CORSO ZERO DI MATEMATICA
|
|
|
- Angelica Grassi
- 8 anni fa
- Visualizzazioni
Transcript
1 UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic [email protected] POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele ed un numero rele qulunque, si definisce potenz con esponente rele del numero il numero rele. Osservzione: Quest potenz risult essere sempre un numero rele positivo! PROPRIETÀ DELLE POTENZE CON ESPONENTE REALE. Se e, llor.. Se e, llor : 7 5 : Teorem: Se è un numero positivo diverso d, llor l potenz ssume un sol volt tutti i vlori positivi. Cioè: qulunque si 0,, e qulunque si b 0, esiste un (unico) numero tle che b.
2 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 GRAFICO ESPONENZIALE Voglimo studire il comportmento dell relzione di dipendenz fre ciò distinguimo i due seguenti csi. y l vrire di. Per I CASO: Per fissre le idee considerimo. y - 0,5-0,5-0, Dll nlisi dell tbell e del grfico possimo dedurre che: ogni vlore di h un corrispondente ; i vlori del corrispondente sono tutti positivi, cioè ; vle l proprietà di crescenz, cioè:, con. II CASO: 0 Per fissre le idee considerimo y ,5 0,5. 0,5 Dll nlisi dell tbell e del grfico possimo dedurre che: ogni vlore di h un corrispondente ; i vlori del corrispondente sono tutti positivi, cioè ; vle l proprietà di decrescenz, cioè:, con. E. Modic, 00/0
3 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 LOGARITMI Il teorem precedente ci permette di stbilire che dti due numeri reli positivi e b, con, l equzione b mmette un e un sol soluzione. Tle soluzione si chim logritmo di b in bse e si indic con: Definizione: Dti due numeri reli positivi e b, con, si chim logritmo in bse del numero b l unic soluzione dell equzione b, cioè quell unico numero, che dto come esponente d, rende l potenz ugule b. Pertnto le scritture: sono equivlenti. Il numero b si chim rgomento del logritmo e deve essere un numero positivo. Osservzione: L definizione di logritmo permette di ffermre che ogni numero rele positivo b si può scrivere, in modo unico, come potenz di un ltro qulsisi numero positivo, diverso d. È inftti: e In ltre prole ogni numero b 0 si può pensre come potenz di bse prefisst, qulsisi, positiv e divers d. log = 8, perché è.. log5 = 0 perché è 0 5 =. =. 8. log7 7 = perché è 7 = log7-7 =? non esiste perché b 7 non è positivo. 5. log 7 non h significto perché, secondo l definizione, l bse deve essere divers d. Inftti l equzione b è impossibile (se b ), indetermint (se b ), inoltre l potenz è definit per 0 ; l equzione 0 b, come sppimo è impossibile se b 0 rele ed indetermint se b log- 7 e log 07 non hnno significto perché, secondo l definizione, l bse deve essere positiv (i logritmi di numeri negtivi sono numeri immginri). E. Modic, 00/0
4 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 PROPRIETÀ GENERALI. Il log b è positivo se:. Il log b è negtivo se: > 0 < < e b > 0 < b < > 0 < < e 0 < b < b >. log perché è = log 0 perché è =. 5. Se due numeri sono eguli, nche i loro logritmi (rispetto ll stess bse) sono eguli; e vicevers. 6. Se l bse è mggiore di, l crescere del numero b, cresce nche il logritmo di questo. 7. Se l bse è minore di, l crescere del numero b, il logritmo decresce. PROPRIETÀ FONDAMENTALI DEL LOGARITMO log y log log y.. log log log y n log nlog. n m m 4. log b log n b y Queste regole trsformno le quttro operzioni di moltipliczione, di divisione, di elevzione potenz di esponente n e di estrzione di rdice di indice n sopr numeri positivi ssegnti, rispettivmente, nelle operzioni di ddizione, di sottrzione, moltipliczione per n e divisione per n sopr i logritmi dei numeri ssegnti. Si teng presente che per poter pplicre le proprietà e i singoli numeri e y, dei quli si considerno i logritmi, devono essere positivi, e non soltnto deve essere positivo il loro prodotto y o il loro quoziente y. Osservzione: Non vi sono, invece, regole nloghe rigurdo ll somm e ll differenz: il logritmo di un somm o di un differenz non è esprimibile medinte i logritmi dei suoi singoli termini. SIMBOLISMO e numero di Nepero è un numero irrzionle che vle ( meno di 0-5 ),788 lnn LogN logritmo nturle o neperino (cioè bse e) di un numero positivo N logritmo decimle (cioè in bse 0) di un numero positivo N E. Modic, 00/0 4
5 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 Siccome esistono infiniti sistemi di logritmi (poiché infinite sono le possibili bsi ), per pssre d un bse d un ltr b bst pplicre l seguente formul: log b log B N log b Esercizio: Spendo che log b 4, clcolre log b b. Si h: 4 log b log b log b b log b b. b Rest d clcolre log b b. Poiché: segue che log b b ; pertnto: log b log log b 4 log b b b b b log b log b b b GRAFICO DEL LOGARITMO Voglimo studire il comportmento dell relzione di dipendenz Per fre ciò distinguimo i due seguenti csi. y log l vrire di. I CASO: Per fissre le idee considerimo. y 0 0,5-0,5 -, ,9 6,58496 E. Modic, 00/0 5
6 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 Dll nlisi dell tbell e del grfico possimo dedurre che: i vlori di che mmettono un corrispondente sono solo ; i vlori dell sono positivi per e negtivi per 0 ; vle l proprietà di crescenz, cioè:, con. II CASO: 0 Per fissre le idee considerimo. y 0 0,5 0,5 - -, ,9 6 -,585 Dll nlisi dell tbell e del grfico possimo dedurre che: i vlori di che mmettono un corrispondente sono solo ; i vlori dell sono negtivi per e positivi per 0 ; vle l proprietà di decrescenz, cioè:, con. E. Modic, 00/0 6
7 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 EQUAZIONI ESPONENZIALI Definizione: Si definisce equzione esponenzile ogni equzione in cui l incognit compre ll esponente di un o più potenze. Il cso più semplice di equzione esponenzile è l equzione esponenzile elementre: b con 0. Osservzione: Nell insieme dei numeri reli l equzione b può vere soluzioni solo se 0 e b 0 (se 0, llor 0 0 per ogni 0 e quindi l equzione 0 b è impossibile se b 0 e indetermint se b 0); inftti:. il primo membro di b h significto solo se è positivo;. inoltre risult sempre positivo per qulsisi vlore di pertnto l equzione può vere soluzioni soltnto se nche b è positivo.. Se e b l equzione divent che è un identità.. Se e b l equzione divent b che è impossibile.. Se e b l equzione divent che mmette come soluzione 0 poiché 0. Per tutti gli ltri csi in cui e b sono entrmbi positivi, con, vle il seguente: Teorem: Dti due numeri reli positivi e b, con, l equzione esponenzile: b mmette un e un sol soluzione. Tle soluzione è: positiv, se e b sono entrmbi mggiori di, o entrmbi minori di ; negtiv, se dei due numeri e b uno è mggiore di e l ltro è minore di ; ugule zero, se b e 0.. h come soluzione non h soluzioni.. 9 non h significto. E. Modic, 00/0 7
8 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 EQUAZIONI ESPONENZIALI RIDUCIBILI AD UGUAGLIANZE DI DUE POTENZE AVENTI LA STESSA BASE L risoluzione di tli equzioni è semplice in qunto si pss dll uguglinz di due potenze ll uguglinz dei loro esponenti, cioè: y y. Per risolvere l equzione esponenzile porre 4.. Per risolvere l equzione esponenzile 5 6 e porre 4, bst riscrivere l equzione come e 8 5 6, d cui si ricv che e. 64 0, bst riscrivere l equzione come EQUAZIONI ESPONENZIALI RIDUCIBILI AD EQUAZIONI ALGEBRICHE MEDIANTE L USO DI UN INCOGNITA SUPPLEMENTARE. Risolvere l equzione esponenzile Ponimo z e ottenimo: le cui soluzioni sono z e z 8. Quindi: ;. z 0z6 0. Risolvere l equzione esponenzile L equzione divent: 8 9. Ponimo z e ottenimo z z, d cui si ottiene che z e 9 z 8. Quindi: 9 E. Modic, 00/0 8
9 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 8 8 impossibile! EQUAZIONI LOGARITMICHE Definizione: Si dice equzione logritmic un equzione in cui compre il logritmo dell incognit o il logritmo di un espressione contenente l incognit. Nell risoluzione di un equzione logritmic si cerc, medinte l uso delle proprietà dei logritmi, di ricondurre tutto ll form: dove A e log A log B B sono espressioni lgebriche contenenti l incognit. Dll uguglinz precedente segue che i vlori dell che l verificno, devono verificre nche A B. l equzione Osservzione: Attenzione! Non vle il vicevers, cioè le soluzioni dell equzione A B può non essere soluzione dell equzione log A log B. Per risolvere tli equzioni si pone, quindi, A B soddisfno l equzione di prtenz.. Risolvere l equzione log log. Imponendo l condizione di esistenz dei logritmi si deve vere: cioè. Uguglindo gli rgomenti si h: e si vede se le soluzioni trovte che è un soluzione ccettbile in qunto 4. E. Modic, 00/0 9
10 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0. Risolvere l equzione log 6 log 5 8 Uguglindo gli rgomenti si h: , L soluzione 7 è l unic ccettbile in qunto per i due logritmi perdono di significto.. Risolvere l equzione 5 7. Pssndo i logritmi si h: log7 log5 log 7 log5 log 7 log5 4. Risolvere l equzione 7,5,. Pssndo i logritmi si h: log, log 7,5 log, log 7,5 log,, 8 log 7,5 5. Risolvere l equzione Si h: Quindi si h: 4 log log 4 log 5 log log5 log Risolvere l equzione Log 0. Pssndo i logritmi si h: Log Log Log0 Log Log E quindi: 0 e 0 E. Modic, 00/0 0
11 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 DISEQUAZIONI ESPONENZIALI Definizione: Un disequzione si dice esponenzile se in ess l incognit, o qulche espressione contenente l incognit, compre come esponente di un o più potenze. Prim di pssre i metodi di risoluzione di tli disequzioni, ricordimo lcuni risultti già discussi in precedenz. ESPONENZIALI 0 è un numero rele positivo y y y y 0 y y y y LOGARITMI 0 y log log y y log log y y log log y y log log y DISEQUAZIONI RIDUCIBILI A DISUGUAGLIANZE DI DUE POTENZE DI UGUAL BASE Sono delle disequzioni che si presentno in un delle forme: f g oppure f g In questo cso si h: 0 g g g g f f g f f g f f g f f g. Risolvere l disequzione 5 5. In bse ll precedente tbell è fcile notre che ci si trov nel cso in cui 0 e quindi si h che. E. Modic, 00/0
12 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 7. Risolvere l disequzione In bse ll precedente tbell è fcile notre che ci si trov nel cso in cui e quindi si h che 7. DISEQUAZIONI RISOLUBILI CON L UTILIZZO DI UN INCOGNITA AUSILIARIA Esempio: Risolvere l disequzione esponenzile Riscrivimo come segue l disequzione: e ponimo z, ottenendo così: z 6z8 0 Le soluzioni di quest disequzione sono: t t 4 e quindi si h: ; 4. DISEQUAZIONI RISOLUBILI CON L UTILIZZO DEI LOGARITMI Per risolverle bst pplicre d mbo i membri dell disequzione: f g b oppure f b g i logritmi, fcendo ttenzione ll bse del logritmo considerto. Inftti si hnno i due csi: cso: c g logc g log f b f g log b f b f g log b c c c cso: 0c g logc g log f b f g log b f b f g log b c c c E. Modic, 00/0
13 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 log log log log 8 DISEQUAZIONI LOGARITMICHE Definizione: Un disequzione si dice logritmic se in ess compre o il logritmo dell incognit, o il logritmo di un espressione contenente l incognit. DISEQUAZIONI DELLA FORMA: log log A b A b Per risolvere tli disequzioni è necessrio considerre i seguenti csi. I cso: Le disequzioni si trsformno nei sistemi: II cso: 0 Le disequzioni si trsformno nei sistemi: A 0 A 0 b A A A 0 A 0 b A A b b Esempio: L disequzione 0 log 7 0 equivle l sistem: E. Modic, 00/0
14 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 DISEQUAZIONI DELLA FORMA: log A log B log A log B Per risolvere tli disequzioni è necessrio considerre i seguenti csi. I cso: Le disequzioni si trsformno nei sistemi: II cso: 0 Le disequzioni si trsformno nei sistemi: Esempio: A 0 A 0 B 0 B 0 A B A B L disequzione log log A 0 A 0 B 0 B 0 A B A B equivle l sistem: E. Modic, 00/0 4
15 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 EQUAZIONI ESPONENZIALI Risolvere in le seguenti equzioni esponenzili EQUAZIONI LOGARITMICHE Risolvere le seguenti equzioni logritmiche. log 5 log log 4 log log log log log log log log log 7 log log log log log log log log log 00 log 7 4 log log log log 4 log 0 log log5 E. Modic, 00/0 5
16 Università degli Studi di Plermo Fcoltà di Architettur Corso Zero di Mtemtic A.A. 00/0 DISEQUAZIONI ESPONENZIALI Risolvere nell insieme le seguenti disequzioni esponenzili. 0 e e e 0 e Risolvere le seguenti disequzioni logritmiche. log 6 5 log 0 06 log log log 0 DISEQUAZIONI LOGARITMICHE log 6 log log 8 log log log log 9 4 0ln ln 9 0 log 5 log 7log 0 log log 4 log log log E. Modic, 00/0 6
POTENZA CON ESPONENTE REALE
PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic [email protected] www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,
ESPONENZIALI E LOGARITMI
ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con
2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:
Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo
Esponenziali e logaritmi
Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:.
Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.
Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,
Esercizi svolti Limiti. Prof. Chirizzi Marco.
Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,
Algebra» Appunti» Disequazioni esponenziali
MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Appunti» Disequzioni esponenzili DEFINIZIONE Si definisce disequzione esponenzile ogni disequzione nell qule l incognit è presente nell esponente di
B8. Equazioni di secondo grado
B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere
{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }
Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri
ESPONENZIALI E LOGARITMI
ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle
Erasmo Modica. : K K K
L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic [email protected] www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce
Le equazioni di grado superiore al secondo
Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere
COGNOME..NOME CLASSE.DATA
COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione
Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi
Equzioni e disequzioni rimiche ed esponenzili Sinesi delle eori e guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno
Verifica 03 LE DISEQUAZIONI DI SECONDO GRADO
Verific 0 LE DISEQUAZIONI DI SECONDO GRADO ESERCIZI LE DISEQUAZIONI Risolvi le seguenti disequzioni lineri numeriche. A 0 8 B 7 8 A B 8 7 8 8 9 Rppresent i seguenti intervlli (o unione di intervlli) medinte
Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi
Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz
I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.
I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle
Lezione 14. Risoluzione delle equazioni algebriche.
Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,
Equazioni parametriche di primo grado
Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,
Verifica 10 ESPONENZIALI E LOGARITMI
Verific 0 SPONNZIALI LOGARITMI TST I FIN APITOLO Qule delle seguenti figure non rppresent un funzione? A È dt l funzione f : R R, descritt dll legge 4. Qunto vle l immgine di 0? A 0... 4. 4. L funzione
Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :
Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se
{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.
Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8
SUGLI INSIEMI. 1.Insiemi e operazioni su di essi
SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.
Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi
Equzioni e disequzioni rimiche ed esponenzili Guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno dell esponenzile,
INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma
INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente
3. Funzioni iniettive, suriettive e biiettive (Ref p.14)
. Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y
Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi
Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz
Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale
Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)
1 Integrale delle funzioni a scala
INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]
RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2
APPENDICE 1 AL CAPITOLO 3: RAPPRESENTAZIONE GRAFICA DELLA PARABOLA Per 0 l insieme,y / y = + + c, grfico dell funzione f = + + c { } f con, è l prol di equzione y = + + c Voglimo disegnrl non è difficile
fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio
Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +
Equazioni e disequazioni
Cpitolo Equzioni e disequzioni.1 Princìpi di equivlenz 1. Sommndo o sottrendo l stess quntità d entrmbi i membri di un equzione o di un disequzione ess non cmbi, ovvero: A(x) B(x) A(x) k(x) B(x) k(x).
Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi
Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice
Funzioni razionali fratte
Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell
Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )
Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte
La scomposizione in fattori dei polinomi
Progetto Mtemtic in Rete L scomposizione in fttori dei polinomi Scomporre in fttori un polinomio signific scriverlo come prodotto di polinomi di grdo inferiore. Esempio: ( )( ) Osservimo che l uguglinz,
Anno 5. Applicazione del calcolo degli integrali definiti
Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei
INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1
INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 7/8 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo
Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata
Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si
Il calcolo letterale
Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere
RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI
RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri
26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:
ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di
INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1
INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo
Il problema delle aree. Metodo di esaustione.
INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria
ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico
