quattro trasformazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "quattro trasformazioni"

Transcript

1 ilo di rnot e un ilo termio ostituito d quttro trsformzioni p() reversibili di un gs perfetto : un espnsione isoterm d tempertur un espnsione dibti d un ompressione isoterm d tempertur un ompressione dibti d d si ssume he >

2 perhe trsformzioni isoterme e dibtihe? le trsformzioni tr serbtoi di lore teorimente devono vvenire tempertur ostnte due trsformzioni isoterme divers tempertur e se si deve operre on due sole sorgenti di lore per hiudere il ilo l uni possibilit e di effetture due trsformzioni senz smbio di lore due trsformzioni dibtihe

3 rendimento del ilo di rnot p = n R d = du + dl = nr is poihe = = = = = L tot i f d = ( n d ) d = nrln is = nr ln 0 = nr ln 0 L = n ( ) 0 L = n ( ) 0 L + L + f s = = nr p() = d = dl = ( p()d ) is is is f L = ( n d ) L = n ( ) d d d i f i dl = du d = + = + f i d d = ( nr ) is dl = ( n d ) = + is d d ln ln

4 dibti reversibile Poisson d d d = = = = = + ln ln = ln ln m = =

5 ttenzione : in quest relzione non ompiono grndezze rtteristihe del gs m solo i vlori delle temperture delle sorgenti on ui il gs st smbindo lore dunque il rendimento del ilo di rnot di un gs idele on lore speifio ostnte dipende solo dlle temperture ssolute ui vvengono gli smbi isotermi di lore

6 tutte le mhine reversibili gs perfettohe operno tr le stesse sorgenti di tempertur e ( on > ) hnno lo stesso rendimento he in ogni so e sempre inferiore ll unit per vere rendimento unitrio bisognerebbe o he o he 0, m sono entrmbe ondizioni impossibili d relizzre Not ene : il teorem di rnot e vlido nhe qundo si oper on piu di due sorgenti di lore il rendimento dell mhin reversibile e sempre superiore quello dell mhin irreversibile m l formul per determinre il rendimento non sr piu = (eezioni prte, vedi ilo di Stirling dibtihe + isoore )

7 dl ilo di rnot : ln = nr 0 ln e 0 = nr quindi = nr ln = nr ln 0 per ui = nr nr ln ln m = perio nr ln = = nr ln = + = 0

8 er il lore ssorbito dll sorgente tempertur mggiore er il lore eduto ll sorgente tempertur inferiore detti = = = e = si h he per ogni mhin di rnot ( ili reversibili ) vle l + = 0

9 rendimento di un generi mhin termi ili = + ( dove < 0 ) rendimento di un mhin di rnot reversibile = teorem di rnot per definizione 0 e le temperture devono essere espresse in grdi Kelvin > 0 e > 0 perio e possibile moltiplire per e dividere per l disuguglinz senz doverne modifire il verso

10 + 0 e generlizzndo + 0 dove il segno di uguglinz vle solo se l mhin ili e reversibile

11 onseguenz prti: l possibilità di definire un sl delle temperture bst solo sugli smbi di lore e dunque del tutto indipendente dlle proprietà fisihe dell prtiolre sostnz termometri ust in effetti e impossibile utilizzre il termometro gs volume ostnte l di sotto di temperture dell ordine di K us dell liquefzione dei gs

12 onsiderimo un trsformzione termodinmi ili reversibile vrrnno le relzioni L = = = r Rev si potr lolre l tempertur onosendo quell del serbtoio del serbtoio e misurndo i lori quisiti e eduti dl sistem

13 empertur termodinmi ssolut e possibile ostruire un sl termometri eseguendo un trsformzione ili reversibile tr un serbtoio di lore ll tempertur 3 3 r Rev 3 3 L del punto triplo dell qu ed il sistem di ui voglimo misurre l tempertur pensto ome un serbtoio di lore ll tempertur inognit = 3 = 3 = 3 3

14 ponendo 3 = 73.6 ºK e misurndo il lore 3 quisito ed il lore eduto l sistem di ui si vuole misurre l tempertur = 3 3 si definise zero ssoluto quell tempertur ll qule un trsformzione isoterm reversibile non smbi lore

15 ili frigoriferi per rtterizzre un ilo frigorifero si utilizz il oeffiiente di prestzione F definito ome il rpporto fr l quntit di lore sottrtt l serbtoio freddo e il lvoro neessrio per ottenere quest sottrzione di lore F = L

16 un ilo di rnot operto in senso inverso ostituise ilo di rnot termio un ilo frigorifero reversibile ilo di rnot frigorifero p() 0 p() 0 0 ln = nr 0 ln = nr 0 0 ln = nr 0 ln = nr 0

17 il oeffiiente di prestzione F = L = + = nr ln nr ln + nr ln = ln ln ln m = F =

18 kup Slides

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemti lsse terz Prol ed ellisse Quest oper è distriuit on: Lienz Cretive Commons Attriuzione - Non ommerile - Non opere derivte 3.0 Itli Ing. Alessndro Pohì ( Appunti di lezione svolti ll

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

Trasformazioni reversibili

Trasformazioni reversibili rsformzioni ersiili Amiente circostnte usilirio del sistem o resto dell Universo h P sistem Ciò che circond loclmente il sistem Sertoio Supponimo si verifichi un trsformzione: ) Il sistem pss d uno stto

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell ermodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Prodotto tr mtrii d Dte mtrii x Il prodotto delle due mtrii produe un nuov mtrie on un numero di righe pri l numero di righe dell mtrie e numero

Dettagli

Geometria. Domande introduttive

Geometria. Domande introduttive PT, 695 noio Geometri si di mtemti per l MPT 3 Tringoli L pdronnz delle rtteristihe e delle proprietà dei tringoli è fondmentle per pire il pitolo dell trigonometri, uno dei pitoli di geometri non trttto

Dettagli

Sistemi a Radiofrequenza II. Guide Monomodali

Sistemi a Radiofrequenza II. Guide Monomodali Eserizio. Ordinre le frequenze di tglio dei modi di un guid rettngolre on b, qundo: b / < b < b / Soluzione: L ostnte riti è ugule per modi TE e TM: K Frequenz Criti: f K V f m V n f π b Tglio dei modi:

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Determinnti: metodo dei minori Dt un mtrie n n on elementi ij Il suo erminnte srà dto dll somm dei erminnti di tutti i suoi minori (n-) (n-) ottenuti

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola . Srivi l euzione dell prol d sse vertile pssnte per il punto ( ) ; P e on vertie ( ) ; V. Dll euzione generi dell prol e dll onosenze del vertie, le ui oordinte generihe sono V ; possimo srivere sostituendo

Dettagli

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro L ELLISSE 1. L ellisse ome luogo geometrio.. Equzione dell ellisse on i fuohi sull sse. 3. Le proprietà dell ellisse.. Clolo dei semissi, dei vertii, dei fuohi e rppresentzione grfi. 5. Equzione dell ellisse

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

Esercizi di Termodinamica

Esercizi di Termodinamica Esercizi di Termodinamica 1 DILTZIONE TERMI DEI SOLIDI L DILTZIONE TERMI LINERE E IL MIMENTO, ON L TEMPERTUR, DI OGNI DIMENSIONE LINERE DI UN SOLIDO Δl α lδt 2 TRI L TOUR EIFFEL E UN IMPONENTE STRUTTUR

Dettagli

Ciro Baratto GONIOMETRIA TRIGONOMETRIA 799 ESERCIZI SVOLTI

Ciro Baratto GONIOMETRIA TRIGONOMETRIA 799 ESERCIZI SVOLTI Ciro Brtto GONIOMETRIA TRIGONOMETRIA 99 ESERCIZI SVOLTI INTRODUZIONE Gli eserizi (n. 99) he seguono sono stti svolti per un migliore omprensione dell goniometri e dell trigonometri, erndo, in lrg misur,

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

+ numeri reali Numeri decimali e periodici Estrazione di radice

+ numeri reali Numeri decimali e periodici Estrazione di radice numeri reli Numeri deimli e periodii Estrzione di rdie Numeri deimli e periodii SEZ. G Clol il vlore delle seguenti espressioni. 0 (, ), Trsformimo i numeri deimli nell orrispondente frzione genertrie

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II Ingegneri Elettric Politecnico di Torino Luc Crlone ControlliAutomticiI LEZIONE II Sommrio LEZIONE II Sistemi lineri e proprietà di unicità Concetto di Stilità Stilità intern ed estern Criterio di Routh

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ironferenz. Dre l definizione di ironferenz ome luogo di punti. L ironferenz è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d un punto

Dettagli

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita EQUAZONE ALGEBRCA D SECONDO GRADO o QUADRATCA in un inognit 1 form omplet oeffiienti b 4 (disriminnte) formule risolutive b se > due rdii reli e distinte (se e hnno segni disordi è positivo) b b (form

Dettagli

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere,

Dettagli

Il calcolo letterale

Il calcolo letterale Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre le regole di quello

Dettagli

Analisi di stabilità

Analisi di stabilità Anlisi di stilità Stilità intern modi propri degli stti utovlori di A Stilità estern modi propri dell usit poli dell fdt.-. Stilità : se tutti i modi propri rimngono limitti per ogni t. Stilità : se tutti

Dettagli

Il calcolo letterale

Il calcolo letterale Appunti di Mtemtic Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre

Dettagli

TOPOGRAFIA. Prima parte. Prof. Roma Carmelo

TOPOGRAFIA. Prima parte. Prof. Roma Carmelo TOPOGRFI Prim prte TOPOGRFI Sommrio onversione tr sistemi di misur ngolri Funzioni goniometrihe tngente e otngente Teorem dei seni (o di Eulero) Teorem di rnot onversione tr sistemi di misur ngolri Sistemi

Dettagli

GESTIONE DELL ENERGIA A.A II PROVA INTERMEDIA, 11 Luglio 2007

GESTIONE DELL ENERGIA A.A II PROVA INTERMEDIA, 11 Luglio 2007 II PROVA INTERMEDIA, 11 Luglio 2007 1- Economi bst su risorse non rinnovbili. Illustrre l influenz sul prezzo del petrolio dei costi di estrzione in generle e nel cso di costi di estrzione costnti ricvre

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione Appunti di Mtemti Computzionle Lezione Equzioni non lineri Considerimo il prolem dell determinzione delle rdii dell equzione dove è un funzione definit in [,]. Teorem: Zeri di unzioni Continue Si un funzione

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA trtto d Mtemti in zione, A. Arpinti, M. Musini Mettimoi ll prov! Suol..........................................................................................................................................

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

KIT ESTIVO MATEMATICA A.S. 2018/19

KIT ESTIVO MATEMATICA A.S. 2018/19 ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 8/ CLASSI PRIME IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse seond, onsiglimo lo svolgimento piere di eserizi

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

Come ulteriore sviluppo dell integrazione secondo Riemann, vogliamo dare signi cato all integrale per una classe più ampia di funzioni Z f(x)dx I

Come ulteriore sviluppo dell integrazione secondo Riemann, vogliamo dare signi cato all integrale per una classe più ampia di funzioni Z f(x)dx I Cpitolo 8 Integrli impropri 8. Generlità Come ulteriore sviluppo dell integrzione seondo Riemnn, vogo dre signi to ll integrle per un lsse più mpi di funzioni Z I on I intervllo generio (non hiuso e/o

Dettagli

Argomento 10 Integrali impropri

Argomento 10 Integrali impropri Premess Argomento Integrli impropri Nell Arg. 9 è stt introdott l nozione di integrle definito f() d per funzioni ontinue f : [, b] R. Un derog ll ontinuità di f è nhe stt introdott, m solo per onsiderre

Dettagli

Algebra lineare ... Per indicare la relazione tra vettore riga e vettore colonna si usa il simbolo T (operazione di trasposizione)

Algebra lineare ... Per indicare la relazione tra vettore riga e vettore colonna si usa il simbolo T (operazione di trasposizione) Alger linere. Vettori: definizioni Un ettore x n dimensioni è un insieme ordinto di n numeri x ( x x...x n ) I numeri x x...xn sono detti omponenti del ettore x. I ettori possono essere sritti sotto form

Dettagli

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ;

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ; Cpitolo Rdicli Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli qundo è possibile clcolrle) 9 9 9 00 m ) n ) o ) 0, 0 0, 09 0, 000 9 0, Determin le seguenti rdici

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

VOLUMI, MASSE, DENSITÀ

VOLUMI, MASSE, DENSITÀ VOLUMI, MASSE, DENSITÀ In clsse è già stt ftt un'esperienz di misur dell densità prtire d misure di mss e di volume. In quel cso è stt misurt l mss in mnier dirett con un bilnci, e il volume in mnier indirett.

Dettagli

Rapporti e proporzioni numeriche

Rapporti e proporzioni numeriche Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire

Dettagli

DISEQUAZIONI RAZIONALI

DISEQUAZIONI RAZIONALI DISEQUAZIONI RAZIONALI Un disequzione è un disuulinz r due espressioni letterli per l qule si rierno i vlori delle lettere he rendono l disuulinz ver. Primo prinipio di equivlenz: A B A ± M B ± M dove

Dettagli

Daniela Tondini

Daniela Tondini Dniel Tondini dtondini@unite.it Fcoltà di Medicin veterinri CdS in Tutel e benessere nimle Università degli Studi di Termo 1 IDICI DI FORMA Dopo ver nlizzto gli indici di posizione e di vribilità di un

Dettagli

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione 1 Integrli Doppi e Cmbimento nell Ordine di Integrzione Introduimo il onetto di Integrle Doppio in modo ssolutmente non rigoroso. Considerimo il seguente gr o y d b x Supponimo di dividere il rettngolo

Dettagli

Cap 21- Entropia e II Legge della Termodinamica. Entropia

Cap 21- Entropia e II Legge della Termodinamica. Entropia N.Giglietto A.A. 2005/06- Entropia nell espansione libera - 1 Cap 21- Entropia e II Legge della Termodinamica Ci sono diversi modi di esprimere la II Legge della Termodinamica. Tutte stabiliscono una limitazione

Dettagli

d: sf. 180 Shem di luni ollegmenti Yy di un trsformtore trifse: sopr = shem on vvolgimenti disegnti prllelmente; sotto = shem on orientzione elettri degli vvolgimenti. Nell ordine, d sinistr destr: Yy0,

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU Unità logio-ritmeti (ALU) Unità logio-ritmeti Arhitetture dei Cloltori (lettere A-I) E l prte del proessore he svolge le operzioni ritmetio-logihe Potenz di lolo del proessore Insieme di iruiti omintori

Dettagli

Unità Didattica N 02. I concetti fondamentali dell aritmetica

Unità Didattica N 02. I concetti fondamentali dell aritmetica 1 Unità Didttic N 0 I concetti fondmentli dell ritmetic 01) Il concetto di potenz 0) Proprietà delle potenze 0) L nozione di rdice ritmetic 0) Multipli e divisori di un numero 05) Criteri di divisibilità

Dettagli

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

Numeri nello spazio n dimensionale

Numeri nello spazio n dimensionale Numeri nello spzio n dimensionle Niol D Alfonso Riertore indipendente niol.dlfonso@hotmil.om Sommrio Questo pper introdue i numeri nello spzio n dimensionle. Vle dire, se nell prim dimensione bbimo i numeri

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl Unità logio-ritmeti (ALU) Arhitetture dei Cloltori (Lettere A-I) Unit Logio-Aritmeti (ALU) Prof. Frneso Lo Presti E l prte del proessore he svolge le operzioni ritmetio- logihe Rete omintori Operzioni

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

] a; b [, esiste almeno un punto x 0

] a; b [, esiste almeno un punto x 0 Anlisi Limiti notevoli sen lim = ( lim + = e Un funzione si die ontinu in qundo, + lim f( = lim f(. + sintoti vertili: se lim f ( = ± oppure lim f ( = ± sintoti orizzontli: se sintoti oliqui: l'equzione

Dettagli

L IPERBOLE. x y 0 x 5 + y 0 = si sviluppano i prodotti notevoli; Cioè ( ) ( ) ( ) ( ) y = 8 si porta un radicale al 2 membro;

L IPERBOLE. x y 0 x 5 + y 0 = si sviluppano i prodotti notevoli; Cioè ( ) ( ) ( ) ( ) y = 8 si porta un radicale al 2 membro; L IPERBOLE L'IPERBOLE COME LUOGO GEOMETRICO L iperole è il luogo geometrio dei punti P del pino rtesino per i quli è ostnte l differenz delle distnze d due punti fissi, F ed F, detti fuohi. Il punto medio

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

L equilibrio della variazione di entalpia del sistema aria+garza risulta quindi: Dalla definizione di mixing ratio :

L equilibrio della variazione di entalpia del sistema aria+garza risulta quindi: Dalla definizione di mixing ratio : Strumenti di misur dell umidità relti: psicrometro bulbo bgnto e entilto. Deduzione dell equzione psicrometric. Tempertur del bulbo bgnto e umidità relti. Relzione con il punto di ruggid. Lo psicrometro

Dettagli

L IPERBOLE. x si sviluppano i prodotti notevoli; 25 y 8 si porta un radicale al 2 membro; 25 y si elevano i due membri al quadrato;

L IPERBOLE. x si sviluppano i prodotti notevoli; 25 y 8 si porta un radicale al 2 membro; 25 y si elevano i due membri al quadrato; L IPERBOLE L'IPERBOLE COME LUOGO GEOMETRICO L iperole è il luogo geometrio dei punti P del pino rtesino per i quli è ostnte l differenz delle distnze d due punti fissi, F ed F, detti fuohi. Il punto medio

Dettagli

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito.

Dettagli

Trasformatori amperometrici e Shunt

Trasformatori amperometrici e Shunt Trsformtori mperometrii e Shunt L presente sezione present un vst gmm di trsformtori mperometrii T e Shunt dediti ll misur di orrente C e CC, d utilizzre in inmento i misurtori, nlizztori, onttori presentti

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Scheda per il recupero 2

Scheda per il recupero 2 Sched A Ripsso Sched per il recupero Numeri rzionli e introduzione i numeri reli Definizioni principli DOMANDE RISPOSTE ESEMPI Che cos è un frzione? Qundo un frzione si dice ridott i minimi termini? Un

Dettagli

BREVE APPENDICE SULLE UNITA' LOGARITMICHE

BREVE APPENDICE SULLE UNITA' LOGARITMICHE BREVE APPENDICE SULLE UNITA' LOGARITMICHE Per esprimere gudgni e ttenuzioni, nonché cifre di rumore e rpporti segnle-rumore si usno frequentemente le unità logritmiche. Come risultto, l grndezz in questione

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H eccnic Un bcino d cqu, profondo, e` contenuto d un prti verticle di lunghezz (orizzontle, lungo y) L, vincolt l terreno nel punto B. Per sostenere l prti si usno lcuni pli fissti d un estremit` sull prti,

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F() è un primitiv di f(), llor le funzioni F() + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(). Precismente:! se F() è un primitiv di f (), llor nche F() +

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

Lezione n. 5 Sanna-Randaccio: Benefici del Commercio Internazionale

Lezione n. 5 Sanna-Randaccio: Benefici del Commercio Internazionale Lezione n. 5 Snn-Rndio: onomi ert (222) Benefii del Commerio Internzionle I grfii li trovte in MMK 1 onomi ert (222) Il modello in eonomi ert Condizione di equilibrio er il merto del bene () in eonomi

Dettagli

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto.

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto. Tringolo rettngolo In un tringolo rettngolo : un teto è ugule l prodotto dell ipotenus per il seno dell ngolo opposto l teto. = sen = sen un teto è ugule l prodotto dell ipotenus per il oseno dell ngolo

Dettagli

Simulazione seconda prova parziale

Simulazione seconda prova parziale Simulzione seond prov przile Test. x + dx = x () {( ) + ln [( ) ( + )]} {( ) [( ) ( )]} () + ln + (b) {( ) + ln [( + ) ( + )]} (d) {( + ) + ln [( + ) ( )]}. Si f(x) = x + x. Allor 0 f (y)dy = () (b) ()

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni 9 ) Proprietà delle disuguglinze fr numeri reli reltivi ) Inequzioni e loro proprietà ) Inequzioni rzionli intere di primo grdo d un incognit 4) Segno del trinomio di secondo grdo : T = c 5) Inequzioni

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE 0. Corso di LRONCA NDUSRAL 1 MODULAZON ORAL. CONROLLO D CORRN D NROR A NSON MPRSSA 0. 0. 4 Rppresentzione vettorile Rppresentzione vettorile rsformzioni dirett ed invers 0. 0. 5 6 Rppresentzione vettorile

Dettagli