VERIFICA DI MATEMATICA SIMULAZIONE SOLUZIONI. y cost
|
|
|
- Gianleone Grandi
- 6 anni fa
- Visualizzazioni
Transcript
1 VERIFICA DI MATEMATICA SIMULAZIONE SOLUZIONI Problema 1: a) sint cost x sint cost x = sin sin x = x = t t = 1 sin t cost, con cost 0 y 0 y cost y cost y cost = = = cost = y x sin t + cos t = 1 + y = 1 ellisse con centro nell'origine, fuochi sull'asse x, semiasse trasverso, non trasverso 1 4 b) 1 P ( 1; y > 0) + y = 1 y = y = P 1; x retta tangente in P (formule di sdoppiamento): + y = 1 x + y = 4 y = x Sapendo che m = tan α, dove α è l'angolo che la retta forma con la direzione positiva dell'asse delle ascisse, si ha: tanα = α = arctan = ( calcolato con la calcolatrice) 16,101 = 16, = 16, Quindi ci sono ,8979 0, '=5,874'. Quindi ci sono 5' + 0,874' 0,874' 60''=5,44''=5''. In definitiva α = 16 5' 5'' c) Dal punto precedente sappiamo che tan α =, quindiù 6 α α α tan 1+ tan 1 1+ tan sinα = ± cos ecα = ± e cosα = ± secα = ± tan 1+ tan α α 1+ tan α α sec sec 1 tan tan α tan α co α = + α = + = + = = 4 1
2 d) Dal punto a) sappiamo che f ( t ) y π π = f + + = sin + + t t : = sin t. Quindi: 1 y = f t = sint = sint :
3 1 1 y = = f t 4sin t x f t t f t y 1 1 x 1 = sin = arcsin = = 1 f ( t) arcsin
4 e) γ ellisse di centro l'origine, fuochi sull'asse x, semiasse trasverso e non trasverso 1 γ ' simmetrica di γ rispetto al punto C(;1) è l'ellisse di centro C'(4;),fuochi sull'asse x, x 4 y semiasse trasverso e non trasverso 1 + = x 4 = cost In maniera analoga al punto a), le sue equazioni parametriche saranno:, con t 0;π = sin y t
5 Problema : a) arctan y = f x = x ( x ) x x D = + ) Dominio: arctan 0 0 ; y 0 y 0 y 0 π π π π Codominio: y = arctan( x ) < y < < y < y = arctan( x ) tan( y ) = x tan( y ) + = x y 0 π π π y < y < C = 0; tan( y ) + = x
6 b) f è strettamente crescente, quindi biettiva, quindi invertibile su tutto il dominio. Per quanto già fatto nel punto a): π y = g x = f x = x + g + 1 tan, con : 0; ; ) c) + 6 sin{ } cos { ( ) } sec sin{ arctan1 } cos arctan ( f f + f = ) + sec arctan = π π π = sin cos + sec = + = d) 4 4 π π g ( x) = tan x = tan x = x = x =
7 e) tant + x + x t = f ( x ) = arctan( x ) y = y = y =, con x ; + tant x 4 x )
8 x h( x) = 10x + k = 10x + k 4 x r : P ;1 1 = 0 + k k = 19 y = 10x 19 x y = x t t x k x x k x kx x ( k ) x k 4 x y = 10x + k 1 : 4 x = 10 + = = 0 = k 78k k = 0 k + 8k = 0 k = 41± 4 10 k > 19 0 soluzioni < k 19 soluzioni k = soluzioni coincidenti < k < soluzioni k = soluzioni coincidenti k < soluzioni
9 Quesito 1: b = π a a = 1 V ( π; π ) O( 0;0) π = aπ + bπ b = π y = x π x c = 0 c = 0 Essendo le parti in grigio uguali, per la simmetria della funzione seno, basta calcolare l'area del segmento parabolico: 4 A = π π = π Quesito : ( 1 cos x )( 1+ cos x) ( 1 cos x )( 1+ cos x) cos x ( 1+ cos x) co tan x = 1+ cos x ( 1+ cos x) = 1+ cos x tan x sin x sin x cos x cos x cos x 1+ cos x sin x = 1+ cos x 1+ cos x + cos x cos x = 1+ cos x 1+ cos x = 1+ cos x sin x sin x
10 Quesito : k 1 k 1+ k k 1 + k sinα = 1+ k k 1 k 1+ k 1+ k k 0 k 0 k 1+ k k 0 k 0 k k k 1+ k k k 0 k 0 k 1+ k k 0 k 0 k k k 1+ k k k 1+ k k 1 cosα = ± 1 sin α = ± 1 = ± = ± k + k 1+ k tanα sinα k = ± 1+ k = ± k cosα 1+ k = Quesito 4: y = arcsin ( x) x 1 x 1 Domin io : x 1 x 1 D = 1;0 ) ( 0;1 arcsin( x) 0 x 0 y 0 y 0 y 0 π π Codomin io : y = y arcsin( x) = y arcsin( x) arcsin( x) = y π π y x = sin x = sin y y C = ;0 0; π π 1 1 y = f ( x) = sin, con f : ;0 0; 1;0 ) ( 0;1 x π π
11 Quesito 5: 1 f ( x ) = sin 4x + cos 5x + x tanx π π π π T1 = = =90 T = = 7 T = = T = mcm 90,7,60 = 60 = π f π π f sin 4π cos 5π π tanπ sin π cos π π = tanπ = 1 1 = =
12 Quesito 6: cos x cotan x 1 sin x sin 1 1 cos sec tan ( sec cos cot x x x x x ec x an x) = = cotan x cos x cos x cos x cos x sin x sin x sin x 4 1 sin x 1 1 cos x 1 sin x 1+ cos x 1 1+ cos x = = ( 1) = = 1 cos x cos x cos x sin x cos x cos x sin x cos x cos x cos x Quesito 7: π f ( x ) = a sin x + 4π π 1 P π; = a sin + = a a = f x 1 π = sin x + Quesito 8: sinα = x x = sinα y y ( x) + = 1 y = cosα cosα = 9 Ellisse traslata di centro C(;0), fuochi sull'asse verticale, semiasse trasverso, non trasverso 1
13 Quesito 9: x = y 4 A : A( 0;) B ( ;0) mab = = x = 0 π π π β = arctan( mab ) = arctan ms tan arctan 5 4 = 4 4 = passa per B 6 5 s : y = 5x + 15 C ; m = Quesito 10: f x cos x sin x sin x cot anx sin sin x cos x sin x = = x = = 4sin x + 4cos x 4 4 8
Esercizi per le vacanze - Classe 3C Prof. Forieri Claudio. Disequazioni. + 3x. x x x
Esercizi per le vacanze - Classe C Prof. Forieri Claudio Disequazioni Risolvi le seguenti disequazioni: 1. ( 5)( + )( ) > 0. ( + 1) > 0. ( + 5) >. 1 1 1 + + < 0 ( 5)( + ) 5. > 0 1 6. + = 7. 1 > 1 ( + 1)(
Note di trigonometria
Note di trigonometria Daniel Gessuti indice Elementi di Trigonometria Seno, coseno e tangente Relazione fondamentale Secante, cosecante e cotangente 3 Le funzioni seno, coseno e tangente e le loro inverse
Università degli Studi di Roma - La Sapienza, Facoltà di Architettura Formulario di Matematica *
Università degli Studi di Roma - La Sapienza, Facoltà di Architettura Formulario di Matematica *. Distanza tra due punti A ; ) e B ; ) del piano cartesiano: AB = ) + ) +. Punto medio M del segmento AB
EQUAZIONI E DISEQUAZIONI GONIOMETRICHE
EQUAIONI E DISEQUAIONI GONIOMETRICHE Elementari (e riconducibili) Circ. goniometrica Lineari Metodo grafico Angolo aggiunto Form. Parametriche Omogenee Divisione per cos (x) Form. abbassamento di grado
ESERCIZI PRECORSO DI MATEMATICA
ESERCIZI PRECORSO DI MATEMATICA EQUAZIONI 1. cot( 10 ) 3. tan 3 3. cos( 45 ) +1 0 4. sin sin 5. tan( 180 ) tan( 3) 6. 5 cos 4sin cos 7. 3sin 3 cos 0 8. 3 cos + sin 3 0 9. sin3 sin( 45 + ) 10. 6sin 13sin
Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni
Argomento 6: Derivate Esercizi. I Parte - Derivate
6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)
Formulario di Matematica. Salvatore di Maggio
Formulario di Matematica Salvatore di Maggio Indice 1 Disequazioni 5 Calcolo Combinatorio 7 3 Logaritmi 9 4 Trigonometria 11 5 Geometria Analitica 1 5.1 Punti e rette..........................................
( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P(
ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] + + + ( ) Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio
Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1
trasformazione grafico Cosa si deve fare Esempio goniometrico
trasformazione grafico Cosa si deve fare Esempio goniometrico = cos + b>0 Traslazione verticale b 0 si sposta il grafico verso l alto, oppure l asse orizzontale verso il
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
Formule Utili Analisi Matematica per Informatici a.a
Formule Utili Analisi Matematica per Informatici a.a. 006-007 Dott. Simone Zuccher dicembre 006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore [email protected]).
Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.
Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1 Circonferenza goniometrica
Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1
GONIOMETRIA E TRIGONOMETRIA
Dispensa di Matematica per la classe 4. C Anno scolastico 017-018 GONIOMETRIA E TRIGONOMETRIA Nome e Cognome: CIRCONFERENZA GONIOMETRICA In un triangolo rettangolo con ipotenusa 1 e angolo α i due cateti
y = [Sol. y 2x = 4x Verifica n.1
Verifica n.1 disegnare curve, con valori assoluti e radicali luoghi geometrici (con retta, parabola, circonferenza) funzione omografica parabola aree (ellisse, segmento parabolico) formule goniometriche:
FUNZIONI GONIOMETRICHE
FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce
EQUAZIONI E DISEQUAZIONI GONIOMETRICHE
EQUAIONI E DISEQUAIONI GONIOMETRICHE Elementari Circ. goniometrica Metodo grafico Lineari Metodo grafico Angolo aggiunto Form. Parametriche Omogenee Divisione per cos (x) Form. abbassamento di grado Equazioni
FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE
FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE Si definisce la funzione tangente, tanθ, (talvolta indicata tgθ), nel modo seguente tanθ =sinθ/cosθ La funzione tangente non è definita dove si annulla il
SIMULAZIONE - VERIFICA DI MATEMATICA L IPERBOLE. 16 20 20 0 5 5 dovendo essere
SIMULAZIONE - VERIFICA DI MATEMATICA L IPERBOLE Problema 1: a) y = 4 x 4 x + x = 0 y = x x 1 x 1 C. E.: 4 x 0 x y = 4 x y = 4 x x + y = 4 semiocirconferenza superiore di centro l'origine e raggio C. C.:
Capitolo 8: introduzione alla trigonometria
Capitolo 8: introduzione alla trigonometria 8.1 Trasformare da gradi sessagesimali a radianti o viceversa a 0 0 ; b 70 0 ; c 60 0 ; d 1 0 ; e 5 0 ; f 15 0 ; g 5 0 ; h 15 0 ; i 10 0 0 ; j 1 0 9 ; k 1 0
{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.
0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere
QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE
QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a TRIGONOMETRIA a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1 1) Un angolo misura 315 o. La sua misura
Capitolo 3. Le funzioni elementari
Capitolo 3 Le funzioni elementari Uno degli scopi di questo capitolo è lo studio delle funzioni reali di variabile reale, ossia funzioni che hanno come dominio un sottoinsieme di R e codominio R. Lo studio
FUNZIONI E INSIEMI DI DEFINIZIONE
FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge
FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI. 4 Liceo Scientifico a.s. 2017/18
FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI 4 Liceo Scientifico a.s. 2017/18 FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI Presentiamo il grafico delle funzioni elementari e delle funzioni che si ottengono trasformando
Funzioni elementari: funzioni trigonometriche 1 / 17
Funzioni elementari: funzioni trigonometriche 1 / 17 La circonferenza di equazione x 2 + y 2 = 1 é detta circonferenza goniometrica. La circonferenza goniometrica 1 P 1 α 0 A 1 2 / 17 La circonferenza
Silvia Braschi PROGRAMMA SVOLTO 3 i Matematica 2017/2018
Silvia Braschi PROGRAMMA SVOLTO i Matematica 017/018 Geometria Analitica (vol A) Ripasso delle disequazioni di secondo grado intere e fratte Disequazioni di grado superiore al secondo Sistemi di disequazioni
Prerequisiti di Matematica Trigonometria
Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Angolo è una porzione di piano racchiusa
LA RETTA. Forma generale dell equazione della retta: ax+by+c=0 Dove :
Forma generale dell equazione della retta: a+b+c0 Dove : a b c 1 Forma esplicita dell equazione della retta: È possibile dividere entrambi i membri dell equazione generale della retta per b se b 0 ovvero
Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2
0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
Analisi e Geometria 1 Politecnico di Milano Ingegneria
Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Funzioni. Calcolare la derivata delle funzioni: (a f( = ln tg cos sin (b f( = + ln( + +. Dimostrare che la funzione è costante a tratti. 3.
PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE IIIC. Insegnante Pellegrino Innocenza. Disciplina MATEMATICA
PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO a. s. 2016-2017 CLASSE IIIC Insegnante Pellegrino Innocenza Disciplina MATEMATICA PROGRAMMA SVOLTO Equazioni e disequazioni algebriche Ripasso di equazioni
A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame
COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni
Formulario di Matematica
Nicola Morganti 6 dicembre 00 Indice FORMULE DI GEOMETRIA ANALITICA PIANA. LA RETTA................................... LA CIRCONFERENZA............................. L ELLISSE...................................
Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica
Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali
APPUNTI DI TRIGONOMETRIA
Massimo Benenati (MassimoB) APPUNTI DI TRIGONOMETRIA 22 November 2015 Prefazione Non molto tempo fa trovandomi a studiare matematica per gli esami di analisi dopo anni dalle scuole superiori una delle
Banca Dati Finale Senza Risposte
Banca Dati Finale Senza Risposte TRG da 5451 a 6100 5451 La tangente di un angolo di 90 : A) è 1 B) è 0 C) non è definita D) è 1 5452 Quanto vale in gradi un angolo di (5/4) π radianti? A) 240 B) 270 C)
CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE
CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:
Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y
Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.
Gli insiemi, la logica
Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) 2 A (d) A (e) {1, } A 2 Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali
Tutorato di Analisi 2 - AA 2014/15
Tutorato di Analisi - AA / Emanuele Fabbiani marzo Funzioni in più variabili. Dominio Determinare e rappresentare gracamente il più grande insieme di R n che può essere dominio delle seguenti funzioni.
Goniometria per il TOL - Guida e formulario
Goniometria per il TOL - Guida e formulario Luca Talenti Gli argomenti più complessi del TOL sono probabilmente la goniometria e la trigonometria. Se non si arriva dal liceo scientifico, spesso questi
Scuole italiane all estero (Europa suppletiva) 2003 Quesiti QUESITO 1
www.matefilia.it Scuole italiane all estero (Europa suppletiva) 200 Quesiti QUESITO Cosa si intende per funzione periodica? Quale è il Periodo della funzione f(x) = tan(2x) + cos 2x? Una funzione f(x)
GEOMETRIA ANALITICA: LE CONICHE
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale
CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA
CLASSE 3^ A LICEO SCIENTIFICO 3 Agosto 205 Recupero MATEMATICA. Scrivi l equazione della circonferenza passante per i punti ;2 e 2;5 e avente il centro sulla retta di equazione = 2 2. L asse del segmento
f(x) = sin cos α = k2 2 k
28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza
Corso di ordinamento- Sessione ordinaria all estero (EUROPA) - a.s Soluzione di De Rosa Nicola
Corso di ordinamento- Sessione ordinaria all estero (EUROPA - a.s. 007-008 MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLE ITALIANE ALL ESTERO (EUROPA ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria
Prerequisiti di Matematica Trigonometria
Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Angoli Un angolo è una porzione di piano
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
1 Analisi mat. I - Esercizi del 13/10/99
Analisi mat. I - Esercizi del //99 ES. Delle seguenti funzioni determinare: il dominio l immagine gli eventuali asintoti l insieme dove sono continue e quali siano estendibili per continuita. Determinare
Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni
Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
TRIGONOMETRIA formule goniometriche, parte 2
TRIGONOMETRIA formule goniometriche, parte SAPER FARE:. Conoscendo le funzioni dell'angolo x, trovare il valore delle funzioni goniometriche dell'angolo somma/differenza tra x ed un qualsiasi angolo y,
Calcolo integrale: esercizi svolti
Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione
Verso il concetto di funzione
Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche
Coordinate cartesiane nel piano
Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi
1 Distanza di un punto da una retta (nel piano)
Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di
b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse
Verifiche anno scolastico 2011 2012 1) Riferendoti alla figura ricava l equazione della retta t. a) A è il punto di t che ha ascissa - 1, ricava la sua ordinata. B è il punto di t che ha ordinata 3 ricava
Corso di Analisi Matematica 1 - professore Alberto Valli
Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 6 foglio di esercizi - 5 ottobre 07
( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come
Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata
Analisi Matematica 1
Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,
il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere
Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere
Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto 1
Esercizi di Analisi Matematica Paola Gervasio Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto Es Determinare il carattere delle seguenti serie
1 Geometria analitica nel piano
Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )
Funzioni e grafici. prof. Andres Manzini
Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)
Goniometria e Trigonometria
Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione La goniometria è la parte della matematica
Equazioni goniometriche elementari. Daniela Valenti, Treccani scuola
Equazioni goniometriche elementari 1 Questa presentazione è dedicata a risolvere equazioni trigonometriche elementari Sono dette elementari le equazioni del tipo sin(x)=m, cos(x) = m e tan(x) = m, con
( 1 ) AB:A B =BC:B C =CA:C A
Goniometria II parte Funzioni goniometriche: seno, coseno tangente Ricordiamo che: Due triangoli si dicono simili se hanno gli angoli ordinatamente uguali e i lati omologhi (nel caso dei triangoli i lati
