Metodologie informatiche per la chimica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodologie informatiche per la chimica"

Transcript

1 Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii

2 Determinnti: metodo dei minori Dt un mtrie n n on elementi ij Il suo erminnte srà dto dll somm dei erminnti di tutti i suoi minori (n-) (n-) ottenuti nellndo isun elemento j dell rig (e l orrispondente olonn j ) e moltipliti per (-) +j j nn n n n n A Con i numero di rig e j numero di olonn nn n n n n nn n n nn n n A

3 Mtrii e erminnti Dt un mtrie B Il suo erminnte srà dto dl prodotto roe tr i suoi elementi B Nel so di un mtrie :

4 Mtrii e erminnti - esempio Dt un mtrie Il suo erminnte srà dto dl prodotto roe tr i suoi elementi 7 Nel so di un mtrie l fine di lolrne il erminnte si può usre il osidto metodo generle: 5

5 Mtrie trspost Dt un mtrie d L su mtrie trspost si otterrà smindo le righe on le olonne d Nel so di un mtrie il menismo è lo stesso: trspost

6 Mtrie trspost - esempio Dt un mtrie L su mtrie trspost è Nel so di un mtrie llo stesso modo: trspost

7 Mtrie identità definiione e proprietà Si definise mtrie identità un mtrie n n i ui elementi sono tutti nulli trnne quelli gienti sull digonle priniple. Questi ultimi sono tutti unitri. L mtrie identità gode di lune proprietà prtiolri: Il suo erminnte è unitrio L su mtrie trspost è sempre pri ll mtrie identità trspost

8 Prodotto vettorile tr vettori Dti due vettori v e u di equione Desritti di seguenti vettori-olonn Il prodotto vettorile tr i due vettori è dto dl erminnte dell seguente mtrie : v v u u u v w Il risultto è un nuovo vettore he non pprtiene llo spio vettorile di prten

9 Prodotto vettorile tr vettori - esempio Dti due vettori v e u di equione Desritti di seguenti vettori-olonn Il prodotto vettorile tr i due vettori è dto dl erminnte dell seguente mtrie : v v u u u v w

10 Prodotto vettorile tr vettori Dti due vettori nello spio rtesino Di norm (modulo) pri : Il modulo del vettore ottenuto dl prodotto vettorile dei due vettori è dto d v u u v w In ui è l ngolo formto dlle due direioni/versi di ppliione dei due vettori. v u sen u v w Similmente qunto de per il prodotto slre nhe nel so del prodotto vettorile le due formule he onsentono di rivrne il risultto onsentono di ottenere indirettmente l ngolo tr i vettori.

11 Prodotto vettorile tr vettori - esempio Considerimo i due vettori u e v dell esempio preedente Il prodotto vettorile tr i due vettori d un nuovo vettore di modulo: v u w u v w Il modulo del nuovo vettore è nhe dto d sen w sen sen v u w D ui si riv he:. rsen sen sen w

12 eserii

13 Prodotto tr mtrii d Dte mtrii Il prodotto delle due mtrii produe un nuov mtrie on un numero di righe pri l numero di righe dell mtrie e numero di olonne pri l numero di olonne dell mtrie. Il prodotto tr mtrii è possiile solo se il numero di olonne dell mtrie orrisponde l numero di righe dell mtrie. e g e d g f f e g h d h f h Ciò he si f è un somm di prodotti rig-olonn ' d ' e d' ' e'... d d' d'' ' d d' e e e' e'' '

14 Prodotto tr mtrii Dte mtrii non qudrte in ui il numero delle righe dell mtrie orrisponde l numero delle olonne dell mtrie. d e d' e' d e Il prodotto delle due mtrii è d ' e d ' e d ' e d' ' e' d' ' e' d' ' e' d ' e d ' e d ' e L mtrie finle è un mtrie qudrt (sempre) he h ome numero di righe e olonne il numero di righe dell mtrie (o il numero di olonne dell mtrie )

15 Prodotto tr mtrii - esempio Dte mtrii Il prodotto delle due mtrii è 5 Dte mtrii non qudrte Il prodotto delle due mtrii è 9 5

16 Rngo di un mtrie Dt un mtrie Si definise rngo dell mtrie il numero mssimo di olonne o righe linermente indipendenti dell mtrie stess. Condiioni di linerità tr olonne o righe. d e e d d Il rngo di un mtrie può essere solo minore o ugule l minore tr il numero di righe e olonne.

17 Rngo di un mtrie - esempio Dt un mtrie Si definise rngo dell mtrie il numero mssimo di olonne o righe linermente indipendenti dell mtrie stess. Condiioni di linerità tr olonne o righe Il rngo dell mtrie preedente è

18 Rngo di un mtrie - esempio Dt un mtrie Si definise rngo dell mtrie il numero mssimo di olonne o righe linermente indipendenti dell mtrie stess. Condiioni di linerità tr olonne o righe. Il rngo dell mtrie preedente è

19 Orlti di un mtrie Dt un mtrie E possiile lolre il suo rngo on il teorem degli orlti o di Kroneker Il rngo di un mtrie è pri ll ordine dell mtrie qudrt (numero di righe=numero di olonne=ordine) più grnde on erminnte non nullo. Quttro minori di ordine dell mtrie onsidert Solo due di essi si definiso orlti ovvero minori linermente indipendenti

20 Orlti di un mtrie - esempio Dt un mtrie E possiile lolre il suo rngo on il teorem degli orlti o di Kroneker Poihé esiste lmeno un minore on il rngo è lmeno. Considero i quttro minori di ordine dell mtrie onsidert. Solo due di essi si definiso orlti ovvero minori linermente indipendenti poihé ontengono il minore on Se entrmi vessero erminnte nullo, neessrimente nhe gli ltri due sreero nulli

21 Rngo di un mtrie Dt un mtrie Il rngo dell mtrie srà se lmeno tr i due erminnti degli orlti onsiderti è non nullo. oppure Nel so in ui fossero entrmi nulli llor si dovree verifire l esisten di lmeno un minor dell mtrie originle il ui erminnte è non nullo.

22 Orlti di un mtrie - esempio Dt un mtrie Dti due dei quttro minori di ordine (orlti) Entrmi gli orlti hnno erminnte non sullo Il rngo dell mtrie è

23 Mtrie invers Si definise mtrie invers di un mtrie qudrt n n, un divers mtrie qudrt di dimensioni n n he moltiplit per l mtrie di prten produe ome mtrie risultnte l mtrie identità ' ' ' '' '' '' d e f In generle non esiste un lgoritmo semplie he onsente di lolre qundo esiste l invers di un dt mtrie. Esistono lgoritmi non nli ome quello dei ofttori o il Guss- Jordn. Seondo il metodo dei ofttori per le mtrii (e solo per esse) vle: d' e' f ' d'' e'' f '' A d A A d

24 Mtrie invers metodo dei ofttori Dt un mtrie qudrt i j A, i,, j i, j A L su mtrie invers è dt d: A of of A, of A,, A, of A, i,, j i, j T In ui (A) è il erminnte dell mtrie A, T indi l operione di trsposiione e of(a, i,j ) è definito dll seguente relione: of i j A,, minor A,i, j i j (minor(a,i,j)) è il erminnte del minore dell mtrie A ottenuto nellndo l rig i e l olonn j.

25 Mtrie invers esempio Dt un mtrie qudrt A L su mtrie invers è dt d: T A A A

26 Mtrie invers esempio Svolgendo i prodotti L su mtrie invers è dt d: T T A A A

27 eserii

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Prodotto tr mtrii d Dte mtrii x Il prodotto delle due mtrii produe un nuov mtrie on un numero di righe pri l numero di righe dell mtrie e numero

Dettagli

Chimica fisica dei materiali. Recupero di matematica. Sergio Brutti

Chimica fisica dei materiali. Recupero di matematica. Sergio Brutti Chimi fisi dei mterili Repero di mtemti Sergio Brtti Nmeri omplessi Un nmero omplesso è n espressione mtemti ostitit d 3 elementi ( nmeri reli, e l nità immginri i: i i definiione Re Im Dti de nmeri omplessi:

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MTRICI E DETERMINNTI di vinenzo sudero 1 DEFINIZIONI Per mtrie si intende un tell di elementi ordinti per righe e per olonne Di un mtrie oorre speifire il numero di righe, di olonne e l insieme ui pprtengono

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Alger linere e moleole Rppresentione di speie himihe Speie himihe?? Strumenti informtii etone Mno lier D 3D Moleulr drwing tool Disposiione nello spio

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Algebra lineare ... Per indicare la relazione tra vettore riga e vettore colonna si usa il simbolo T (operazione di trasposizione)

Algebra lineare ... Per indicare la relazione tra vettore riga e vettore colonna si usa il simbolo T (operazione di trasposizione) Alger linere. Vettori: definizioni Un ettore x n dimensioni è un insieme ordinto di n numeri x ( x x...x n ) I numeri x x...xn sono detti omponenti del ettore x. I ettori possono essere sritti sotto form

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

Università del Sannio

Università del Sannio Università del Snnio Corso di Fisic 1 Leione 2 Vettori Prof.ss Stefni Petrcc Corso di Fisic 1 - Le. 02 - Vettori 1 Definiione dei vettori I vettori rppresentno grndee per le quli il vlore, misurto con

Dettagli

(da dimostrare); (da dimostrare).

(da dimostrare); (da dimostrare). Proprietà delle trsposte Sino, K m,n e si K, llor vlgono le seguenti relzioni: 1) ( )= 2) (+)= + 3) ()= (d dimostrre); (d dimostrre). (dimostrt di seguito); DIM. 2): Devo dimostrre che l mtrice ugule ll

Dettagli

Algebra lineare - Applicazioni. Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova

Algebra lineare - Applicazioni. Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova Algebr linere - Appliczioni Antonino Polimeno Diprtimento di Scienze Chimiche Università degli Studi di Pdov 1 Sistemi lineri - 1 Sistem sottodeterminto (n>m), sovrdeterminto (n

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1 MTRICI E DETERMINNTI CENNI SUI SISTEMI LINERI ngel Dontiello Considerimo un insieme di numeri reli rppresentti tr prentesi qudre o tonde n n ij m m mn ( ) [ ] ij i,,m j,,n Si definisce mtrice un tbell

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

j Verso la scuola superiore Verso l algebra astratta

j Verso la scuola superiore Verso l algebra astratta j erso l suol superiore erso l lger strtt +nsiemi unzioni Operzioni inrie e strutture lgerihe Relzioni Logi Proilità +nsiemi ndividu l rispost estt. Un insieme è finito se: è formto d pohi elementi. è

Dettagli

Le Matrici. 001 ( matrice unità)

Le Matrici. 001 ( matrice unità) Le Mtrici Un mtrice è un tbell di numeri o più in generle di elementi disposti quindi secondo righe e colonne. Le mtrici si indicno con le lettere miuscole dell lfbeto, gli elementi con quelle minuscole

Dettagli

MATRICI DETERMINANTI SISTEMI LINEARI TEORIA ED ESERCIZI

MATRICI DETERMINANTI SISTEMI LINEARI TEORIA ED ESERCIZI I PRTE LGEBR LINERE TEORI ED ESERCIZI DIPRTIMENTO DI GRRI FCOLT DI INGEGNERI DEI SISTEMI LOGISTICI E GRO- LIMENTRI LEZIONI DI GEOMETRI E LGEBR DISPENS MTRICI DETERMINNTI SISTEMI LINERI TEORI ED ESERCIZI

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

Calcolo scientifico. Prodotto Matrice per Matrice

Calcolo scientifico. Prodotto Matrice per Matrice Clolo sientifio Prodotto Mtrie per Mtrie Qul è l lgoritmo? for i=0,n- do for j=0,n- do ij =0 for k=0,n- do l mtrie C viene generlmente lolt omponente per omponente seondo un ordine prestilito ij = ij +

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA (ultima modifica 02/10/2014)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA (ultima modifica 02/10/2014) ELETTROMGNETISMO PPLITO LL'INGEGNERI ELETTRI ED ENERGETI (ultim modific 02/10/2014) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5).

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5). Corso di Lure in Ingegneri Informti (A-Co, J-Pr) - Ingegneri Elettroni (A-Co, J-Pr) - Ingegneri Industrile (F-O) - Ingegneri Gestionle - Ingegneri Elettri - Ingegneri Meni - Ingegneri REA Prov sritt di

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

Risoluzione dei sistemi di equazioni col metodo delle matrici

Risoluzione dei sistemi di equazioni col metodo delle matrici Risoluzione ei sistemi i equzioni ol metoo elle mtrii Un sistem i n equzioni e n inonite può essere rppresentto ome mtrie formt i soli oeffiienti. Dto il sistem: x+ y+ z= x+ y+ z= x+ y+ z= L su mtrie srà:

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

15. Cambiamenti di base in uno spazio vettoriale.

15. Cambiamenti di base in uno spazio vettoriale. 5 Cmbimenti di bse in uno spzio vettorile 5 Esempio Si VR uno spzio vettorile di dimensione e si B = (u, u, u ) un su bse Sino v = 5u + 6u, v = u u + 5u, v = u + u + u, v = u 4u 7u Si M l mtrice vente

Dettagli

{ } secondi pedici, appartenenti a 1, 2, 0 0 a

{ } secondi pedici, appartenenti a 1, 2, 0 0 a APPENDICE AL CAPITOLO : ALTRE PROPRIETA DEI DETERMINANTI Come si clcol il erminnte di un mtrice di dimensione n? Per evitre un ggrvio di teori limitimoci l clcolo del erminnte di un mtrice Il erminnte

Dettagli

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione Appunti di Mtemti Computzionle Lezione Equzioni non lineri Considerimo il prolem dell determinzione delle rdii dell equzione dove è un funzione definit in [,]. Teorem: Zeri di unzioni Continue Si un funzione

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ironferenz. Dre l definizione di ironferenz ome luogo di punti. L ironferenz è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d un punto

Dettagli

2 Generalità sulle matrici

2 Generalità sulle matrici 2 Generlità sulle mtrici 21 Definizione e csi prticolri Definizione 21 Mtrice n m Un mtrice n m è un tbell rettngolre di n righe e m colonne i cui elementi sono numeri reli (o complessi) indicizzti con

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

Elementi di Calcolo Matriciale

Elementi di Calcolo Matriciale Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 7 Ottobre Elementi di Clcolo Mtricile F. Cliò Mtrici: Definizioni e Simbologi Lezione 7 Ottobre Elementi di Clcolo Mtricile

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

MATEMATICA MATEMATICA FINANZIARIA

MATEMATICA MATEMATICA FINANZIARIA MATEMATICA e MATEMATICA FINANZIARIA.. 7-8 Corso di lure in Economi Aziendle Fscicolo n. Alger linere delle mtrici Operzioni con le mtrici. Determinnte di un mtrice qudrt Mtrice invers Rngo di un mtrice

Dettagli

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro L ELLISSE 1. L ellisse ome luogo geometrio.. Equzione dell ellisse on i fuohi sull sse. 3. Le proprietà dell ellisse.. Clolo dei semissi, dei vertii, dei fuohi e rppresentzione grfi. 5. Equzione dell ellisse

Dettagli

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti Algebr linere Algebr Un lgebr è un sistem di segni in cui sono definite delle operzioni Algebr sclre Algebr dei vettori Algebr mtricile In lgebr mtricile un numero è chimto sclre Vettori Vettori vettore

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

P (a,a) PROBLEMA 10 . C

P (a,a) PROBLEMA 10 . C PROBLEMA 10 4 FILI LUNGHI CONDUTTORI SONO TRA LORO PARALLELI E DISPOSTI AI VERTICI DI UN QUADRATO DI LATO = 0 cm; IN OGNI FILO CIRCOLA LA CORRENTE i = 0 A, CON I VERSI MOSTRATI IN FIGURA A) CALCOLARE IL

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE POTENZ 2 5 =2*2*2*2*2 2 è la SE 5 è l ESPONENTE PROPRIET PRODOTTO DI POTENZE DI UGULE SE 3 2 *3 7 =3 2+7 =3 9 QUOZIENTE DI POTENZE DI UGULE SE 3 12 :3 7 =3 12-7 =3 5 POTENZ DI POTENZ (3 2 ) 7 =3 2*7 =3

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN UTILIA SULL INTGRAL MULTIPLO SCONDO RIMANN Avvertenz: tutto iò detto nel seguito vle in R n e non solo in R 2. 1. INTGRAL DI RIMANN SU RTTANGOLI Un insieme R 2 si die essere un rettngolo (hiuso) se = [,b]

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n :

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n : Mtemtic II. Generlità sui sistemi lineri Un sistem linere è un sistem di m equzioni lineri (cioè di primo grdo) in n incognite,, n : n n b b m mn n m (*) Un soluzione del sistem linere è un n-upl di numeri

Dettagli

+ numeri reali Numeri decimali e periodici Estrazione di radice

+ numeri reali Numeri decimali e periodici Estrazione di radice numeri reli Numeri deimli e periodii Estrzione di rdie Numeri deimli e periodii SEZ. G Clol il vlore delle seguenti espressioni. 0 (, ), Trsformimo i numeri deimli nell orrispondente frzione genertrie

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

Esercitazioni di Algebra e Geometria. Anno accademico Dott.ssa Sara Ferrari

Esercitazioni di Algebra e Geometria. Anno accademico Dott.ssa Sara Ferrari Eseritzioi di lgebr e Geometri o demio 9- Dott.ss Sr Ferrri e-mil sr.ferrri@ig.uibs.it Eseritzioi: mrtedì 8.-. veerdì 9.-. ttezioe: le lezioi del veerdì iizio esttmete lle 9.. Rievimeto studeti: veerdì

Dettagli

Definizione opposto: Somma. Definizione vettore 0:

Definizione opposto: Somma. Definizione vettore 0: Somm Operzioni in R n : somm :... n n Definizione ettore : Definizione opposto: :... :... n Rispetto tle operzione R n risult un gruppo elino. Cioè l somm h le seguenti proprietà: S5) Commutti S) Intern

Dettagli

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è :

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è : DETERMINANTI ESERCITAZIONE N 5 mrzo Ad ogni mtrice qudrt coefficienti in R ( o C o un qulsisi K cmpo) è ssocito un numero rele che or definimo,detto det(a),(d(a)) determinnte di A il determinnte di un

Dettagli

rappresenta il momento statico della superficie A rispetto all asse x che è anche uguale

rappresenta il momento statico della superficie A rispetto all asse x che è anche uguale pint su un superfiie inlint - Centro di pint Considerimo un superfiie pin inlint di un ngolo rispetto ll orizzontle e prendimo un sistem di riferimento on intersezione sse di intersezione tr l superfiie

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE 0. Corso di LRONCA NDUSRAL 1 MODULAZON ORAL. CONROLLO D CORRN D NROR A NSON MPRSSA 0. 0. 4 Rppresentzione vettorile Rppresentzione vettorile rsformzioni dirett ed invers 0. 0. 5 6 Rppresentzione vettorile

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Numerica e aritmetica dei calcolatori. Introduzione

Numerica e aritmetica dei calcolatori. Introduzione NUC Cpitolo Ivn Zivko Introduzione Un mtrice si può descrivere come un tbell ordint di elementi, ognuno dei quli h un posizione ben precis. M 4 7 5 8 3 6 9 NUC Docente: Ivn Zivko Introduzione Se il numero

Dettagli

Vettori e scalari. Grandezze scalari. Grandezze vettoriali

Vettori e scalari. Grandezze scalari. Grandezze vettoriali Vettori e sclri Vengono definite dl loro lore numerico. Esempi: l lunghezz di un segmento, l re di un figur pin; l tempertur di un stnz Grndezze sclri Grndezze ettorili Vengono definite dl loro lore numerico

Dettagli

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via ENS: Esme e seond prov in itinere del Luglio 8 Per l disussione dello sritto si onttti il doente vi e-mil: ro@elet.polimi.it Eserizio (foglio ino) Esme primo ppello: punti : Filtri FIR e IIR Si onsideri

Dettagli

Vettori e scalari. Grandezze scalari. Grandezze vettoriali

Vettori e scalari. Grandezze scalari. Grandezze vettoriali Vettori e sclri Vengono definite dl loro vlore numerico. Esempi: l lunghezz di un segmento, l re di un figur pin; l tempertur di un stnz Grndezze sclri Grndezze vettorili Vengono definite dl loro vlore

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Richiami sulle matrici (TITOLO)

Richiami sulle matrici (TITOLO) Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione prile Introduzione lle trsformzioni F. Cliò Richimi sulle mtrici (TITOLO) Lezione prile Trsformzioni Mtrici: Definizioni

Dettagli

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere,

Dettagli

Sistemi di coordinate. Moto nello spazio tridimensionale. Coordinate cartesiane ortogonali: z P = P(x,y,z) x Coordinate cilindriche: z.

Sistemi di coordinate. Moto nello spazio tridimensionale. Coordinate cartesiane ortogonali: z P = P(x,y,z) x Coordinate cilindriche: z. Moto nello spio tridimensionle L loliione spio-temporle di un evento - triettori e posiione nell triettori l vrire del tempo - l posiione rispetto un PUO O DI IFEIMEO sistem di oordinte spili origine O

Dettagli

Chimica fisica superiore. Modulo 1. Recupero di matematica. Sergio Brutti

Chimica fisica superiore. Modulo 1. Recupero di matematica. Sergio Brutti Chimi fisi suprior Modulo Rupro di mtmti Srgio Brutti Numri omplssi U umro omplsso è u sprssio mtmti ostituit d 3 lmti ( umri rli, l uità immgiri i: i i dfiiio R Im Dti du umri omplssi: Algr di s i id

Dettagli

Sistemi a Radiofrequenza II. Guide Monomodali

Sistemi a Radiofrequenza II. Guide Monomodali Eserizio. Ordinre le frequenze di tglio dei modi di un guid rettngolre on b, qundo: b / < b < b / Soluzione: L ostnte riti è ugule per modi TE e TM: K Frequenz Criti: f K V f m V n f π b Tglio dei modi:

Dettagli

Strutture cristalline 2

Strutture cristalline 2 Chimi fisi dei mterili Strttre ristlline Sergio Brtti Retioli tri-dimensionli I retioli (primitii e non) sono rggrppti in se lle relioni tr i prmetri retiolri m nhe in se ll esisten di elementi di simmetri

Dettagli

quattro trasformazioni

quattro trasformazioni ilo di rnot e un ilo termio ostituito d quttro trsformzioni p() reversibili di un gs perfetto : un espnsione isoterm d tempertur un espnsione dibti d un ompressione isoterm d tempertur un ompressione dibti

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA trtto d Mtemti in zione, A. Arpinti, M. Musini Mettimoi ll prov! Suol..........................................................................................................................................

Dettagli

Numeri nello spazio n dimensionale

Numeri nello spazio n dimensionale Numeri nello spzio n dimensionle Niol D Alfonso Riertore indipendente niol.dlfonso@hotmil.om Sommrio Questo pper introdue i numeri nello spzio n dimensionle. Vle dire, se nell prim dimensione bbimo i numeri

Dettagli

Algebra lineare. Capitolo VETTORI

Algebra lineare. Capitolo VETTORI Cpitolo Algebr linere.. VETTORI In generle, nell geometri elementre un segmento AB è introdotto come l prte di rett compres tr i due punti A, B fissti su di ess, senz specificre un ordine tr gli estremi

Dettagli

Ortogonalità di funzioni

Ortogonalità di funzioni Cpitolo 0 Ortogonlità di funzioni 01 Funzioni linermente indipendenti e funzioni ortogonli Si (, b) un intervllo dell sse rele Si dice le n + 1 funzioni φ 0 (x), φ 1 (x),, φ n (x), definite in (, b), sono

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010 LUISS Lure specilistic in Economi e Finn Anno Accdemico 9/ Corso di Metodi Mtemtici per l Finn Prof. Fusto Goi, Dr. Dvide Vergni Soluioni dell'esme scritto del 5/7/. Sino dti i due opertori Â, ˆB : R 3

Dettagli

Geometria. Domande introduttive

Geometria. Domande introduttive PT, 695 noio Geometri si di mtemti per l MPT 3 Tringoli L pdronnz delle rtteristihe e delle proprietà dei tringoli è fondmentle per pire il pitolo dell trigonometri, uno dei pitoli di geometri non trttto

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze:

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze: Codii di Huffmn Codii di Huffmn I odii di Huffmn vengono mpimente usti nell ompressione dei dti (pkzip, jpeg, mp3). Normlmente permettono un risprmio ompreso tr il 2% ed il 9% seondo il tipo di file. Sull

Dettagli

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno Corso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it I erminnti. Il prodotto vettorile. 11 Gennio 2016 Indice 1 Determinnti di mtrici 2 2 2 1.1 Clcolo del erminnte.

Dettagli