:B C =CA:C A
Goniometria II parte Funzioni goniometriche: seno, coseno tangente Ricordiamo che: Due triangoli si dicono simili se hanno gli angoli ordinatamente uguali e i lati omologhi (nel caso dei triangoli i lati
CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE
CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:
Capitolo 8: introduzione alla trigonometria
Capitolo 8: introduzione alla trigonometria 8.1 Trasformare da gradi sessagesimali a radianti o viceversa a 0 0 ; b 70 0 ; c 60 0 ; d 1 0 ; e 5 0 ; f 15 0 ; g 5 0 ; h 15 0 ; i 10 0 0 ; j 1 0 9 ; k 1 0
ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE
ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE Determinare l incremento della funzione f (x) = x 2 relativo al punto x 0 e all incremento x x 0, nei seguenti casi:. x 0 =, x = 2 2. x 0 =, x =. 3. x 0 =,
GONIOMETRIA E TRIGONOMETRIA
Dispensa di Matematica per la classe 4. C Anno scolastico 017-018 GONIOMETRIA E TRIGONOMETRIA Nome e Cognome: CIRCONFERENZA GONIOMETRICA In un triangolo rettangolo con ipotenusa 1 e angolo α i due cateti
1. FUNZIONI IN UNA VARIABILE
1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di
Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.
Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa
Coordinate cartesiane nel piano
Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi
CENNI DI TRIGONOMETRIA
CENNI DI TRIGONOMETRIA Siano Π il piano e C Π un suo punto. Un circolo (o circonferenza) in Π di centro C e raggio r R + è il luogo gemetrico dei punti P Π che distano r da C. Un circolo possiede due naturali
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in
1 Distanza di un punto da una retta (nel piano)
Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di
1 Funzioni trigonometriche
1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione
Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.
Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:
Argomento 6 Derivate
Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =
Prerequisiti di Matematica Trigonometria
Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Angolo è una porzione di piano racchiusa
Esonero di Analisi Matematica I (A)
Esonero di Analisi Matematica I A) Ingegneria Edile, 7 novembre 00 Michele Campiti) 1. Studiare il seguente ite: x π/ cos x 1 sin x) tan 3 x π ).. Calcolare le seguenti radici quarte: 3i 4 1 + i). Esonero
14. Studio grafico completo di funzioni
14. Studio grafico completo di funzioni Davide Catania [email protected] Esercitazioni di Analisi Matematica 1 Studio elementare di funzioni (1) Trova il dominio. data f (x) (2) Studia la simmetria
Alcune nozioni di trigonometria 1
Alcune nozioni di trigonometria. Angoli In un sistema di assi cartesiani ortogonali la misura degli angoli si effettua a partire dal semiasse positivo delle x, assumendo come positivo il verso antiorario.
VERIFICA DI MATEMATICA SIMULAZIONE SOLUZIONI. y cost
VERIFICA DI MATEMATICA SIMULAZIONE SOLUZIONI Problema 1: a) sint cost x sint cost x = sin sin x = x = t t = 1 sin t cost, con cost 0 y 0 y cost y cost y cost = = = cost = y x sin t + cos t = 1 + y = 1
FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale
FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio
FUNZIONI GONIOMETRICHE
FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano
FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale
FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio
Soluzioni dei problemi della maturità scientifica A.S. 2012/2013
Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +
