Corso di laurea in Informatica Applicata Fondamenti di Programmazione Appello 6/2/03

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di laurea in Informatica Applicata Fondamenti di Programmazione Appello 6/2/03"

Transcript

1 Eserizio 1 Corso di lure in Informti Applit Fondmenti di Progrmmzione Appello 6/2/03 Prim prte i L(A) il linguggio sull lfeto {,,} he rionose le sequenze (nhe vuote) tli he il simolo è sempre seguito dl simolo e il simolo e sempre seguito dl simolo. i definisno l utom deterministio e l grmmti regolre per L(A). Autom per L(A) Grmmti regolre G=<{,,}, {},,{::=* ()* ()*}> Eserizio 1 i onsideri l'utom non deterministio desritto dll tell di trnsizione sotto riportt: epsilon -> 0 {1,2} * sull lfeto {,,}, e vente stto inizile 0 e stto finle 3. ) i di l rppresentzione grfi. ) i ostruis un utom equivlente deterministio. i mostrino i pssi intermedi del proesso di lolo on i risultti del lolo delle funzioni

2 dd, move e los, ) i definis l grmmti regolre equivlente ll utom minimo. d) i trsformi l grmmtil regolre in un grmmtil lier, eliminndo gli opertori * e. ) 0 e e ) dd(los(0))=dd({0,2}) Mp(0)={0,2} D=<{0},{0},^, {}> dd(move(mp(0),)=dd(move({0,2},)=dd({1}) Mp(1)={1} edge(0,1,) D=<{0,1},{0},^, {<0,1,>}> dd(move(mp(0),)=dd(move({0,2},)=dd({3}) Mp(2)={3} edge(0,2,) D=<{0,1,2},{0},^, {<0,1,>,<0,2,>}> dd(move(mp(1),))=dd(move({1},)=dd(lose(0)» los(2))=dd({0,2}) edge(1,0,) D =<{0,1,2},{0},^, {<0,1,>,<0,2,>,<1,0,>}>}> dd(move(mp(1),))=dd(move({1},))=dd(lose(1))=dd({1}) edge(1,1,) D=<{0,1,2},{0},^, {<0,1,>,<0,2,>,<1,0,>,<1,1,>}> dd(move(mp(2),))=dd(move({3},)=dd(lose(2))=dd({2}) Mp(3)={2} edge(2,3,) D=<{0,1,2,3},{0},^, {<0,1,>,<0,2,>,<1,0,>,<1,1,>,<2,3,>}> dd(move(mp(2),))=dd(move({3},))=dd(los(3))=dd({3}) edge(2,3,) D=<{0,1,2,3},{0},{0}, {<0,1,>,<0,2,>,<1,0,>,<1,1,>,<2,3,>,<2,2,>}> Grfimente l'utom deterministio:

3 ) G=<{,,},{},{::=( * )*(e *) d) G=<{,,},{},{::=AB, A::= e, A::= C A, B::=e, B::= C, C::= e,c::=c} Eserizio 3 Dt l seguente grmmti: G=<{,,}, {,A,B},,{::=AB, A::=A, B::=B} si definis il sistem di trnsizioni Il sistem di trnsizioni per G è dto d <G,T,Rel> G ={d d Œ ({,,}»{,A.B})*} T ={d d Œ {,,}*} Rel={ d,g Œ ({,,}»{,A,B})} dg Æ dabg d,g Œ ({,,}»{,A,B})} dag Æ dag d,g Œ ({,,}»{,A,B})} dbg Æ dbg } Eserizio 4 i mostri he l seguente grmmti è migu: G=<{,}, {,B},,{::=B, B::=B, B::=B } : Ad esempio l sequenz di simoli è frontier di entrmi i seguenti eri di

4 derivzione sinttti: B B B B Eserizio 5 i onsideri il linguggio L definito dll seguente espressione regolre: ()* (**)d(**) ( )* Quli delle espressioni seguenti definise un linguggio ontenuto in L? 1) (*)* 2) ()* 3) (*)d 4) ()* Il linguggio è l'unione di tre sottolinguggi: ) ()* ) (**)d(**) ) ( )* llor imo 1) Non pprtiene l sotto linguggio ) he ontiene solo e e stringhe ripetute un qulunque numero di volte, mentre 1) ontiene nhe stringhe del tipo, e. Non pprtiene l sotto linguggio ) perhè questo ontiene stringhe he dopo elementi di (*)* hnno un d e lmeno un. Infine non pprtiene ) perhè quest'ultimo ontiene oltre d e, stringhe he ontengono solo e. Quindi 1) non pprtiene l linguggio

5 2) Non pprtiene l sottolinguggio ) he ontiene solo e e stringhe ripetute un qulunque numero di volte, non pprtiene l sottolinguggio) perhè questo ontiene stringhe he dopo elementi di (*)* ino un d e lmeno un. Non pprtiene ) perhè quest'ultimo ontiene oltre d e stringhe he ontengono solo e. Quindi 2) non pprtiene l linguggio 3) Apprtiene l sottolinguggio ) nel so (e *)d(e e). Quindi 3) pprtiene l linguggio 4) Apprtiene l sottolinguggio ) ()* Ã ( )*. Quindi 4) pprtiene l linguggio eond prte EERCIZIO 1 i suppong di estendere l sintssi dei omndi on l dihirzione multipl osi` definit: Del::= Type Ide 1, Ide 2,..., Ide k = Exp 1, Exp 2,..., Exp k Con il signifito informle he gli identifitori Ide i sono tutti del medesimo tipi Type e ll'identifitore i-esimo viene ssegnto il vlore dell'espressione i-esim. I vlori di tutte le espressioni vengono vlutte nello stto in ui viene vlutt l dihirzione. Dre l semnti operzionle dell nuov dihirzione, on riferimento l modello in ui lo stto è omposto solo d stk di frmes. mul= < Exp 1,s> Æ exp v 1... < Exp k,s> Æ exp v k s =s[ v 1 / Ide 1 ]...[ v k / Ide k ] < Type Ide 1, Ide 2,..., Ide k = Exp 1, Exp 2,..., Exp k,s> Æ om s EERCIZIO 2 Con riferimento lle regole definite per l dihirzione multipl si dimostri he i seguenti frmmenti di progrmm sono equivlenti prtire d un generio stto s: I. int x,y=3,4; y=x+y; II. int x=3; int y=x+4;

6 I:C[[y=x+y;]] s[3/x][4/y] Æ E[[x+y]] s[3/x][4/y] Æ7 s[3/x][4/y][7/y] II:C[[y=x+4]] s[3/x] Æ E[[x+4]] s[3/x] Æ7 s[3/x][[7/y] EERCIZIO 3 i vuole ggiungere ll lsse Arrys vist lezione, un nuovo metodo sttio CmiElem. L intestzione di tle metodo è: puli stti oolen IsOrd (int [ ] ) /** loltrue se l'rry e` ordinto in senso deresente. prm : un rry di interi..*/ i definis il orpo del metodo, in modo he loli true se e` ordinto in senso deresente, flse ltrimenti. Ad esempio l himt Arrys.Isord() lol flse se e` rppresentto dll seguente tell: mentre l himt Arrys.Isord() lol true se e` rppresentto dll seguente tell: puli stti oolen IsOrd (int [ ] ){ oolen ord=true; int i=0; while (i<.length-1 & ord) if [i]<=[i+1] i++; else ord=flse; return ord; } EERCIZIO 4 Dto il seguente progrmm: prog {lss ClsseA{ puli int x; } lss ClsseB{

7 puli int y; puli int x; puli void UpdMe(int i) { int og1=i; if (og1 >0) this.y=i; (5) } } (1) {ClsseA og1= new ClsseA(); ClsseB og2= new ClsseB(); (2) og1.x=100; og2.x=0; og2.y=1; (3) og2.updme(og1.x); (4) }} rppresentre grfimente: I. l miente delle lssi l punto (1); II. lo stk di frmes e lo hep dopo l eseuzione del omndo (2), III. lo stk di frmes e lo hep dopo l eseuzione del omndo (3), IV. lo stk di frmes e lo hep dopo l eseuzione del omndo (4), V. lo stk di frme e lo hep prim e dell eseuzione del omndo (5) (eseuzione del metodo UpdMe invoto in (4)). VI. lo stk di frme e lo hep dopo l eseuzione del omndo (5) (eseuzione del metodo UpdMe invoto in (4)). I.(1) ClsseA {(x,w)} w ClsseB {(y, w), (x, w)} UpdMe i int og1=i;if (og1>0) {this.y=i;} II (2) Hep og1 og2 ClsseA x w ClsseB x w y w

8 III(3) Hep IV(4) og1 og2 ClsseA x 100 ClsseB x 0 y 1 Hep og1 og2 ClsseA x 100 ClsseB x 0 y 100 V i 100 this Hep ClsseA x 100 ClsseB x 0 y 1 VI i 100 this Hep ClsseA x 100 ClsseB x 0

Corso di laurea in Informatica Applicata Fondamenti di Programmazione Appello del 9/1/2003

Corso di laurea in Informatica Applicata Fondamenti di Programmazione Appello del 9/1/2003 Corso di lure in Informtic Applict Fondmenti di Progrmmzione Appello del 9/1/2003 Prim prte EERCIZIO 1 i consideri l'utom descritto dll tbell di trnsizione sotto riportt: b c 0 1 2 3 1 4 4 1 2 4 4 2 3

Dettagli

FONDAMENTI DI PROGRAMMAZIONE (A,B,C,D) Appello del 25/06/2002 Soluzioni proposte

FONDAMENTI DI PROGRAMMAZIONE (A,B,C,D) Appello del 25/06/2002 Soluzioni proposte FONDAMENTI DI PROGRAMMAZIONE (A,B,C,D) Appello del 25/06/2002 Soluzioni proposte ESERCIZIO 1 (5 punti) Si Λ =, b, c. Descrivere un utom che riconosce il seguente linguggio su Λ : L = s 1... s n n 1, s

Dettagli

Minimizzazione di automi

Minimizzazione di automi Minimizzzione di utomi Teorem e per ogni stto q di un DFA si re un loo tr q e tutti gli stti equivlenti q, llor l insieme dei lohi distinti rppresent un prtizione dell insieme degli stti. Ne deriv he ogni

Dettagli

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( )

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( ) Amiguità D 11 = ( ( ( ) ( (( )) ( (( )) ( (( )) () ( (( )) ( ) ( (( )) ( )! ( ) ( )! Un Grmmti si die migu se medesime stringhe sono generte d leri sintttii di differente struttur ovvero on due distinte

Dettagli

Backus Naur Form. Linguaggio di programmazione. Paolo Bison

Backus Naur Form. Linguaggio di programmazione. Paolo Bison Bckus Nur Form Linguggio di progrmmzione Polo Bison Fondmenti di Informtic.. 2006/07 Università di Pdov strumento linguistico per scrivere un sequenz di istruzioni (progrmm) che definiscono un computzione

Dettagli

Paolo Bison. Fondamenti di Informatica A.A. 2006/07 Università di Padova

Paolo Bison. Fondamenti di Informatica A.A. 2006/07 Università di Padova Bckus Nur Form Polo Bison Fondmenti di Informtic A.A. 2006/07 Università di Pdov BNF, Polo Bison, FI06, 2007-01-10 p.1 Linguggio di progrmmzione strumento linguistico per scrivere un sequenz di istruzioni

Dettagli

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi Linguggi di Progrmmzione Corso C Prte n.5 Automi Stti Finiti Nicol Fnizzi (fnizzi@di.uni.it) Diprtimento di Informtic Università degli Studi di Bri Automi Stti Finiti Dto un lfeto X, un utom stti finiti

Dettagli

Informatica Teorica. Proprietà dei linguaggi regolari

Informatica Teorica. Proprietà dei linguaggi regolari Informti Teori Proprietà dei Linguggi Regolri 1 Proprietà dei linguggi regolri pumping lemm hiusur rispetto d operzioni insiemistihe unione, omplementzione, intersezione ontenzione, stell rpporti on espressioni

Dettagli

stringhe sull alfabeto Σ in cui a a b si alternano, iniziando da a e terminando con b.

stringhe sull alfabeto Σ in cui a a b si alternano, iniziando da a e terminando con b. Corso di Linguggi Formli e Automi Anno Accdemico 2014 2015 Prof. Giovnni Pighizzini Esercizi Vri Esercizio 1 Si Σ = {, }. Costruite un utom che ccetti il linguggio costituito d tutte le stringhe sull lfeto

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 03-utomi--stti-finiti-0 Esercizi di Informtic Teoric Automi stti finiti Autom stti finiti (ASF) richimi utom stti finiti ASF = dove Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,,

Dettagli

ESERCITAZIONE SULLE GRAMMATICHE Corso di Linguaggi e Traduttori 1 A.A

ESERCITAZIONE SULLE GRAMMATICHE Corso di Linguaggi e Traduttori 1 A.A EERCIAZIOE ULLE GRAMMAICHE Corso di Linguggi e rduttori 1 A.A. 2004-2005 Eserizio n 1 i vuole determinre un grmmti equivlente l seguente utom stti finiti non deterministio: Per prim os ssoimo un simolo

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Esercizi. q a b s s Tabella delle transizioni di D 0

Esercizi. q a b s s Tabella delle transizioni di D 0 Esercizi E1. Considerimo l AFD D 0 su Σ = {, } l cui tell delle trnsizioni è qui di seguito riportt. q s s 1 1 2 3 2 2 3 3 3 3 Tell delle trnsizioni di D 0 Lo stto di prtenz di D 0 è s mentre gli stti

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Trasduttori a Stati Finiti

Trasduttori a Stati Finiti Trsduttori Stti Finiti Un Trsduttore Stti Finiti Deterministici è definito dll 7-pl - Alfeto di Ingresso (Alfeto terminle) K- Insieme degli stti δ -funzione (przile) di trnsizione

Dettagli

Esercizi per il corso di Calcolatori Elettronici

Esercizi per il corso di Calcolatori Elettronici Eserizi per il orso i loltori Elettronii svolti Muro IOVIELLO & io LUDNI Prte prim : mppe i Krnugh, metoo QM ESERIZIO : Mppe i Krnugh Minimizzre l rete rppresentt ll funzione: = {,,, 3, 4, 5,, } D = Ø

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Automi a stati finiti

Automi a stati finiti Automi stti finiti Diprtimento di Elettronic e Informzione Politecnico di Milno 17 mrzo 2017 Modelli operzionli Un semplice modello di clcolo I modelli operzionli di clcolo sono definiti come mcchine strtte

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

Prova scritta del 28 febbraio Risultati

Prova scritta del 28 febbraio Risultati LINGUGGI E COMPILTORI COMPILTORI Prov scritt del 28 febbrio 2011 Risultti MRTINELLI 18 D EPIFNIO 20 BOINO 24 DELÌU 27 VINO 27 PIETRELLI 23 NDREOCCI 30 DI SCHINO 20 ROMEO 24 MERCURI 27 NICOLIELLO 21 HIB

Dettagli

Grammatiche libere dal contesto

Grammatiche libere dal contesto Grmmtihe liere dl ontesto G = < VN,V,P, > VN - nsieme finito di simoli detti Non terminli V - nsieme finito di simoli detti erminli!!! V = VN! V, VN "#, V "#, VN $ V =# -. imolo distinto o Assiom del Linguggio!!

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

FUNZIONE LEGGE CHE LEGA DUE VARIABILI X E Y

FUNZIONE LEGGE CHE LEGA DUE VARIABILI X E Y FUNZIONE LEGGE CHE LEGA DUE VARIABILI E IN MODO CHE PER OGNI VALORE DI CORRISPONDA UNO ED UN SOLO VALORE DI y=f(x) x f y Prof. Breris Pol - 0 y=f(x) INIETTIVA, SURIETTIVA, BIETTIVA f : x! y 4 x=vriile

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

j Verso la scuola superiore Verso l algebra astratta

j Verso la scuola superiore Verso l algebra astratta j erso l suol superiore erso l lger strtt +nsiemi unzioni Operzioni inrie e strutture lgerihe Relzioni Logi Proilità +nsiemi ndividu l rispost estt. Un insieme è finito se: è formto d pohi elementi. è

Dettagli

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 0/ CLASSI SECONDE IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse terz, onsiglimo lo svolgimento piere di eserizi

Dettagli

Corso di Automi e Linguaggi Formali Gennaio- Marzo 2003

Corso di Automi e Linguaggi Formali Gennaio- Marzo 2003 Corso di Automi e Linguggi Formli Gennio- Mrzo 2003 Docente: Frncesc Rossi, frossi@mth.unipd.it Corso di Automi e Linguggi Formli Gennio-Mrzo 2002 p.1/37 Dti del corso 5 crediti circ 40 ore in ul Orrio:

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 utomi stti finiti utomi stti finiti non deterministici utomi e grmmtiche regolri notzioni sul livello degli esercizi:(*)fcile,

Dettagli

ALGORITMI E COMPLESSITÀ CORSO DI LAUREA MAGISTRALE IN INFORMATICA UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15

ALGORITMI E COMPLESSITÀ CORSO DI LAUREA MAGISTRALE IN INFORMATICA UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15 ANNO ACCADEMICO 01/15 Seon sessione i esmi (I ppello) - giugno 015 (B-trees) () Si efinis l struttur ti ei B-tree. () Si T l insieme ei vlori t N per i quli l lero T in figur poss essere onsierto un B-tree

Dettagli

ESERCITAZIONE I. Linguaggi Regolari

ESERCITAZIONE I. Linguaggi Regolari ESERCITAZIONE I Linguggi Regolri 2 INTRODUZIONE TIPI DI TRASFORMAZIONI ASFD ASFND ER GR Il percorso di trsformzioni in grigio srà il primo d essere nlizzto, mentre il rosso verrà trttto in seguito. Il

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze:

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze: Codii di Huffmn Codii di Huffmn I odii di Huffmn vengono mpimente usti nell ompressione dei dti (pkzip, jpeg, mp3). Normlmente permettono un risprmio ompreso tr il 2% ed il 9% seondo il tipo di file. Sull

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI Eserizi per il orso i loltori Elettronii svolti Muro OVELLO & Fio LUDN Prte seon : Mhine stti finiti ESERZO : Mhin i Mely Si t l seguente mhin i Mely, sintetizzre un iruito he l implementi, utilizzno un

Dettagli

Aniello Murano NP- Completezza (seconda parte)

Aniello Murano NP- Completezza (seconda parte) Aniello Murno NP- Completezz (second prte) 15 Lezione n. Prole chive: Np-completezz Corso di Lure: Informtic Codice: Emil Docente: murno@ n.infn.it A.A. 2008-2009 Definizione di NP- COMPLETEZZA Si ricordi

Dettagli

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro L ELLISSE 1. L ellisse ome luogo geometrio.. Equzione dell ellisse on i fuohi sull sse. 3. Le proprietà dell ellisse.. Clolo dei semissi, dei vertii, dei fuohi e rppresentzione grfi. 5. Equzione dell ellisse

Dettagli

a cura di Luca Cabibbo e Walter Didimo

a cura di Luca Cabibbo e Walter Didimo cur di Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 pumping lemm proprietà di chiusur dei linguggio regolri notzioni sul livello degli esercizi: (*) fcile, (**) non difficile

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

16 Stadio amplificatore a transistore

16 Stadio amplificatore a transistore 16 Stdio mplifictore trnsistore Si consideri lo schem di Figur 16.1 che riport ( meno dei circuiti di polrizzzione) uno stdio mplifictore relizzto medinte un trnsistore bipolre nell configurzione d emettitore

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 espressioni regolri e grmmtiche regolri proprietà decidiili dei linguggi regolri teorem di Myhill-Nerode notzioni sul

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

Esercizi di Informatica Teorica Pumping lemma e proprietà di

Esercizi di Informatica Teorica Pumping lemma e proprietà di 04-pumping-lemm-regolri-01 Esercizi di Informtic Teoric Pumping lemm e proprietà di chiusur per i linguggi regolri 1 Pumping lemm per linguggi regolri richimi pumping lemm: se L è un linguggio regolre

Dettagli

Esercizi di Informatica Teorica. Sommario

Esercizi di Informatica Teorica. Sommario Esercizi di Informtic Teoric Grmmtiche formli 1 Sommrio esercizi su grmmtiche e derivzioni esercizi su grmmtiche ed espressioni regolri esercizi su grmmtiche non regolri 2 1 Grmmtiche e derivzioni esercizio

Dettagli

a cura di Luca Cabibbo e Walter Didimo

a cura di Luca Cabibbo e Walter Didimo cur di Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 espressioni regolri e grmmtiche regolri proprietà decidiili dei linguggi regolri teorem di Myhill-Nerode notzioni sul

Dettagli

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola . Srivi l euzione dell prol d sse vertile pssnte per il punto ( ) ; P e on vertie ( ) ; V. Dll euzione generi dell prol e dll onosenze del vertie, le ui oordinte generihe sono V ; possimo srivere sostituendo

Dettagli

si considerino le seguenti implementazioni dell algoritmo di ricerca di un elemento all interno di un vettore v: 1) 2)

si considerino le seguenti implementazioni dell algoritmo di ricerca di un elemento all interno di un vettore v: 1) 2) Fondmenti di Informtic Ingegneri Meccnic, Elettric, Gestionle Prov scritt del 22 Giugno 2004 NOME MATRICOLA Esercizio 1 Supponendo l seguente definizione del tipo vettore: #define MAX_DIM 256 typedef int

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

Linguaggi di Programmazione e Compilatori I Appello del 9/7/2004

Linguaggi di Programmazione e Compilatori I Appello del 9/7/2004 Linguggi di Progrmmzione e Compiltori I Appello del 9/7/ Scrivere in stmptello COGNOME e NOME su ogni foglio consegnto e sul testo, che v consegnto insieme l compito. Not Nel testo le espressioni regolri

Dettagli

Informatica 3. Informatica 3. LEZIONE 4: Semantica operazionale. Lezione 4 - Modulo 1. C4: Blocchi annidati. Allocazione statica

Informatica 3. Informatica 3. LEZIONE 4: Semantica operazionale. Lezione 4 - Modulo 1. C4: Blocchi annidati. Allocazione statica Informti 3 Informti 3 LEZIONE 4: Semnti operzionle Lezione 4 - Modlo 1 Modlo 1: Strttre blohi Modlo 2: Comportmenti dinmii Strttre blohi Politenio di Milno - Prof. Sr Comi 1 Politenio di Milno - Prof.

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 pumping lemm proprietà di chiusur dei linguggio regolri notzioni sul livello degli esercizi:(*)fcile, (**) non difficile

Dettagli

a cura di Luca Cabibbo e Walter Didimo

a cura di Luca Cabibbo e Walter Didimo cur di Luc Cbibbo e Wlter Didimo Esercizi di Informtic teoric - Luc Cbibbo e Wlter Didimo 1 richimi teorici sulle grmmtiche di Chomsky esercizi vri esercizi su grmmtiche ed espressioni regolri esercizi

Dettagli

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl Unità logio-ritmeti (ALU) Arhitetture dei Cloltori (Lettere A-I) Unit Logio-Aritmeti (ALU) Prof. Frneso Lo Presti E l prte del proessore he svolge le operzioni ritmetio- logihe Rete omintori Operzioni

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 6-myhill-nerode- Esercizi di Informtic Teoric Linguggi regolri: espressioni regolri e grmmtiche, proprietà decidiili e teorem di Myhill-Nerode Teorem di Myhill-Nerode richimi teorem si L un linguggio sull

Dettagli

Analisi di stabilità

Analisi di stabilità Anlisi di stilità Stilità intern modi propri degli stti utovlori di A Stilità estern modi propri dell usit poli dell fdt.-. Stilità : se tutti i modi propri rimngono limitti per ogni t. Stilità : se tutti

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Determinnti: metodo dei minori Dt un mtrie n n on elementi ij Il suo erminnte srà dto dll somm dei erminnti di tutti i suoi minori (n-) (n-) ottenuti

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Pattern Matching Mediante Automi

Pattern Matching Mediante Automi Pttern Mtching Medinte utomi ho-corsick Espressioni Regolri dde Simonett Cmroto lessio Tni lice dde, Cmroto, Tni Pttern Mtching Medinte utomi 13/11/2007 1 Sommrio Introduzione Nozioni Preliminri utomi

Dettagli

Valutazione di una espressione. Espressioni. Espressioni semplici: variabili. Espressioni semplici: costanti

Valutazione di una espressione. Espressioni. Espressioni semplici: variabili. Espressioni semplici: costanti Espressioni Vlutzione di un espressione Ogni espressione E h: Un espressione E del linguggio C può essere definit formlmente come segue (definizione induttiv): E è un espressione semplice. Si Op n un opertore

Dettagli

1 Espressioni regolari e automi finiti 20%

1 Espressioni regolari e automi finiti 20% Linguggi Formli e Compiltori Prof. Crespi Reghizzi Soluzioni Prov sritt 1 11/03/2004 1. Espressioni regolri e utomi finiti 2. Grmmtihe 3. Lortorio Flex Bison 4. Grmmtihe e nlisi sinttti 5. Trduzione e

Dettagli

Insiemi parzialmente ordinati

Insiemi parzialmente ordinati Ordini Przili - Reticoli Insiemi przilmente ordinti Nell nlisi di progrmmi ordini przili e reticoli giocno un ruolo importntissimo Dto un insieme L, un ordine przile su L è un relzione : L L {vero, flso}

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MTRICI E DETERMINNTI di vinenzo sudero 1 DEFINIZIONI Per mtrie si intende un tell di elementi ordinti per righe e per olonne Di un mtrie oorre speifire il numero di righe, di olonne e l insieme ui pprtengono

Dettagli

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU Unità logio-ritmeti (ALU) Unità logio-ritmeti Arhitetture dei Cloltori (lettere A-I) E l prte del proessore he svolge le operzioni ritmetio-logihe Potenz di lolo del proessore Insieme di iruiti omintori

Dettagli

Linguaggi formali e compilazione

Linguaggi formali e compilazione non Linguggi formli e compilzione Corso di Lure in Informtic A.A. 2014/2015 Linguggi formli e compilzione non non Contenuti di quest prte del corso Descriveremo gli utomi stti finiti, importnti strumenti

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintesi Sequenzile Sinron Sintesi Comportmentle di Reti Sequenzili Sinrone Riduzione del numero degli stti per Mhine Non Completmente Speifite Comptiilità Versione del 9/12/03 Mhine non ompletmente speifite

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE 0. Corso di LRONCA NDUSRAL 1 MODULAZON ORAL. CONROLLO D CORRN D NROR A NSON MPRSSA 0. 0. 4 Rppresentzione vettorile Rppresentzione vettorile rsformzioni dirett ed invers 0. 0. 5 6 Rppresentzione vettorile

Dettagli

Macchine. sequenziali. S. Salvatori - Microelettronica marzo 2017 (39 di 85)

Macchine. sequenziali. S. Salvatori - Microelettronica marzo 2017 (39 di 85) Mcchine sequenzili S. Slvtori - Microelettronic mrzo 217 (39 di 85) Mcchine sequenzili Il vlore dell'uscit dipende dll sequenz di ingressi ricevuti fino ll'istnte corrente ) serve un memori (stto) b) l'uscit

Dettagli

L insieme Q+ Le frazioni Operazioni con le frazioni Problemi con le frazioni

L insieme Q+ Le frazioni Operazioni con le frazioni Problemi con le frazioni L insieme Q+ Le frzioni Operzioni on le frzioni Prolemi on le frzioni Le frzioni Ini l rispost estt. In un frzione il numertore ini SEZ. C in qunte prti si ivie l unità. qunti interi si onsierno. qunte

Dettagli

Linguaggi e Traduttori Tempo: 2 ore

Linguaggi e Traduttori Tempo: 2 ore Linguggi e Trduttori Tempo: 2 ore Esercizio (3 punti) Prof. Mrco Gvnelli 2 luglio 28 i consideri il linguggio L = { n b c n n > } { k c k b k > }. i scriv un grmmtic non mbigu che gener il linguggio L;

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

3. 1. Capitolo 4. Reti logiche. Logica e Reti logiche. Il modello strutturale delle reti logiche. 4.1 Funzioni, espressioni e schemi logici

3. 1. Capitolo 4. Reti logiche. Logica e Reti logiche. Il modello strutturale delle reti logiche. 4.1 Funzioni, espressioni e schemi logici Cpitolo 4 Reti logiche 4 - Funzioni, espressioni e schemi logici 42 - Alger di commutzione 43 - Fmiglie logiche 4 Funzioni, espressioni e schemi logici Tutti gli uomini sono mortli 2 Socrte è un uomo Logic

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

Parabola Materia: Matematica Autore: Mario De Leo

Parabola Materia: Matematica Autore: Mario De Leo Prol Definizioni Prol on sse prllelo ll sse Prol on sse prllelo ll sse Prole prtiolri Rppresentzione grfi Esepi di eserizi Rett tngente d un prol Eserizi Mteri: Mteti Autore: Mrio De Leo Definizioni Luogo

Dettagli

LINGUAGGI FORMALI Esercizi

LINGUAGGI FORMALI Esercizi LINGUAGGI FORMALI Esercizi PPPPPP Nicol Fnizzi LINGUAGGI DI PROGRAMMAZIONE Corso di Informtic T.P.S. Diprtimento di Informtic Università di Bri Aldo Moro [2014/01/28-13:30:23] [ 2 / 14 ] Indice 1 Introduzione

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Pianificazione in Prolog

Pianificazione in Prolog Pinifizione in Prolog Vedimo ome risolvere un semplie prolem di pinifizione in Prolog utilizzndo un pinifitore linere he effettu un rier forwrd nello spzio degli stti. Pinifizione nel mondo dei lohi. Sino

Dettagli

ISTITUTO TECNICO INDUSTRIALE "E. Fermi" LUCCA Anno Scolastico 2017/2018 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA

ISTITUTO TECNICO INDUSTRIALE E. Fermi LUCCA Anno Scolastico 2017/2018 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA ISTITUTO TENIO INDUSTILE "E. Fermi" LU nno Solstio / Progrmm di MTEMTI lsse prim Sez. G Insegnnte MUSUMEI LUIN Gli insiemi ppresentzione di un insieme. I sottoinsiemi. Le operzioni on gli insiemi unione

Dettagli

n volte m volte n+m volte n volte n volte n volte } = a n + n + n = a n m

n volte m volte n+m volte n volte n volte n volte } = a n + n + n = a n m Corso di Potenzimento.. 009/010 1 Potenze e Rdicli Dto un numero positivo, negtivo o nullo e un numero intero positivo n, si definisce potenz di se ed esponente n il prodotto di n fttori tutti uguli d

Dettagli

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato Università degli studi di Cgliri CORSO ANALISI MATEMATICA 1 A.A. 2015/2016 Docente: Monic Mrrs 1 Anlisi Mtemtic 1 Testo consiglito con elementi di geometri e lgebr linere. M. Brmnti, C.D. Pgni, S. Sls

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

ESERCIZI SVOLTI DEL CORSO DI TRASMISSIONE NUMERICA

ESERCIZI SVOLTI DEL CORSO DI TRASMISSIONE NUMERICA Università egli Stui i rento Corso i Lure in Ingegneri elle eleomunizioni ESERCIZI SVOLI DEL CORSO DI RASMISSIONE NUMERICA Prof Lorenzo Bruzzone ESERCIZIO Costruire un oie vente n=3, k=2 on rità isri,

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

Applicazioni di automi e trasduttori a stati finiti

Applicazioni di automi e trasduttori a stati finiti MTeXp trutture discrete Cpitolo C13: ppliczioni di utomi e trsduttori stti finiti Contenuti delle sezioni ppliczioni dei linguggi rzionli p1 Trsduttori stti finiti p3 C13: ppliczioni dei linguggi rzionli

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Non Determinismo. Dipartimento di Elettronica e Informazione Politecnico di Milano. 21 marzo 2017

Non Determinismo. Dipartimento di Elettronica e Informazione Politecnico di Milano. 21 marzo 2017 Non Determinismo Diprtimento di Elettronic e Informzione Politecnico di Milno 21 mrzo 2017 Modelli operzionli non deterministici Modelli deterministici vs. modelli non deterministici Solitmente, un lgoritmo

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via ENS: Esme e seond prov in itinere del Luglio 8 Per l disussione dello sritto si onttti il doente vi e-mil: ro@elet.polimi.it Eserizio (foglio ino) Esme primo ppello: punti : Filtri FIR e IIR Si onsideri

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Prodotto tr mtrii d Dte mtrii x Il prodotto delle due mtrii produe un nuov mtrie on un numero di righe pri l numero di righe dell mtrie e numero

Dettagli

KIT ESTIVO MATEMATICA A.S. 2018/19

KIT ESTIVO MATEMATICA A.S. 2018/19 ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 8/ CLASSI PRIME IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse seond, onsiglimo lo svolgimento piere di eserizi

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli