Esponenziali e logaritmi
|
|
|
- Teodora Alfieri
- 9 anni fa
- Visualizzazioni
Transcript
1 Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:. Csi prticolri :,, per ogni R,, per ogni R Le proprietà delle potenze definite per esponenti interi vlgono nche per esponenti reli: Se, : b per ogni b, pprtenenti R vle : 4
2 Funzione esponenzile Si chim funzione esponenzile ogni funzione del tipo :, con fissto, R. Il dominio dell funzione, cioè l'insieme dei vlori che si possono ttribuire è tutto R il codominio, cioè l'insieme dei vlori che l funzione ssume è R + (l funzione esponenzile è sempre strettmente positiv). Si distinguono tre csi: : funzione crescente : : funzione costnte : per ogni R : funzione decrescente :. I seguenti grfici illustrno il comportmento dell funzione esponenzile nei vri csi : = = = = < < > > > 4
3 EQUAZIONI ESPONENZIALI E LOGARITMI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del tipo : b, con e b è l' incognit dell' equzione. Un'equzione esponenzile del tipo b può essere impossibile, indetermint o determint : impossibile se b, oppure b e esempio : oppure indetermint se, b esempio : determint se,, b esempio :. Si chim ritmo in bse di b l'unic soluzione dell'equzione esponenzile elementre nel cso determinto, cioè l'esponente d ssegnre ll bse per ottenere il numero b. = b = bse dell eponenzile e del ritmo Supponimo di dover risolvere un'equzione esponenzile b : se e b si scrivono come potenze (rzionli) dell stess bse, si eguglino gli esponenti : 8 se e b non si scrivono come potenze (rzionli) dell stess bse, le soluzioni si scrivono sotto form di ritmi :. Il ritmo risult essere l'operzione invers dell'esponenzile, pertnto le limitzioni cui è soggetto l'esponenzile si riflettono sul ritmo: fisst l bse >, deve essere b>, inoltre vlgono i csi prticolri:, poichè, poichè. Anmente, lle proprietà degli esponenzili precedentemente elencte corrispondono le seguenti proprietà dei ritmi: ) ( R R, ) ) ) 4) b c c b = ( R ( R (, b, c ) R R, ), ) formul di cmbimento di bse nei ritmi. I ritmi che compiono sulle clcoltrici sono in bse oppure in bse e, 78 : indic il, detto nche ritmo decimle ln, indic il e, detto nche b 44
4 ritmo nturle o neperino. Funzione ritmic Si chim funzione ritmic ogni funzione del tipo :, con e fissto, R. L funzione ritmic è l'invers dell'esponenzile, pertnto dominio e codominio risultno scmbiti rispetto quelli dell funzione esponenzile. Il dominio dell funzione, cioè l'insieme dei vlori che si possono ttribuire è R + il codominio, cioè l'insieme dei vlori che l funzione ssume è R. Si distinguono due csi: : funzione crescente : : funzione decrescente : I grfici dell funzione ritmic si ottengono d quelli dell funzione esponenzile per simmetri rispetto ll bisettrice del I e III qudrnte ( ) essi illustrno il comportmento dell funzione esponenzile nei vri csi : = = = < < > > > 4
5 EQUAZIONI LOGARITMICHE Un'equzione si dice ritmic qundo l'incognit compre soltnto nell'rgomento di uno o più ritmi. L'equzione ritmic più semplice (elementre) è del tipo : b, con e b R è l' incognit dell' equzione. L su soluzione, per qunto detto proposito dell'equzione esponenzile, è : Per risolvere un'equzione ritmic conviene: b.. (qundo è possibile) trsformre l'equzione dt in un equivlente del tipo A B, pplicndo le proprietà dei ritmi A B. determinre le soluzioni dell'equzione. eseguire il controllo medinte verific dirett dei vlori di clcolti l punto 4. in lterntiv l punto, ssocire ll'equzione di cui l punto tutte le condizioni di esistenz sui ritmi (ricordimo che un ritmo è definito soltnto per vlori positivi del suo rgomento), per selezionre le soluzioni ccettbili. Esempi. Risolvimo l'equzione: 8 6. Osservimo che: e. Quindi è possibile trsformre l'equzione ssegnt nell'equzione: L soluzione dell'equzione dt è quindi.. Risolvimo l'equzione: 7. Possimo trsformre l'equzione eseguendo il ritmo (in un bse qulsisi, per esempio in bse ) del primo e del secondo membro: 7. Applichimo l proprietà ) dei ritmi: 7. Applichimo l proprietà ) dei ritmi: 7. Isolndo ottenimo: 7 (*). In lterntiv potevmo isolre, ottenendo: 46
6 7. Prendendo il ritmo in bse di entrmbi i membri si h: 7 7 Utilizzndo l formul di cmbimento di bse 4) si riottiene (*).. Risolvimo l'equzione: 6. Osservimo che:. L'equzione ssegnt è equivlente : Il denomintore, essendo un funzione esponenzile, non può ssumere il vlore zero. Possimo moltiplicre per entrmbi i membri, ottenendo: 6 8. E' evidente l struttur di equzione lgebric di II grdo nell'incognit. Risolvendo tle equzione (può essere utile introdurre un vribile usiliri più evidente l ntur di equzione di secondo grdo) si h: oppure 4 d cui: oppure. 4. Risolvimo l'equzione ritmic:. z per rendere Imponimo le condizioni di esistenz sui ritmi dell'equzione dt, ricordndo che gli rgomenti devono essere positivi: cioè ll vribile si possono ssegnre solo i vlori mggiori di. Risolvimo l'equzione pplicndo l proprietà ) dei ritmi e osservndo che : Uguglindo gli rgomenti si h l seguente equzione equivlente: 7 9,. 9 7 Il vlore è minore di, quindi non è comptibile con le condizioni di esistenz. L'unic soluzione dell'equzione è dt d: 7. 47
7 Esercizi m n m. Tenendo presente che n, scrivi le seguenti potenze sotto form di rdice: 8 ) 4 4 b). 4. Scrivi le seguenti rdici sotto form di potenz con esponente rzionle: ) 4. b) Risolvi le seguenti equzioni esponenzili: ) 6 9 b) 8 4 c) 6 d) 7 4 e) f) 7 g) 4 h) 9 i) 6 j) 4. Risolvi le seguenti equzioni ritmiche: ) 9 b) c) d) 6 e) 8 9 f) 48
ESPONENZIALI E LOGARITMI
ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle
Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :
Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se
ESPONENZIALI E LOGARITMI
ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic [email protected] www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero
POTENZA CON ESPONENTE REALE
PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic [email protected] www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,
COGNOME..NOME CLASSE.DATA
COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione
E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO
EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil
Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale
Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)
2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:
Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo
Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi
Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz
Esercizi svolti Limiti. Prof. Chirizzi Marco.
Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,
Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi
Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz
B8. Equazioni di secondo grado
B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere
Equazioni parametriche di primo grado
Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,
Verifica 03 LE DISEQUAZIONI DI SECONDO GRADO
Verific 0 LE DISEQUAZIONI DI SECONDO GRADO ESERCIZI LE DISEQUAZIONI Risolvi le seguenti disequzioni lineri numeriche. A 0 8 B 7 8 A B 8 7 8 8 9 Rppresent i seguenti intervlli (o unione di intervlli) medinte
ESPONENZIALI LOGARITMI
ESPONENZIALI LOGARITMI Prerequisiti: Conoscere e sper operre con potenze con esponente nturle e rzionle. Conoscere e sper pplicre le proprietà delle potenze. Sper risolvere equzioni e disequzioni. Sper
Lezione 14. Risoluzione delle equazioni algebriche.
Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,
Verifica 10 ESPONENZIALI E LOGARITMI
Verific 0 SPONNZIALI LOGARITMI TST I FIN APITOLO Qule delle seguenti figure non rppresent un funzione? A È dt l funzione f : R R, descritt dll legge 4. Qunto vle l immgine di 0? A 0... 4. 4. L funzione
lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)
Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)
{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.
Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8
INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma
INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente
RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI
RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri
Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )
Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte
Le equazioni di grado superiore al secondo
Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere
Esponenziali e logaritmi
Istituto d Istruzione Superiore A Tilgher Ercolano (Na) Prof Amendola Alfonso Premessa Esponenziali e logaritmi Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento,
Anno 2. Potenze di un radicale e razionalizzazione
Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente
I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.
I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle
b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.
Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()
Sistemi lineari Sistemi lineari quadrati
Sistemi lineri Sistemi lineri qudrti Definizione e crtteristiche di sistem qudrto (/) Dti un mtrice qudrt A(n n) ed un vettore (colonn) b d n componenti; Determinimo in modo tle che: A b Quest relzione
Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001
Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +
IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:
IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono
Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi
Equzioni e disequzioni rimiche ed esponenzili Sinesi delle eori e guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno
26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:
ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di
SUGLI INSIEMI. 1.Insiemi e operazioni su di essi
SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.
Equazioni e disequazioni
Cpitolo Equzioni e disequzioni.1 Princìpi di equivlenz 1. Sommndo o sottrendo l stess quntità d entrmbi i membri di un equzione o di un disequzione ess non cmbi, ovvero: A(x) B(x) A(x) k(x) B(x) k(x).
Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica
Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria
ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico
Operazioni sulle Matrici
Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione
INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1
INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo
IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:
IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di
Appunti di matematica 3 Indice
Appunti di mtemtic Indice. Ripsso di lgebr e geometri del biennio. Geometri nlitic Il pino crtesino Rett Circonferenz Prbol Ellisse Iperbole Complementi di geometri nlitic. Successioni numeriche. Funzione
Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi
Equzioni e disequzioni rimiche ed esponenzili Guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno dell esponenzile,
La parabola con asse parallelo all ady
L prbol con sse prllelo ll dy I Prbol con vertice nell origine degli ssi crtesini I disegni degli esercizi dll 1 l 3 dell sched di lbortorio, sono i seguenti: Quindi il segno del coefficiente di x determin
{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }
Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri
Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi
Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice
Elementi grafici per Matematica
Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi
Erasmo Modica. : K K K
L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic [email protected] www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce
Il problema delle aree. Metodo di esaustione.
INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.
Rapporti e proporzioni numeriche
Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire
ESERCITAZIONE: ESPONENZIALI E LOGARITMI
ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: [email protected] web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione
Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica
Noe..Cognoe.clsse 4C 7 Mggio Verific di Mtetic PROBLEMA ( punti In un tringolo ABC il lto BC isur e l ngolo opposto è di. Deterinre in funzione dell piezz di ABC ˆ CH l ndento di f ( essendo CH e bisettrici
13. EQUAZIONI ALGEBRICHE
G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più
Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo
Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle
3. Funzioni iniettive, suriettive e biiettive (Ref p.14)
. Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y
1 Integrale delle funzioni a scala
INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]
