Potenza elettromagnetica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Potenza elettromagnetica"

Transcript

1 Potenza elettromagnetica 1

2 Velocità di fase e velocità di gruppo Si definisce fronte d onda di una grandezza che caratterizza il fenomeno della propagazione, ad esempio ത, una superficie nella quale in tutti i suoi punti, in un dato istante, hanno la stessa fase. Per esempio per un onda sinusoidale viaggiante progressiva : z,t cos(ωt z) deve essere x 0 Il fronte d onda serve per rappresentare il movimento di un onda in uno spazio tridimensionale. Nella propagazione di onde si definiscono: la velocità di fase la velocità di gruppo In generale un segnale che trasporta informazione è costituito da più componenti a frequenza diversa, pacchetto d onde. La velocità di gruppo è la velocità con cui si propagano nello spazio le variazioni nella forma dell'ampiezza di un segnale, più precisamente è la velocità di propagazione dell inviluppo del pacchetto d onda. t z A

3 Velocità di fase e velocità di gruppo In un mezzo privo di perdite tz costante / / / z t A u dz dt La velocità di fase u p di un onda piana a singola frequenza è dunque la velocità di propagazione di un fronte d onda equifase. La relazione tra u p e la costante di fase é: p u p m s la costante di fase la velocità di fase dalla frequenza u p è una funzione lineare di 1 risulta una costante indipendente 3

4 Velocità di fase e velocità di gruppo In un mezzo non dispersivo il pacchetto d onde si muove senza cambiare la sua forma con una velocità di gruppo u g coincidente con la velocità di fase u p delle sue componenti del segnale. in un mezzo dispersivo, le diverse componenti dell onda si muovono con velocità di fase diverse. Il segnale si muove con una velocità di gruppo u g diversa dalla velocità di fase u p delle diverse sue componenti, deformandosi al passare del tempo, mentre si trasmette nello spazio. Questo fenomeno fisico si chiama dispersione. M. Usai 6d_AI_ POTNZA LTTROMAGNTICA 4

5 Velocità di fase e velocità di gruppo Nei mezzi dispersivi il rapporto tra pulsazione ω e la costante di fase β, u p =/, non è più costante, la costante di fase β è funzione dalla frequenza e quindi di ω. Per cui onde con frequenza differenti si propagano con velocità di fase diverse, causando una distorsione nella forma d onda del segnale, chiamata dispersione. sempi di propagazione non dissipativa sono: la propagazione della radiazione elettromagnetica nel vuoto la propagazione del suono nell aria sempi di propagazione dispersiva sono: propagazione nei solidi conduttori dove le onde non penetrano oltre gli strati superficiali del conduttore e nei dielettrici propagazione nei fluidi come l acqua e il vetro. 5

6 Velocità di fase e velocità di gruppo spressione generica di un segnale ottenuto combinando onde di pulsazione ω 0 + ω e ω 0 + ω Onda portante con pulsazione ω 0 ( z, t) 0cos t- z cos 0t 0z (z,t) L onda all interno dell inviluppo si propaga con una velocità di fase u p determinabile ponendo: dz ω0t β0z costante u p dt 0 0 Onda modulante con pulsazione ω La velocità di gruppo u g si potrà determinare ponendo l argomento del primo coseno uguale a una costante: dz Δω tδ-zδ costante ug 6 dt Δβ

7 Velocità di fase e velocità di gruppo Si può dimostrare che la velocità di fase e la velocità di gruppo sono legate tra di loro dalla relazione: u p ug du p 1 u d in base alla quale nel caso di mezzo di trasmissione con: a) du p dω = 0 u g=u p nessuna dispersione. La u p è indipendente da a f. p b) du p dω < 0 u g< u p caso di normale dispersione; La u p diminuisce all aumentare di f, le alte frequenze vengono ritardate e il segnale si allarga c) du p dω > 0 u g> u p caso di dispersione anomala. La u p aumenta con f, in questo caso l'impulso viene compresso e il fronte di salita avanza facendo sì che l'inviluppo dell'impulso vada ad una velocità superiore a quella di fase. Questo può accadere vicino ai picchi di assorbimento (risonanze). 7

8 Potenza elettromagnetica Le onde elettromagnetiche trasportano potenza elettromagnetica. L energia é trasportata attraverso lo spazio nei punti distanti di ricezione per mezzo di onde elettromagnetiche. Per mezzo del teorema di Pointyng é possibile scrivere un bilancio energetico in termini di grandezze di campo. Per dimostrare il teorema, si consideri che attraverso le equazioni rotoriche di Maxwell è possibile ricavare una relazione tra la velocità di trasferimento di tale energia e l intensità del campo elettrico e magnetico associati ad un onda elettromagnetica trasmessa: B t J D t 8

9 9 Moltiplicando la I relazione per il campo magnetico la II per il campo elettrostatico e sommando membro a membro si ha: J t D t B t D J t B Per il primo membro si può verificare facilmente la seguente identità: Potenza elettromagnetica

10 Potenza elettromagnetica In un mezzo semplice, i cui parametri costitutivi, e non variano con il tempo, gli addendi del secondo membro si possono esprimere : B 1 1 t t t t D 1 1 t t t t J f (x) g(x) h(x) f (x) g(x) h(x) h(x) g(x) x x x f(x) g(x) se f (x) g(x) g(x) g(x) x x quindi posso scrivere: g(x) 1 f (x) 1 ( g(x) g(x)) g(x) x x x 10

11 Potenza elettromagnetica Quindi l equazione B t D t J si può scrivere con la relazione puntuale in funzione di e : 1 1 t - La forma integrale si ottiene integrando il primo e il secondo membro su un volume V e applicando al primo membro il teorema della divergenza per convertire l integrale volumico nell integrale superficiale sulla superficie S che delimita il volue V: 1 1 dv d s - dv dv t V S V V 11

12 Potenza elettromagnetica 1 1 d s dv dv t - S V V saminando la forma integrale della relazione trovata si vede come: il primo e il secondo termine a secondo membro rappresentano la variazione nel tempo della energia immagazzinata nel campo elettrico e magnetico rispettivamente l ultimo termine é la potenza ohmica dissipata nel volume V dovuta al flusso della densità della corrente di conduzione in presenza del campo elettrico. Per essere coerente con la legge della conservazione della energia, la somma dei tre termini a secondo membro deve essere uguale alla potenza che lascia il volume V, o potenza trasmessa, attraverso la sua superficie S che delimita tale volume. Ossia il flusso nella superficie S della densità di potenza. 1

13 Vettore di Poynting Quindi la quantità é un vettore che rappresenta il flusso di potenza trasmessa per unità di area : P W m essa é nota come vettore di Poynting, ossia la densità di potenza vettoriale associata al campo elettromagnetico. Dalla relazione si vede come non ci può essere trasporto di energia in presenza del solo campo elettrostatico o del solo campo magnetostatico. In regime stazionario la potenza che fluisce dentro un volume chiuso coincide con quella dissipa per effetto ohmico dentro il volume stesso. In regime non stazionario, se il mezzo è privo di perdite (=0) la potenza ohmica si annulla e la potenza che fluisce dentro un volume è uguale al tesso di variazione dell energia accumulata nei campi elettrici e 13 magnetici.

14 Teorema di Poynting L equazione in forma integrale può essere scritta nella seguente forma che esprime il teorema di Poynting, ossia la potenza trasmessa attraverso la superficie S: P d s w w dv p dv e m σ t S V V dove 1 1 w e ε ε * densità di energia elettrica 1 1 wm μ μ * densità di energia magnetica p σ J / * J J * / densità di potenza ohmica 14

15 Se oltre alle forze elettriche indotte vi sono forze elettriche impresse di altra origine ( chimica, termica etc.), le equazioni rotoriche di Maxwell diventano: i Teorema di Poynting B D t t t i J J da cui facendo i passaggi analoghi si ottiene una espressione più generale del bilancio energetico in funzione delle grandezze di campo: i 1 1 t i P ε μ essendo P il vettore di Poynting 15

16 Teorema di Poynting Il teorema di Poynting in forma generale, dice che 1 1 P i t ε μ σ ossia, la potenza che fluisce attraverso una superficie chiusa S che delimita una regione spaziale di volume V, è in ogni istante è legata al lavoro compiuto per unità di volume e per unità di tempo dalle forze elettriche impresse di natura non elettromagnetica Alle variazioni delle energia elettrostatica e magnetica immagazzinate (nulle in condizioni statiche) alla potenza ohmica dissipata all interno del volume (nulla per i mezzi privi di perdite). Per mezzo di questo teorema é possibile scrivere un bilancio energetico in termini di grandezze di campo. 16

17 Resistore rettilineo Si consideri un tratto l di un resistore rettilineo omogeneo indefinito di sezione circolare S di raggio r, percorso dalla corrente costante I. Il campo elettrico vale: I J I S l e il campo magnetico nella superficie vale: (r) I JS r r S I due vettori e sono diretti come riportati in figura e il vettore P È, in ogni punto della superficie del resistore, un vettore centripeto che vale: P =. P 17

18 Resistore rettilineo Applicando il teorema di Poynting per la superficie cilindrica chiusa di altezza l e base S: d s dv dv t S V V In questo caso i primi due termini a secondo membro sono nulli, perciò: ( ) rl= ( J ) Sl Il flusso del vettore P entrante dalla superficie che delimita il conduttore è uguale alla potenza dissipata nel conduttore. Dalle relazioni precedenti posso scrivere: ( l) (r )= VI Perciò detto flusso coincide con il prodotto della differenza di potenziale V= l per la corrente I = r. 18

19 Cavo coassiale Il circuito sia costituito da un generatore di f.e.m, di resistenza R i che attraverso un cavo coassiale di conducibilità infinita, alimenta una resistenza R. V ntro il cavo il campo é radiale e vale in modulo: r mentre il campo magnetico vale: + R i P (r) I r I V r ln r 1 R 19

20 Il vettore di Poynting é diretto come in figura e vale, essendo il seno di 90 del prodotto vettoriale uguale a uno : P Cavo coassiale V I P r r ln r r il flusso di attraverso la sezione normale al cavo vale : r VI Pds rdr VI r S r 1 r ln r1 Applicando il teorema di Poynting per una superficie chiusa che tagli il cavo normalmente all asse e racchiuda il generatore: tenendo conto che P è nullo fuori dal cavo coassiale, si ottiene: I=R i I +VI, che esprime il bilancio energetico, ossia il flusso del vettore di Poynting attraverso la sezione considerata è uguale alla potenza che viene 0 trasferita dal generatore all utilizzatore. 1

21 Potenza istantanea nei campi armonici Quando le onde elettromagnetiche sono armoniche nel tempo, é conveniente utilizzare la notazione fasoriale in base alla quale i campi elettrico e magnetico possono essere così espressi: j z z a xx z a x0e 0 z j z a y y z a y e e e in funzione del tempo si avrà: z con θ angolo di fase della impedenza intrinseca del mezzo η η e jtz, Re j t z z t z e a x0e Re e a x z 0e cos t z jt 0 z j 0 z z, t Re z e a y e Re e a e cos t z z y 1 jθ

22 Potenza istantanea nei campi armonici Dalle relazioni precedenti l espressione del vettore di Poynting o del vettore densità di potenza in funzione del tempo diventa: jt jt P z, t z, t z, t Re z e Re z e z 0 z 0 z a x0e cost z a y e cost z n a z e cos t zcos t z n= = a e cos cos t z 0 z z n n Oppure scritto in termini vettoriali abbiamo: jt jt P z, t z, t z, t Re ze Re z e (**) (**) Re 1 jt * jt 1 jt jt Re z e z e ze ze * (***) 1 Re jt z z z z e 1 cos(a) cos( B) [cos(a B) cos(a B)] e C C C e C e D C C D D C D C D C D C D e C D e C D 4 4 ( ) ( ) ( ) [ ] [ ] (*) * * * * * * * *

23 Potenza media nei campi armonici La trasmissione di potenza per mezzo di onde elettromagnetiche é caratterizzata significativamente al suo valore medio, per tale motivo si definisce il valore medio nel tempo del vettore di Poynting per un onda che si propaga nella direzione z. Se ci calcoliamo il valor medio sul periodo T=π/ω dell espressione (**) della slide precedente otteniamo T 1 W n m 0 0 z Pav z P z, t dt e cos T Se invece calcoliamo l espressione il valor medio sul periodo T=π/ω dell espressione (***) otteniamo: T 1 1 * W Pav z P z, t dt Re z z T m 0 3

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Energia associata ad un campo elettromagnetico

Energia associata ad un campo elettromagnetico Energia associata ad un campo elettromagnetico 3.1 Teorema di Poynting nel dominio del tempo Nel 1884 J. H. Poynting notò che il prodotto scalare tra il vettore di campo elettrico e la densità di corrente

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche n Equazione delle onde per i campi n Corda vibrante n Onde piane n Polarizzazione n Energia e quantita` di moto - vettore di Poynting n Velocita` di fase e di gruppo Equazione delle

Dettagli

LISTA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A PRIMA PARTE: Elettrostatica LISTA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A 2017-2018 Proff. P. Monaco e F. Longo 1. Cos'e' la quantizzazione della carica elettrica? 2. Cosa stabilisce il principio di

Dettagli

Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le distribuzioni di correnti e

Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le distribuzioni di correnti e Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le distribuzioni di correnti e costituiscono il modello matematico della teoria elettromagnetica.

Dettagli

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 PRIMA PARTE: Elettrostatica A/A 2017-2018 Proff. P. Monaco e F. Longo 1. Cos'e' la quantizzazione della carica elettrica? 2. Cosa stabilisce il

Dettagli

Lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche (sintesi slides)

Lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche (sintesi slides) Lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche (sintesi slides) Questa sintesi fa riferimento alla lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche del

Dettagli

e' la componente di P normale alla superficie Σ ed U energia del campo elettromagnetico entro V, vale : U = Ue + Um = ½ εe 2 dv + ½ μh 2 dv

e' la componente di P normale alla superficie Σ ed U energia del campo elettromagnetico entro V, vale : U = Ue + Um = ½ εe 2 dv + ½ μh 2 dv VETTORE DI POYNTING P = E x H puo' essere scritto come P = η H 2 = P = E 2 /η Σ e rappresenta la densita' di potenza ( W/m 2 ) associata all'onda elettromagnetica Dato un volume V attraversato da un onda

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_2b (ultima modifica 30/09/2015)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_2b (ultima modifica 30/09/2015) ELETTROMGNETISMO PPLICTO LL'INGEGNERI ELETTRIC ED ENERGETIC_2b (ultima modifica 30/09/2015) M. Usai ELETTROMGNETISMO PPLICTO LL'INGEGNERI ELETTRIC ED ENERGETIC 27 L integrale S d s è un integrale superficiale

Dettagli

le variazioni del campo si propagano nello spazio con velocità finita

le variazioni del campo si propagano nello spazio con velocità finita Campi elettromagnetici e circuiti II, a.a. 2013-14, Marco Bressan LEGGI FONDAMENTALI Lo studio dell interazione elettromagnetica è basato sul concetto di campo elettromagnetico le variazioni del campo

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Ingegneria dei Sistemi Elettrici_6b

Ingegneria dei Sistemi Elettrici_6b Ingegneria dei Sistemi lettrici_6b Campi armonici nel tempo Le funzioni temporali relative alle grandezze che definiscono un campo dipendono dalle funzioni delle sorgenti ρ e J. In ingegneria le funzioni

Dettagli

Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017

Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017 Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017 Programma svolto Lezione 1 Carica elettrica, legge di Coulomb, campo elettrico, potenziale elettrico Breve storia dell elettricità

Dettagli

Compito di Fisica 2 Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 2018

Compito di Fisica 2 Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 2018 Compito di Fisica Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 018 1 Una distribuzione volumetrica di carica a densità volumetrica costante = + 4 10-6 C/m 3 si + + + + + + estende nella

Dettagli

6b_EAIEE_ CAMPI ARMONICI NEL TEMPO. Campi armonici nel tempo

6b_EAIEE_ CAMPI ARMONICI NEL TEMPO. Campi armonici nel tempo 6b_AI_ CAPI ARONICI NL TPO (ultima modifica 09/11/017) Campi armonici nel tempo Le funzioni temporali relative alle grandezze che definiscono un campo dipendono dalle funzioni delle sorgenti e J. In ingegneria

Dettagli

5f_EAIEE CAMPI VARIABILI NEL TEMPO

5f_EAIEE CAMPI VARIABILI NEL TEMPO 5f_AI CAMPI VARIABILI NL TMPO (ultima modifica 3//7) Campi variabili nel tempo e quazioni di Maxwell Il modello elettrostatico è stato definito con il vettore intensità del campo elettrico, e il vettore

Dettagli

Esercizi di Fisica LB - Ottica

Esercizi di Fisica LB - Ottica Esercizio 1 Esercizi di Fisica LB - Ottica Esercitazioni di Fisica LB per ingegneri - A.A. 2-24 Un onda elettromagnetica piana monocromatica di propaga nel vuoto lungo l asse x di un sistema di riferimento

Dettagli

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso:

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: - Proprietà generali delle cariche elettriche - Cariche puntiformi e distribuzioni continue di

Dettagli

2 Bilancio energetico e unicità Il teorema di Poynting Applicazioni a sorgenti armoniche Teorema di unicità...

2 Bilancio energetico e unicità Il teorema di Poynting Applicazioni a sorgenti armoniche Teorema di unicità... Indice 1 Definizioni e relazioni fondamentali 9 1.1 Definizioni di E e B............................ 9 1.2 Equazioni di Maxwell........................... 10 1.3 Cariche e dielettrici............................

Dettagli

Parametri di Diffusione

Parametri di Diffusione Parametri di Diffusione Linee di trasmissione: richiami Onde di tensione e corrente Coefficiente di riflessione Potenza nelle linee Adattamento Parametri di Diffusione (S) Definizione Applicazioni ed esempi

Dettagli

FAM. F y G z F z G y. z G x x G z x G y y G x. 2. La norma del vettore di Poynting, che corrisponde all intensità dell onda, vale

FAM. F y G z F z G y. z G x x G z x G y y G x. 2. La norma del vettore di Poynting, che corrisponde all intensità dell onda, vale Serie 36: Soluzioni FAM C Ferrari Esercizio Un identità utile Abbiamo F G = e quindi, applicando la regola di Leibnitz, F y G z F z G y F z G x F x G z F x G y F y G x F G = ( x F y )G z +F y x G z ( x

Dettagli

Fisica 2C. 3 Novembre Domande

Fisica 2C. 3 Novembre Domande Fisica 2C 3 Novembre 2006 Domande ˆ i) Si consideri un oscillatore armonico smorzato e forzato da una sollecitazione sinusoidale esterna, la cui equazione é tipicamente s + 2γṡ + ω0s 2 = F cos ωt m 1)

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 25 giugno 2001 Teoria 1. L energia potenziale é la funzione U tale che ovvero F = du dx U = F dx essendo F una forza che

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

6a_EAIEE EQUAZIONI D ONDA

6a_EAIEE EQUAZIONI D ONDA 6a_EAIEE EQUAZIONI D ONDA (ultima modifica 08//07) Equazioni d onda e loro soluzioni Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le

Dettagli

Corso di Principi di ingegneria elettrica II

Corso di Principi di ingegneria elettrica II Anno Accad. 2010/2011, II anno: Corso di Laurea in Ingegneria Elettrica Nuovo Ordinamento Corso di Principi di ingegneria elettrica II (prof. G. Rubinacci) Diario delle Lezioni (sono incluse anche le lezioni

Dettagli

Note sui circuiti a corrente alternata

Note sui circuiti a corrente alternata Note sui circuiti a corrente alternata Versione provvisoria. Novembre 018 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Indice 1 Corrente alternata 1.1 Circuito

Dettagli

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi. Corso di Laurea in Matematica Seconda prova in itinere di Fisica (Prof. E. Santovetti) 13 gennaio 016 Nome: La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli

Dettagli

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI I ONDE PIANE E MATERIALI OP 1 Il campo elettrico nel punto A ha un modulo di 1V/m e forma un angolo di 6 o con la normale alla superficie. Calcolare e(b). ε 1 ε 2 A B 6 o e ε 1 =, ε 2 = 2 Nel punto A le

Dettagli

Il trasporto di energia termica: introduzione e trasporto conduttivo. Principi di Ingegneria Chimica Ambientale

Il trasporto di energia termica: introduzione e trasporto conduttivo. Principi di Ingegneria Chimica Ambientale Il trasporto di energia termica: introduzione e trasporto conduttivo Principi di Ingegneria Chimica Ambientale 1 Meccanismi di trasmissione del calore La Trasmissione del Calore può avvenire con meccanismi

Dettagli

Prova Scritta Elettromagnetismo (a.a. 2018/19, S. Giagu/F. Lacava/F. Piacentini)

Prova Scritta Elettromagnetismo (a.a. 2018/19, S. Giagu/F. Lacava/F. Piacentini) Prova Scritta Elettromagnetismo - 8.6.09 a.a. 08/9, S. Giagu/F. Lacava/F. Piacentini) recupero primo esonero: risolvere l esercizio : tempo massimo.5 ore. recupero secondo esonero: risolvere l esercizio

Dettagli

Ottica geometrica. H = η 1 u E. S = 1 2 η 1 E 2 u = 1 2 η H 2 u

Ottica geometrica. H = η 1 u E. S = 1 2 η 1 E 2 u = 1 2 η H 2 u Ottica geometrica L ottica geometrica assume che il campo elettromagnetico in un mezzo senza perdite possa essere rappresentato in ogni punto di regolarità come somma di onde localmente piane uniformi.

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Primo Parziale Fisica Generale T-B

Primo Parziale Fisica Generale T-B Primo Parziale Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli 23/11/2012 Soluzioni Compito B Esercizi Ex. 1 Tre cariche puntiformi sono disposte ai vertici di un uadrato

Dettagli

antenna ΔV J b V o O : centro di fase dell antenna

antenna ΔV J b V o O : centro di fase dell antenna CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A. 2013-14 - MARCO BRESSAN 1 Antenne Riceventi Per determinare le caratteristiche di un antenna ricevente ci si avvale del teorema di reciprocità applicato al campo

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

Cosa si intende per onda?

Cosa si intende per onda? Fenomeni Ondulatori Cosa si intende per onda? si definisce onda una perturbazione che si propaga non si ha propagazione di materia ma solo di energia onde meccaniche (mezzo) onde elettromagnetiche (vuoto,

Dettagli

LINEE DI TRASMISSIONE CON LTSPICE IV 1

LINEE DI TRASMISSIONE CON LTSPICE IV 1 EdmondDantes LINEE DI TRASMISSIONE CON LTSPICE IV 28 December 2010 Generalità Nell accezione più generale, una linea di trasmissione è un sistema di due o più conduttori metallici separati da mezzi dielettrici

Dettagli

Cose da sapere - elettromagnetismo

Cose da sapere - elettromagnetismo Cose da sapere - elettromagnetismo In queste pagine c e` un riassunto di relazioni e risultati che abbiamo discusso e che devono essere conosciuti. Forza di Lorentz agente su una carica q in moto con velocita`

Dettagli

= 2 10 C, sono mantenute in quiete a distanza 2l tra loro (vedi figura) con. = 2 10 C e avente massa

= 2 10 C, sono mantenute in quiete a distanza 2l tra loro (vedi figura) con. = 2 10 C e avente massa (Esercizi) Numero di matricola (allineato a destra): 1. Due particelle puntiformi, di carica l = 0.6 m. Una terza particella, anch essa di carica q q 7 = 2 10 C, sono mantenute in quiete a distanza 2l

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

1 EQUAZIONI DI MAXWELL IN FORMA DIFFERENZIALE

1 EQUAZIONI DI MAXWELL IN FORMA DIFFERENZIALE EQUAZIONI DI MAXWELL IN FORMA DIFFERENZIALE Le equazioni di Maxwll considerate finora sono dette equazioni in forma integrale e costituiscono la forma più generale di queste equazioni. Tuttavia il loro

Dettagli

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1 Indice 1 ANALISI VETTORIALE 1 1.1 Scalari e vettori......................... 1 1.1.1 Vettore unitario (versore)............... 2 1.2 Algebra dei vettori....................... 3 1.2.1 Somma di due vettori.................

Dettagli

ISTITUTO SUPERIORE VIA SILVESTRI

ISTITUTO SUPERIORE VIA SILVESTRI ISTITUTO SUPERIORE VIA SILVESTRI SEZ. LICEO SCIENTIFICO ANNO SCOLASTICO 2018 2019 CLASSE III Sez. A PROGRAMMA di FISICA Professor Moauro, Francesco FISICA Le grandezze e il moto: - Unità di misura e Sistema

Dettagli

4 CAMPI VARIABILI NEL TEMPO - EQUAZIONI DI MAXWELL

4 CAMPI VARIABILI NEL TEMPO - EQUAZIONI DI MAXWELL 4 CAMPI VARIABILI NEL TEMPO - EQUAZIONI DI MAXWELL 1 modello Campi stazionari equazione costitutiva H J CAMPO ELETTROSTATICO E 0 D D E E 0 J 0 CAMPO DI CORRENTE STAZIONARIO CAMPO MAGNETOSTATICO B 0 E J

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

Marco Panareo. Appunti di Fisica. Elettromagnetismo. Università degli Studi del Salento, Facoltà di Ingegneria

Marco Panareo. Appunti di Fisica. Elettromagnetismo. Università degli Studi del Salento, Facoltà di Ingegneria Marco Panareo Appunti di Fisica Elettromagnetismo Università degli Studi del Salento, Facoltà di Ingegneria ii iii INTRODUZIONE Questa raccolta di appunti originati dalle lezioni di Fisica Generale tenute

Dettagli

Energia del campo elettromagnetico

Energia del campo elettromagnetico Energia del campo elettromagnetico 1. Energia 2. Quantità di moto 3. Radiazione di dipolo VII - 0 Energia Come le onde meccaniche, anche le onde elettromagnetiche trasportano energia, anche se non si propagano

Dettagli

Elettromagnetismo Formulazione differenziale

Elettromagnetismo Formulazione differenziale Elettromagnetismo Formulazione differenziale 1. Legge di Faraday 2. Estensione della legge di Ampere 3. Equazioni di Maxwell 4. Onde elettromagnetiche VI - 0 Legge di Faraday Campo elettrico Campo di induzione

Dettagli

Elettrotecnica - A.A Prova n. 2 3 febbraio 2011

Elettrotecnica - A.A Prova n. 2 3 febbraio 2011 Cognome Nome Matricola Firma 1 Parti svolte: E1 E2 D Esercizio 1 Supponendo noti i valori delle resistenze, della tensione V G1 e dei parametri di trasferimento dei generatori dipendenti, illustrare il

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 4 Onde elettromagnetiche Sommario

Dettagli

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11 Indice Indice 3 Note di utilizzo 9 Ringraziamenti 10 Introduzione 11 Capitolo 1 Grandezze fisiche e schematizzazione dei sistemi materiali 13 1.1 Grandezze fisiche ed operazione di misura 13 1.2 Riferimento

Dettagli

1. Teorema di reciprocità

1. Teorema di reciprocità . Teorema di reciprocità Consideriamo un mezzo in cui sono presenti i campi (E, H ) e (E, H ). Questi campi hanno per sorgenti rispettivamente (J, M) e (J, M), ricavabili sostituendo i campi nelle equazioni

Dettagli

Numero progressivo: 8 Turno: 1 Fila: 2 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy)

Numero progressivo: 8 Turno: 1 Fila: 2 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy) Numero progressivo: 8 Turno: 1 Fila: 2 Posto: 1 Matricola: 0000257185 Cognome e nome: (dati nascosti per tutela privacy) 1. Scrivere l equazione del diottro sferico, descrivendo accuratamente tutti i simboli

Dettagli

Formulario. (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q 1Q 2 r 2 = 1 Q 1 Q 2

Formulario. (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q 1Q 2 r 2 = 1 Q 1 Q 2 Formulario (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q Q 2 r 2 = Q Q 2 4πε r 2 Campo elettrico: E F q Campo coulombiano generato da una carica

Dettagli

La capacità del condensatore C è la serie del condensatore formato dalla parte con il liquido e della restante parte in vuoto C 1 =

La capacità del condensatore C è la serie del condensatore formato dalla parte con il liquido e della restante parte in vuoto C 1 = Esame scritto di Elettromagnetismo del 19 Giugno 2012 - a.a. 2011-2012 proff. F. Lacava, F. Ricci, D. Trevese Elettromagnetismo 10 o 12 crediti: esercizi 1,2,3 tempo 3 h e 30 min; Recupero di un esonero:

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O Facoltà di Ingegneria Prova scritta di Fisica II - 3 Settembre 003 - Compito A Esercizio n.1 Quattro cariche di uguale valore q, due positive e due negative, sono poste nei vertici di un quadrato di lato

Dettagli

Compito scritto del corso di Elettromagnetismo A.A. 2010/ Settembre 2011 Proff. S. Giagu, F. Lacava, F. Ricci

Compito scritto del corso di Elettromagnetismo A.A. 2010/ Settembre 2011 Proff. S. Giagu, F. Lacava, F. Ricci Compito scritto del corso di Elettromagnetismo A.A. 010/011 7 Settembre 011 Proff. S. Giagu, F. Lacava, F. icci ESECIZIO 1 Due condensatori piani, di identica geometria, anno armature quadrate di lato

Dettagli

Indice. Fenomeni elettrici Introduzione Carica elettrica Legge di Coulomb... 13

Indice. Fenomeni elettrici Introduzione Carica elettrica Legge di Coulomb... 13 Indice Fenomeni elettrici... 11 1.1 Introduzione... 11 1.2 Carica elettrica... 11 1.3 Legge di Coulomb... 13 Campo e potenziale elettrostatico... 15 2.1 Introduzione... 15 2.2 Campo elettrostatico... 15

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

INDICE FENOMENI ELETTRICI

INDICE FENOMENI ELETTRICI INDICE CAPITOLO 1 FENOMENI ELETTRICI Compendio 1 1-1 Introduzione 2 1-2 Forze elettrostatiche 3 1-3 Induzione elettrostatica 6 1-4 La carica elettrica 9 1-5 La Legge di Coulomb 11 1-6 Campo elettrostatico

Dettagli

E t e j(k txx+k ty y) k ix = k rx = k tx ; (3.2) k iy = k ry = k ty. (3.3)

E t e j(k txx+k ty y) k ix = k rx = k tx ; (3.2) k iy = k ry = k ty. (3.3) Capitolo 3 Riflessione e rifrazione Cosa fa un onda piana nel passaggio da un mezzo all altro? Come superficie di separazione S si consideri un piano (x, y). Sia ẑ la normale al piano. Poichè S è un piano,

Dettagli

CAPITOLO 3 TEOREMA DI GAUSS

CAPITOLO 3 TEOREMA DI GAUSS CAPITOLO 3 3.1 Il concetto di flusso Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria nella

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

Fisica 2A. 10 novembre 2005

Fisica 2A. 10 novembre 2005 Fisica 2A novembre 25 Leggere attentamente il testo e assicurarsi di rispondere a tutto quello che viene chiesto, incluse le eventuali risposte numeriche. Rispondere alle domande e risolvere i problemi

Dettagli

Tensore degli sforzi di Maxwell. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA)

Tensore degli sforzi di Maxwell. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA) Tensore degli sforzi di Maxwell Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA) B 0 (1) E B (2) E ϱ (3) ɛ 0 B µ 0 j + µ 0 ɛ 0 E La forza di Lorentz che agisce

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A 2017-2018 Prof. P. Monaco e F. Longo 01) Cos'e' la quantizzazione della carica elettrica. 02) Cosa stabilisce il principio di conservazione

Dettagli

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA Le competenze di base a conclusione dell obbligo di istruzione sono le seguenti: Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà

Dettagli

Energia accumulata in un condensatore

Energia accumulata in un condensatore Energia accumulata in un condensatore In base alla seconda legge di Kirchhoff istante per istante avremo Sappiamo che potenza istantanea fornita dal generatore Sostituendo nella eq. diff. e integrando

Dettagli

Quesiti di Fisica Generale

Quesiti di Fisica Generale Quesiti di Fisica Generale 3. Elettromagnetismo prof. Domenico Galli, prof. Umberto Marconi 3 aprile 2012 I compiti scritti di esame del prof. D. Galli e del prof. U. Marconi propongono 4 quesiti, sorteggiati

Dettagli

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A MODULO D ELETTROMAGNETSMO Prova Pre-Esame del 28 GENNAO 2009 A.A. 2008-2009 FSCA GENERALE Esercizi FS GEN: Punteggio in 30 esimi 1 8 Fino a 4 punti COGNOME: NOME: MATR: 1. Campo elettrostatico La sfera

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Appello del 17/2/ Soluzioni

Appello del 17/2/ Soluzioni Compito A - Testo Dipartimento di Ingegneria Enzo Ferrari Corso di Campi Elettromagnetici - a.a. 2014/15 Appello del 17/2/2015 - Soluzioni Esercizio 1. Un onda elettromagnetica con frequenza 300 MHz si

Dettagli

Indice. Presentazione 1

Indice. Presentazione 1 Presentazione 1 1 Perchè e come studiare i fenomeni elettromagnetici 3 1.1 Introduzione............................ 3 1.2 Approccio induttivo e deduttivo................. 6 1.3 Teorie per descrivere i

Dettagli

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e:

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e: Oscillazioni Applicando la legge di Faraday: E d l d ma Φ B con d l in direzione d E dl ovvero ovvero d + q / n base alla nostra scelta di polarizzazione di pero', si ha' che: dq Segue che: A d d q Allora,

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Approfondimenti. Rinaldo Rui. ultima revisione: 31 maggio 2019

Approfondimenti. Rinaldo Rui. ultima revisione: 31 maggio 2019 Approfondimenti Rinaldo Rui ultima revisione: 31 maggio 019 5 Oscillazioni e Onde 5. Lezione #1 5..1 Equazione Differenziale delle Onde In tutti i casi analizzati precedentemente si osserva che le onde

Dettagli

Lezione 21 - Onde elettromagnetiche

Lezione 21 - Onde elettromagnetiche Lezione 21 - Onde elettromagnetiche Nella prima metà dell 800 Maxwell dimostrò definitivamente che un raggio di luce non è altro che una configurazione di campi elettrici e magnetici in moto Si deve quindi

Dettagli

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una  a antonio.pierro[at]gmail.com Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,

Dettagli

Proprietà dei sistemi ed operatori

Proprietà dei sistemi ed operatori Segnali e Sistemi Un segnale è una qualsiasi grandezza che evolve nel tempo. Sono funzioni che hanno come dominio il tempo e codominio l insieme di tutti i valori che può assumere la grandezza I sistemi

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Equazioni Generali delle Linee di Trasmissione

Equazioni Generali delle Linee di Trasmissione Equazioni Generali delle Linee di Trasmissione 1 Rete Elettrica Ordinaria vs Linea di Trasmissione Parametri Concentrati Parametri distribuiti La lezione di oggi riguarda le linee di trasmissione dell

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

a.a. 2017/2018 Stefano Bifaretti Vincenzo Bonaiuto Dipartimento di Ingegneria Industriale

a.a. 2017/2018 Stefano Bifaretti Vincenzo Bonaiuto Dipartimento di Ingegneria Industriale a.a. 2017/2018 Stefano Bifaretti Vincenzo Bonaiuto Dipartimento di Ingegneria Industriale Le macchine in c.a. impiegate negli azionamenti industriali sono caratterizzate da un circuito elettrico di statore

Dettagli

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha 1 easy matematica CORRENI ALERNAE Consideriamo una bobina ruotante, con velocità angolare ω costante all'interno di un campo magnetico uniforme B. Gli estremi della spira sono collegati a due anelli chiamati

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/2017

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/2017 Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/017 Esercizio 1 1) Durante il salto dell uomo non sono presenti forze esterne impulsive, per cui la quantità di moto

Dettagli

Corrente di spostamento ed equazioni di Maxwell. Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche

Corrente di spostamento ed equazioni di Maxwell. Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche Corrente di spostamento ed equazioni di Maxwell Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche Corrente di spostamento La legge di Ampere e` inconsistente

Dettagli

Classe 1C Liceo Scienze Applicate con potenziamento sportivo - A. S Programma di FISICA

Classe 1C Liceo Scienze Applicate con potenziamento sportivo - A. S Programma di FISICA Classe 1C Liceo Scienze Applicate con potenziamento sportivo - A. S. 2017-2018 LE GRANDEZZE E LE MISURE Unità 1- Le grandezze: Perché studiare la fisica - Di che cosa si occupa la fisica - La misura delle

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare la

Dettagli

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte Cavo o Sergio Rubio Carles Paul Albert Monte o, Rame e Manganina PROPRIETÀ FISICHE PROPRIETÀ DEL CARBONIO Proprietà fisiche del o o Coefficiente di Temperatura α o -0,0005 ºC -1 o Densità D o 2260 kg/m

Dettagli

Le onde. F. Soramel Fisica per Medicina 1

Le onde. F. Soramel Fisica per Medicina 1 Le onde a) onda sonora: le molecole si addensano e si rarefanno b) onda all interfaccia liquido-aria: le particelle oscillano in alto e in basso c) onda in una corda d) onda in una molla e) onda sismica

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di: Campi elettrici e magnetici quasi stazionari Corso di Laurea in Ingegneria dell'automazione

Dettagli

INDICE OSCILLAZIONI CAPITOLO 1

INDICE OSCILLAZIONI CAPITOLO 1 INDICE CAPITOLO 1 OSCILLAZIONI Compendio 1 1-1 Introduzione 2 1-2 Moti periodici e moti armonici 3 1-2-1 Moto oscillatorio armonico 4 1-3 Dinamica dell oscillatore armonico 6 1-3-1 Forze elastiche 7 1-3-2

Dettagli

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente. Soluzioni

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente. Soluzioni Prova scritta di Fisica Scienze e Tecnologie dell Ambiente 6 Settembre 007 Soluzioni Parte 1 1) Sia θ l angolo di inclinazione del piano. Scelto l asse x lungo la direzione di massima pendenza, e diretto

Dettagli

Potenza spesa dalla forza per mantenere la carica in moto con velocita` v D. dp dv

Potenza spesa dalla forza per mantenere la carica in moto con velocita` v D. dp dv Legge di Ohm J E E J 1 resistivita` Potenza spesa dalla forza per mantenere la carica in moto con velocita` v D P F v ee v 2 E D per unita` di volume D dp dv nee v D J E J Energia trasferita agli ioni

Dettagli

FISICA (modulo 1) PROVA SCRITTA 20/07/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 20/07/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 20/07/2015 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Una forza variabile nel tempo agisce su un corpo di massa M = 3 Kg in modo tale che il corpo si

Dettagli

FISICA GENERALE T-2. Federico Fabiano. June 6, Esercitazione 5: Campo magnetico, legge di Laplace, forza magnetica su fili percorsi da corrente

FISICA GENERALE T-2. Federico Fabiano. June 6, Esercitazione 5: Campo magnetico, legge di Laplace, forza magnetica su fili percorsi da corrente FISICA GENERALE T- Federico Fabiano June 6, 018 Esercitazione 5: Campo magnetico, legge di Laplace, forza magnetica su fili percorsi da corrente Problema 1. Una spira rettangolare si trova immersa in un

Dettagli

Misure di polarizzazione mediante ricevitori differenziali a microonde

Misure di polarizzazione mediante ricevitori differenziali a microonde Misure di polarizzazione mediante ricevitori differenziali a microonde Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Corso di laboratorio di strumentazione spaziale I A. Mennella

Dettagli