Geometria Analitica Domande, Risposte & Esercizi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Geometria Analitica Domande, Risposte & Esercizi"

Transcript

1 Geometri Anliti Domnde, Risposte & Eserizi L ironferenz. Dre l definizione di ironferenz ome luogo di punti. L ironferenz è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d un punto fisso detto entro sono tutte uguli. on riferimento ll figur destr si h P Q R r rggio.. ome si ottiene l ironferenz ome sezione oni? onsiderimo il ono irolre retto ostituito dlle rette genertrii he on il suo sse formno un ngolo di mpiezz α. onsiderimo poi un pino sente he form un ngolo β on l sse del ono. Se si h β, l sezione ottenut è un ironferenz.. ome si trov l equzione generi dell ironferenz di entro il punto e rggio r ssegnti? Utilizzndo l formul dell distnz tr due punti si ottiene l equzione generle dell ironferenz di entro ( ) ( ) ( ) e rggio r: r. Qul è l equzione dell ironferenz in form noni? L equzione dell ironferenz in form noni è

2 . Assegnt un ironferenz di equzione e il rggio r? entro. Le oordinte del entro ( ) si rivno medinte le formule ome si trovno il entro e Rggio. L misur del rggio si riv medinte l formul r. Dt un ironferenz in form generi, si esprimno i vri si prtiolri: ( ) trindo i reltivi grfii ( ) entro sull sse ( ) entro sull sse ( ) ironferenz O ironf. pssnte per l origine entro nell origine entro sull sse, ironf. pssnte per l origine entro sull sse, ironf. pssnte per l origine

3 7. Per qule motivo l ironferenz è un so prtiolre dell ellisse? onsiderimo un ironferenz di entro l origine e rggio r l su equzione srà: Se si dividono tutti i termini per r, si h: ( ) ( ) r r r e quindi r r r r Quest equzione è l equzione di un ellisse in form noni dove i semissi e sono uguli e pri d r possimo dunque ffermre he l ironferenz è un ellisse on i semissi e uguli. L semidistnz fole è pri poi r r I due fuohi srnno osì: F '( ) F' ( ) F( ) F( ) Un ironferenz è llor un ellisse i ui fuohi oinidono on il entro dell ironferenz stess. Infine, lolndo l eentriità, si ottiene: e r Un ironferenz è osì un ellisse d eentriità null, ovvero senz shiimento. 8. ome si trov l equzione dell ironferenz di entro il punto ( ) e pssnte per un punto P ( P P ) ssegnto? Innnzitutto lolimo il rggio dell ironferenz u- tilizzndo l formul dell distnz tr due punti: r r ( ) ( ) P P onosendo poi il entro e il rggio riorrimo ll equzione generle dell ironferenz di entro ( ) e rggio r: ( ) ( ) r. ome si trov l equzione dell ironferenz di ui sono ssegnti due punti dimetrli A ( ) e B ( )? Innnzitutto osservimo he il entro dell ironferenz è il punto medio tr A e B:

4 ( ) inoltre il rggio dell ironferenz è pri ll distnz tr i punti ed A: r ( ) ( ) onosendo osì il entro e il rggio riorrimo ll equzione generle dell ironferenz di entro ( ) e rggio r: ( ) ( ) r. ome si trovre l equzione dell ironferenz di ui sono ssegnti tre suoi punti A ( ), ( ) L equzione generle dell ironferenz è innnzitutto doimo imporre le ondizioni di pprtenenz:? B e A ironferenz ( ) ( ) ( ) B ironferenz ironferenz Le ondizioni di sopr sono tre equzioni nelle inognite, e ponendole sistem e risolvendo il sistem on uno dei metodi onosiuti (rmer, sostituzione, onfronto) si ottengono filmente, e.. Dt l rett di equzione m q e l ironferenz di equzione, verifire se l rett è tngente, estern o sente rispetto ll ironferenz. Svolgimento. Per verifire se l rett è tngente, sente o estern rispetto ll ironferenz si possono seguire due strde: quell grfi e quell lgeri nel primo so è suffiiente trire sullo stesso pino rtesino i grfii dell rett e dell ironferenz ed osservre le posizioni reltive, rivndo in mnier pprossimtiv le oordinte degli eventuli punti di intersezione. Nel seondo so, st impostre il sistem lgerio tr l rett e l ironferenz. m q Tle sistem si può risolvere per sostituzione: sostituendo nell equzione dell ironferenz ll l su espressione m q si ottiene un equzione di II grdo di ui si lolerà il potremo vere tre si possiili: ) se > il sistem vrà due soluzioni distinte i punti di intersezione tr l ironferenz e l rett srnno due distinti l rett srà sente l ironferenz ) se il sistem vrà due soluzioni oinidenti i srà un unio punto di intersezione tr l rett e l ironferenz l rett srà tngente ll ironferenz ) se < il sistem non vrà soluzioni reli non vi srnno punti di intersezione tr l ironferenz e l rett l rett srà estern ll ironferenz.

5 PROBLEMA. DETERMINAZIONE DELL EQUAZIONE DI UNA IRONFERENZA A PARTIRE DALLA ONOSENZA DEL ENTRO E DEL RAGGIO. e rggio r. Esempio. Si vuole trovre l equzione dell ironferenz di entro Sostituendo nell equzione generle si h: ( ) ( ) r ( ) [ ( ) ] ( ) ( ) ( ) ( ) e infine: PROBLEMA. TRASFORMAZIONE DELL EQUAZIONE DI UNA IRONFERENZA NELLA FORMA ANONIA. Esempio. Dt l ironferenz di equzione 8 si vuole srivere l equzione in form noni Per vere l equzione in form noni è suffiiente dividere tutti i oeffiienti dell equzione per : 8 PROBLEMA. DETERMINAZIONE DEL ENTRO E DEL RAGGIO DI UNA IR- ONFERENZA A PARTIRE DALL EQUAZIONE Esempio numerio. Dt l ironferenz di equzione se ne vuole trovre il entro e il rggio r e poi disegnrl. entro. Le oordinte del entro si rivno medinte le formule ( ) ( ) Rggio. L misur del rggio si riv medinte l formul ( ) ( ) r Esempio numerio. Dt l ironferenz di equzione, trovre il entro e il rggio r e poi trire il grfio. entro. Le oordinte del entro si rivno medinte le formule ( ) ( ) ( )

6 Rggio. L misur del rggio si riv medinte l formul r ( ) ( ) ( ) immginrio Si onlude he l equzione ssegnt nell tri non orrisponde d un ironferenz rele, in qunto il rggio risult non rele m immginrio. PROBLEMA. DETERMINAZIONE DELLA IRONFERENZA A PARTIRE DALLA ONOSENZA DEL ENTRO E DI UN SUO PUNTO. Esempio numerio Si vuole trovre l ironferenz vente per entro il punto e pssn- te per il punto P ( ). Il rggio dell ironferenz è pri ll distnz r P : ( ) ( ) ( ) P P onosendo osì il entro e il rggio li ponimo nell equzione generle dell ironferenz ( ) ( ) ottenendo: r ( ) e infine PROBLEMA. DETERMINAZIONE DELLA IRONFERENZA A PARTIRE DALLA ONOSENZA DI DUE PUNTI DIAMETRALI. Esempio numerio : si vuole trovre l ironferenz pssnte per i punti dimetrli A ( ), e B ( ). Il entro dell ironferenz è il punto medio tr A 8 e B: ( ) Il rggio dell ironferenz è pri ll distnz tr i punti ed A: r ( ) ( ) A ( ( ) ) ( ) ( ) A

7 7 onosendo osì il entro e il rggio li ponimo nell equzione generle dell ironferenz r ottenendo: 8 e infine 8 Esempio numerio : si vuole trovre l ironferenz pssnte per i punti dimetrli A, e B. Il entro dell ironferenz è il punto medio tr A e B:.. Il rggio dell ironferenz è pri ll distnz tr i punti e A: A A r onosendo osì il entro e il rggio li ponimo nell equzione generle dell ironferenz r ottenendo: e infine PROBLEMA. DETERMINAZIONE DELLA IRONFERENZA A PARTIRE DALLA ONOSENZA DI TRE SUOI PUNTI. Esempio numerio. Si vuole trovre l ironferenz pssnte per i punti A, B e. A) Imponendo l pprtenenz del punto A si ottiene: ironferenz A B) Imponendo l pprtenenz del punto B si ottiene: ironferenz B ) Imponendo l pprtenenz del punto A si ottiene: 8 ironferenz Mettendo sistem le tre equzioni in, e si ottiene: 8

8 8 Risolvimo il sistem oll regol di rmer: L equzione ert è dunque: Verifihimo infine he i punti A, B e pprtengno effettivmente ll ironferenz trovt. A) Imponendo l pprtenenz del punto A si ottiene: OK A ironferenz B) Imponendo l pprtenenz del punto B si ottiene: OK B ironferenz ) Imponendo l pprtenenz del punto A si ottiene: OK ironferenz PROBLEMA 7. DETERMINAZIONE DELLA POSIZIONE DI UNA RETTA E DI UNA IRONFERENZA E DELLE OORDINATE DEGLI EVENTUALI PUNTI DI INTER- SEZIONE. Esempio numerio 7. Dt l rett di equzione e l ironferenz di equzione, verifire se l rett è tngente, estern o sente rispetto ll ironferenz e lolre le oordinte degli eventuli punti di intersezione. In primo luogo si trino i digrmmi dell rett e dell ironferenz. L rett v espliitt nell form: ttrverso l solit tell - se ne riv il grfio.

9 L ironferenz h per equzione ssegnt. Si trtt di un so prtiolre (ironferenz on entro nell origine): ( ) il rggio vle r,. Proedendo l grfio si vede suito he le rett è sente, on due punti di intersezione distinti A e B. lolimo desso lgerimente gli eventuli punti d intersezione ttrverso il sistem lgerio. sostituimo l seond equzione nell prim: ( ) svolgo il qudrto di inomio trsporto I memro: e semplifindo l prim equzione per due: ( ) ( ) > Ne segue he l rett è sente. lolndo le intersezioni si prosegue: ± ±, le soluzioni srnno due: A) ( ) A ( )

10 B) ( ) B ( ) Esempio numerio 7. Dt l rett di equzione e l ironferenz di equzione, verifire se l rett è tngente, estern o sente rispetto ll ironferenz e lolre le oordinte degli eventuli punti di intersezione. In primo luogo si trino i digrmmi dell rett e dell ironferenz. L rett v espliitt nell form: ttrverso l solit tell - se ne riv il grfio. L ironferenz h per equzione ssegnt. Per lolre il entro e il rggio oorre l equzione in form noni: dividendo tutto per si ottiene: Si vede llor he l ironferenz h per entro il punto di origine e il suo rggio vle r. Proedendo l grfio si vede suito he le rett è sente, on due punti di intersezione distinti A e B. lolimo desso lgerimente gli eventuli punti d intersezione ttrverso il sistem lgerio. ( ) ( ) 8 7 ( ) ( 8)( 7) >. Ne segue he l rett è sente. ±, 8 ± ± le soluzioni srnno due: A) 8

11 B) 8 I punti di intersezione A e B hnno llor oordinte:.. A A.. B B Esempio numerio 7. Dt l rett di equzione e l ironferenz di equzione, verifire se l rett è tngente, estern o sente rispetto ll ironferenz e lolre le oordinte degli eventuli punti di intersezione. In primo luogo si trino i digrmmi dell rett e dell ironferenz. Il entro dell ironferenz h per oordinte Il rggio è 8, 8 r Proedendo l grfio si vede suito he le rett è tngente ll ironferenz, on un unio punto in omune T. lolimo desso lgerimente gli eventuli punti d intersezione ttrverso il sistem lgerio. sostituimo l seond espressione nell prim: eseguo il qudrto di inomio e l moltiplizione: rolgo i termini simili: semplifindo per : risolvimo l equzione di II grdo:

12 ( ) Ne segue he l rett è tngente. ±, e infine: Il punto di tngenz T h quindi ome oordinte T ( ) Esempio numerio 7d. Dt l rett di equzione e l ironferenz di equzione 8 8, verifire se l rett è tngente, estern o sente rispetto ll ironferenz e lolre le oordinte degli eventuli punti di intersezione. In primo luogo si trino i digrmmi dell rett e dell ironferenz. Il entro dell ironferenz h per oordinte ( 8) 8 Il rggio è ( ) ( ) ( 8) 8 r Proedendo l grfio si vede suito he le rett è estern ll ironferenz, senz punti in omune. Vedimo desso le ose dl punto di vist lgerio. 8 8 sostituimo l seond espressione nell prim: ( ) 8( ) 8 eseguo il qudrto di inomio e l moltiplizione: rolgo i termini simili: semplifindo per : 7 risolvimo l equzione di II grdo: ( 7) ( ) 8 < Poihé il è negtivo il sistem non h soluzioni reli, ne segue he l rett è estern.

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro L ELLISSE 1. L ellisse ome luogo geometrio.. Equzione dell ellisse on i fuohi sull sse. 3. Le proprietà dell ellisse.. Clolo dei semissi, dei vertii, dei fuohi e rppresentzione grfi. 5. Equzione dell ellisse

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemti lsse terz Prol ed ellisse Quest oper è distriuit on: Lienz Cretive Commons Attriuzione - Non ommerile - Non opere derivte 3.0 Itli Ing. Alessndro Pohì ( Appunti di lezione svolti ll

Dettagli

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola . Srivi l euzione dell prol d sse vertile pssnte per il punto ( ) ; P e on vertie ( ) ; V. Dll euzione generi dell prol e dll onosenze del vertie, le ui oordinte generihe sono V ; possimo srivere sostituendo

Dettagli

Parabola Materia: Matematica Autore: Mario De Leo

Parabola Materia: Matematica Autore: Mario De Leo Prol Definizioni Prol on sse prllelo ll sse Prol on sse prllelo ll sse Prole prtiolri Rppresentzione grfi Esepi di eserizi Rett tngente d un prol Eserizi Mteri: Mteti Autore: Mrio De Leo Definizioni Luogo

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

L IPERBOLE. x y 0 x 5 + y 0 = si sviluppano i prodotti notevoli; Cioè ( ) ( ) ( ) ( ) y = 8 si porta un radicale al 2 membro;

L IPERBOLE. x y 0 x 5 + y 0 = si sviluppano i prodotti notevoli; Cioè ( ) ( ) ( ) ( ) y = 8 si porta un radicale al 2 membro; L IPERBOLE L'IPERBOLE COME LUOGO GEOMETRICO L iperole è il luogo geometrio dei punti P del pino rtesino per i quli è ostnte l differenz delle distnze d due punti fissi, F ed F, detti fuohi. Il punto medio

Dettagli

L IPERBOLE. x si sviluppano i prodotti notevoli; 25 y 8 si porta un radicale al 2 membro; 25 y si elevano i due membri al quadrato;

L IPERBOLE. x si sviluppano i prodotti notevoli; 25 y 8 si porta un radicale al 2 membro; 25 y si elevano i due membri al quadrato; L IPERBOLE L'IPERBOLE COME LUOGO GEOMETRICO L iperole è il luogo geometrio dei punti P del pino rtesino per i quli è ostnte l differenz delle distnze d due punti fissi, F ed F, detti fuohi. Il punto medio

Dettagli

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013)

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013) Fsio iproprio di rette prllele r: ipliit risult q r si h: q ; esso in for. onsiderndo he ( ;) q ( q) q e 8 q q q q 6q 6 q ± 6 q 8; q Le tngenti srnno: 8, ; L ironferenz (Polo Urni pri stesur settere ggiornento

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia.

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia. . Dt l'equzione: rppresentt in un sistem di oordinte rtesine ortogonli d prbole on sse prllelo ll'sse, determinre -in funzione del oeffiiente - i oeffiienti b e he individuno l fmigli delle prbole pssnti

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5).

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5). Corso di Lure in Ingegneri Informti (A-Co, J-Pr) - Ingegneri Elettroni (A-Co, J-Pr) - Ingegneri Industrile (F-O) - Ingegneri Gestionle - Ingegneri Elettri - Ingegneri Meni - Ingegneri REA Prov sritt di

Dettagli

Grafici elementari 1 - geometria analitica

Grafici elementari 1 - geometria analitica Grfii elementri - geometri nliti Un equzione rppresent un funzione se è possiile metterl in form espliit (rivre l y) ottenendo un sol espressione. Un urv rppresent un funzione se, preso un qulsisi punto

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

] a; b [, esiste almeno un punto x 0

] a; b [, esiste almeno un punto x 0 Anlisi Limiti notevoli sen lim = ( lim + = e Un funzione si die ontinu in qundo, + lim f( = lim f(. + sintoti vertili: se lim f ( = ± oppure lim f ( = ± sintoti orizzontli: se sintoti oliqui: l'equzione

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 0/ CLASSI SECONDE IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse terz, onsiglimo lo svolgimento piere di eserizi

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica:

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica: PROGRESSIONI ) Di un progressione geometric si conosce: 9 9 clcolre l rgione q. Possimo risolvere fcilmente il problem ricordndo l formul ce dà il termine n-esimo di un progressione geometric: n q n Applicimol

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine G. Di Mri Forulrio i geoetri nliti Forulrio i geoetri nliti G. Di Mri Rette For generle (ipliit) For riott (espliit) For norle 0 q For segentri os sin n 0 p q p,q = lunghezze ei segenti stti ll rett sugli

Dettagli

La risoluzione di una disequazione di secondo grado

La risoluzione di una disequazione di secondo grado L risoluzione di un disequzione di seondo grdo Quest nno le disequzioni srnno importntissime. Non si prlerà però proprimente di disequzioni m di studire il segno di un funzione. In effetti un numero può

Dettagli

ISTITUTO TECNICO INDUSTRIALE "E. Fermi" LUCCA Anno Scolastico 2017/2018 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA

ISTITUTO TECNICO INDUSTRIALE E. Fermi LUCCA Anno Scolastico 2017/2018 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA ISTITUTO TENIO INDUSTILE "E. Fermi" LU nno Solstio / Progrmm di MTEMTI lsse prim Sez. G Insegnnte MUSUMEI LUIN Gli insiemi ppresentzione di un insieme. I sottoinsiemi. Le operzioni on gli insiemi unione

Dettagli

Compito di matematica Classe III ASA 26 marzo 2015

Compito di matematica Classe III ASA 26 marzo 2015 Compito di mtemtic Clsse III ASA 6 mrzo 05 Quesiti. Per quli vlori di l espressione può rppresentre l eccentricità di un ellisse? Dovrà risultre 0 < e

Dettagli

Ciro Baratto GONIOMETRIA TRIGONOMETRIA 799 ESERCIZI SVOLTI

Ciro Baratto GONIOMETRIA TRIGONOMETRIA 799 ESERCIZI SVOLTI Ciro Brtto GONIOMETRIA TRIGONOMETRIA 99 ESERCIZI SVOLTI INTRODUZIONE Gli eserizi (n. 99) he seguono sono stti svolti per un migliore omprensione dell goniometri e dell trigonometri, erndo, in lrg misur,

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni 9 ) Proprietà delle disuguglinze fr numeri reli reltivi ) Inequzioni e loro proprietà ) Inequzioni rzionli intere di primo grdo d un incognit 4) Segno del trinomio di secondo grdo : T = c 5) Inequzioni

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MTRICI E DETERMINNTI di vinenzo sudero 1 DEFINIZIONI Per mtrie si intende un tell di elementi ordinti per righe e per olonne Di un mtrie oorre speifire il numero di righe, di olonne e l insieme ui pprtengono

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Algebra Condizioni di Esistenza Equazioni di secondo grado Scomposizione di un trinomio di secondo grado Definizione di valore assoluto

Algebra Condizioni di Esistenza Equazioni di secondo grado Scomposizione di un trinomio di secondo grado Definizione di valore assoluto Alger Condizioni di Esistenz n N x D x A(x) on n pri D x 0 A x 0 tn f(x) f x + k se f(x) f x + k log A x B(x) A x > 0 A x B x > 0 f x α f x 0 on α > 0 irrz. f x α f x > 0 on α < 0 irrz. f x g x f x > 0

Dettagli

Verifica per la classe seconda COGNOME... NOME... Classe... Data...

Verifica per la classe seconda COGNOME... NOME... Classe... Data... L rett Cpitolo Rett erifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt............................... Rett Rette

Dettagli

Geometria. Domande introduttive

Geometria. Domande introduttive PT, 695 noio Geometri si di mtemti per l MPT 3 Tringoli L pdronnz delle rtteristihe e delle proprietà dei tringoli è fondmentle per pire il pitolo dell trigonometri, uno dei pitoli di geometri non trttto

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1 Primo ompitino, 8 novemre 07 Testi Prim prte, gruppo. =, = ; r = α = = 0, = 4; r = α = r = 3, α = π/3; = =. Trovre le soluzioni ell isuguglinz tn( tli he 0 π. + log log(log ; lim + os(e ; lim 4. Clolre

Dettagli

Simulazione seconda prova parziale

Simulazione seconda prova parziale Simulzione seond prov przile Test. x + dx = x () {( ) + ln [( ) ( + )]} {( ) [( ) ( )]} () + ln + (b) {( ) + ln [( + ) ( + )]} (d) {( + ) + ln [( + ) ( )]}. Si f(x) = x + x. Allor 0 f (y)dy = () (b) ()

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

j Verso la scuola superiore Verso l algebra astratta

j Verso la scuola superiore Verso l algebra astratta j erso l suol superiore erso l lger strtt +nsiemi unzioni Operzioni inrie e strutture lgerihe Relzioni Logi Proilità +nsiemi ndividu l rispost estt. Un insieme è finito se: è formto d pohi elementi. è

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile.

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile. Esercizio (). Il polinomio crtteristico dell mtrice A(t) è p(λ) λ (TrA)λ + deta ovvero p(λ) λ tλ t t il cui discriminnte è 6(t+)t. Sppimo che un mtrice A di ordine due non digonle è digonlizzbile se e

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Argomento 10 Integrali impropri

Argomento 10 Integrali impropri Premess Argomento Integrli impropri Nell Arg. 9 è stt introdott l nozione di integrle definito f() d per funzioni ontinue f : [, b] R. Un derog ll ontinuità di f è nhe stt introdott, m solo per onsiderre

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

Equazioni parametriche di II grado (vincolata da condizioni)

Equazioni parametriche di II grado (vincolata da condizioni) Equzioni prmetrihe di II grdo (vinolt d ondizioni) Per risolvere un equzione prmetri di II grdo, vinolt d ondizioni, oorre:. Trsformre l equzione nell su form noni 0 (rogliendo fttor omune i termini in

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

Appunti di Matematica 3 - Iperbole - Iperbole. cioè tali che

Appunti di Matematica 3 - Iperbole - Iperbole. cioè tali che Iperole Comincimo con l definizione: Dti due punti F e F si dice iperole I il luogo geometrico dei punti P del pino per i quli è costnte l differenz delle distnze d F e F cioè tli che F e F si dicono fuochi

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

31. L IPERBOLE NEL PIANO CARTESIANO

31. L IPERBOLE NEL PIANO CARTESIANO 31. L IPERBOLE NEL PIANO CARTESIANO DEFINIZIONE DI IPERBOLE 11 Si die iperole il luogo dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi, detti fuohi : PF PF = ostnte 1

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita EQUAZONE ALGEBRCA D SECONDO GRADO o QUADRATCA in un inognit 1 form omplet oeffiienti b 4 (disriminnte) formule risolutive b se > due rdii reli e distinte (se e hnno segni disordi è positivo) b b (form

Dettagli

ITIS GALILEO FERRARIS

ITIS GALILEO FERRARIS ITIS GLILEO FERRRIS Sn Giovnni Vldrno rezzo lunno: Giusti ndre Clsse: IV specilizzzione elettronic e telecomuniczioni L dimostrzione è nelle pgine che seguono Il prolem di Dicemre 3 Si consideri un generic

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

parabola curva coniche cono piano parallelo generatrice

parabola curva coniche cono piano parallelo generatrice LA ARABOLA L rol è un urv molto imortnte e lle moltelii rorietà. Ess er onosiut i Grei (Aollonio e Arhimee II e III seolo.c.). Aollonio er rimo, in un fmoso trttto, sorì he l rol f rte i un lsse iù generle

Dettagli

61 LE EQUAZIONI DI 2 GRADO - SECONDA PARTE. a) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI 2 GRADO

61 LE EQUAZIONI DI 2 GRADO - SECONDA PARTE. a) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI 2 GRADO 6 LE EQUAZIONI DI GRADO - SECONDA PARTE NOTA - Preliminre questi rgomenti, è l onosenz dei numeri omplessi (pitolo preedente) ) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI GRADO In ogni equzione

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n Coniche e qudriche Un qudric è il luogo degli zeri in E n, lo spzio euclideo di dimensione n, di un polinomio di grdo nelle vribili,, n Polinomi proporzionli dnno luogo ll stess qudric Se n = un qudric

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Determinnti: metodo dei minori Dt un mtrie n n on elementi ij Il suo erminnte srà dto dll somm dei erminnti di tutti i suoi minori (n-) (n-) ottenuti

Dettagli

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica Esercizi di Geometri - Foglio Corso di Lure in Mtemtic A. Sottospzi ffini. Esercizio A.1 Esempi e non-esempi di sottospzi ffini Determinre quli dei seguenti insiemi sono sottospzi ffini (precisndo di qule

Dettagli

INSIEMI, RETTA REALE E PIANO CARTESIANO

INSIEMI, RETTA REALE E PIANO CARTESIANO INSIEMI, ETTA EALE E PIANO CATESIANO ICHIAMI DI TEOIA SUGLI INSIEMI Un insieme E è definito ssegnndo i suoi elementi, tutti distinti tr loro: se x è un elemento di E scrivimo x E, mentre, se non lo è,

Dettagli

FUNZIONI SENO & COSENO TANGENTE & COTANGENTE

FUNZIONI SENO & COSENO TANGENTE & COTANGENTE FUNZINI SEN & SEN TNGENTE & TNGENTE DEFINIZINE DI SEN E SEN onsiderndo l ngolo =, trimo un erhio di rggio qulunque R = = e on entro sul vertie dell ngolo. Le intersezioni del erhio on le semirette dell

Dettagli

4^C - MATEMATICA compito n

4^C - MATEMATICA compito n 4^C - MATEMATICA compito n 6-2017-18 Dti i punti A 2,0, 1, B 0,1,3, C 5, 2,0, determin: le equzioni dell rett AB; b l'equzione del pino pssnte per A, B, C; c l'equzione del pino b pssnte per P 1,2, 1 e

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA trtto d Mtemti in zione, A. Arpinti, M. Musini Mettimoi ll prov! Suol..........................................................................................................................................

Dettagli

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI I NUMERI REALI E I RADICALI Recupero RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI COMPLETA Risolvi l disequzione ( ). ( ) ( ) ( ) Elimin le prentesi clcolndo il prodotto. Applic l regol

Dettagli

PARABOLA. La parabola è il luogo dei punti del piano, e solo essi, equidistanti da un punto F detto fuoco e da una retta detta direttrice.

PARABOLA. La parabola è il luogo dei punti del piano, e solo essi, equidistanti da un punto F detto fuoco e da una retta detta direttrice. Prof I Svoi CME LUG GEMETRIC L prol è il luogo dei punti del pino, e solo essi, equidistnti d un punto F detto fuoo e d un rett dett direttrie Per omodità di rppresentzione seglimo l'origine equidistnte

Dettagli

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere,

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1 nlisi Mtemti I per Ingegneri Gestionle,.. 6-7 Sritto el quinto ppello, 3 luglio 7 Testi Prim prte, gruppo.. Dire per quli R l funzione f() := sin( 3 ) + 3 è resente su tutto R.. Disporre le seguenti funzioni

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli