Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013"

Transcript

1 Appunti di Algebr Linere Mppe Lineri 0 mggio 203

2 Indie Ripsso di Teori 2. Cos è un mpp linere Aluni ftti importnti Eserizi 4 Ripsso di Teori. Cos è un mpp linere Riordimo he un pplizione (o mpp) linere f : V Ñ W fr spzi vettorili reli è un funzione per ui vlgno le proprietà: f( Ñ u + Ñ v )=f( Ñ u)+f( Ñ v ), f(λ Ñu) =λ f( Ñ u), per ogni Ñ u, Ñ v P V e λ P R. Controllrle entrmbe equivle ontrollre he per ogni Ñ u, Ñ v P V e per ogni λ, µ P R si bbi f(λ Ñu + µ Ñv )=λ f( Ñ u)+µ f( Ñ v ). Un po di terminologi. Sif : V Ñ W un mpp linere. Allor f è dett: un monomorfismo se è iniettiv; un epimorfismo se è suriettiv; un isomorfismo se è biiettiv (ioè iniettiv + suriettiv, ioè mono + epi); un endomorfismo se V = W. un utomorfismo se V = W ed è biettiv. di rngo r se r = dim f(v). Inoltre, definimo Hom R (V, W) =t f : V Ñ W f mpp linere u End (V) =Hom R (V, V) =t f : V Ñ V f mpp linere u. Si osservi he il + eil sinistrdell ugulenonsonoglistessiheisonodestr: infttiognispziovettorile h l su somm e il suo prodotto per slri. Lo stesso vle per le due equzioni sopr. 2

3 .2 Aluni ftti importnti Si f : V Ñ W un mpp linere fr spzi vettorili (d esempio su R). Si V Ď V un sottospzio. Allor: Anhe f(v ) Ď W è sottospzio. In prtiolre, f(v) Ď W è sottospzio di W. Il nuleo di f, ker f = t Ñ v P V f( Ñ v )= Ñ 0 u, è sottospzio di V. Se t Ñ v,..., Ñ v h u sono genertori di V, llor t f( Ñ v ),...,f( Ñ v h ) u sono genertori di f(v ) Ď W. M ttenzione: nhe se i Ñ v i fossero un bse di V (ioè: nhe se dim V = h), non potremmo onludere he dim f(v )=h, m solo dim f(v ) ď h. Inftti un bse non sempre v in un bse. In prtiolre, un bse B = t Ñ u,..., Ñ u n u di V viene mndt in un insieme di genertori di f(v), osì he dim f(v) ď dim V. Si h dim ker f + dim f(v) =dim V. In prtiolre, se W = V, sih Riett. Se n, m sono interi e n ă m, llor: V ker f f(v). (i) Un mpp linere R m Ñ R n non è mi iniettiv (Esempi: R 4 Ñ R 3, R 3 Ñ R 2, R 4 Ñ R 2...); m è suriettiv se e soltnto se l mtrie ssoit h rngo mssimo. (ii) Un mpp linere R n Ñ R m non è mi suriettiv (Esempi: R 4 Ñ R 5, R 2 Ñ R 3, R 2 Ñ R 4...); m è iniettiv se e soltnto se l mtrie ssoit h rngo mssimo. Si hnno infine i seguenti importnti risultti: Theorem.. Se f : V Ñ W è mpp linere, le seguenti ondizioni sono equivlenti:. f iniettivo (ioè monomorfismo); 2. ker f = t Ñ 0 u; 3. f mnd vettori LI di V in vettori LI di W; Theorem.2. Sino V e W dell stess dimensione dim V = n = dim W. Se f : V Ñ W è mpp linere, le seguenti ondizioni sono equivlenti:. f iniettivo (ioè monomorfismo); 2. ker f = t Ñ 0 u; 3. Un bse di V v in un bse di W; 4. f suriettivo (ioè epimorfismo); 3

4 5. f isomorfismo. Riett 2. Dt, d esempio, un mpp linere f : R n Ñ R n, per mostrre he è isomorfismo bst mostrre he vle un (qulunque) delle ondizioni del teorem preedente (l seond sembr l più file d verifire). 2 Eserizi Eserizio 2.. Mostrre he un pplizione linere f : V Ñ W soddisf f( Ñ 0 V )= Ñ 0 W.[Quindi: qundo si ontroll se un pplizione è linere, si potrebbe inizire ontrollndo se mnd vettore nullo in vettore nullo: se iò non de non è linere!] Eserizio 2.2. Mostrre he è linere l mpp f : R 3 Ñ R 2,2 definit d f b 0 b Eserizio 2.3. Dire se sono lineri le seguenti pplizioni:. f : R 3 Ñ R 2,2 definit d f b b 2. L pplizione f : R 3 Ñ R 2 definit d f b + b b 3. L pplizione f : R 3 Ñ R 2 definit d f b + b b L pplizione f : R 3 Ñ R 2 definit d f b 2 b + Eserizio 2.4. Mostrre he se f : V Ñ W è mpp linere e W Ă W è sottospzio, llor nhe f (W )=t Ñ v P V f( Ñ v ) P W u Ă V è sottospzio. Eserizio 2.5. Sino V, W spzi vettorili su R. Mostrre he Hom R (V, W) h struttur di spzio vettorile su R. Qul è l su dimensione? [Consiglio: si usi il legme mpp linere Ø mtrie ssoit] Eserizio 2.6. Dire se W = t p(x) =p 0 + p x + p 2 x 2 p 0 = p + 2 u è sottospzio vettorile di R 2 [x]. No Dire se W = t p(x) =p 0 + p x + p 2 x 2 p 0 = p + 2p 2 u è sottospzio vettorile di R 2 [x]. Sì Trovre l dimensione e un bse di W. 4

5 Eserizio 2.7. Ridurre le seguenti mtrii e trovrne il rngo (o grzie ll riduzione, o on il metodo dei determinnti): A = , B = 0 2 3, C = , D = 2 3, E = 2 2 0, F = , G = r(a) =3, r(b) =2, r(c) =3, r(d) =2, r(e) =2, r(f) =3, r(g) =2 Eserizio 2.8. Dire se le seguenti mtrii sono ridotte per righe e/o per olonne: , 0 0 0, 0 0, Eserizio 2.9. Dire per quli h P R sono invertibili le seguenti mtrii: h 0? 3 h + 2 h 2 A = 0 0 h, B = 0 3 h 2 h?, C = 3 2, D = Selto un tle h per isun, lolrne l invers. Verifite voi stessi di ver ftto giusto, moltiplindo l mtrie trovt per quell inizile, e ontrollndo he tle prodotto di l mtrie identi. Eserizio 2.0. Trovre le inverse delle seguenti mtrii (si riordi he i sono due metodi: quello dei ofttori, per ui A = det A C,doveC è l mtrie dei ofttori di AT ;equellodi riduzione, in ui si ridue l mtrie (A I n ) e si risolvono gli n sistemi lineri ssoiti; possibilmente, si usino entrmbi i metodi): A = 0 0, B = 2 3, C = 4 0, 2 2 / D = 0 2, E = 2 4 3, F = Verifite voi stessi di ver ftto giusto, moltiplindo l mtrie trovt per quell inizile, e ontrollndo he tle prodotto di l mtrie identi. Eserizio 2.. Disutere le soluzioni (esistenz, uniità o meno) del sistem linere & x + y + z = 2x + 3y + 2z = 0 % x + 2y z = 0 Usre Rouhé-Cpelli. 5

6 Eserizio 2.2. Risolvere il sistem linere " x 3z = 5 2y 2x + z = 3 4y ol metodo di Crmer. Si può utilizzre tle metodo nhe per il sistem linere " x + 2y = 5 + 3z? 2x + 4y = 3 z Eserizio 2.3. Si " x + by + z = d x + b y + z = d un sistem di due equzioni in tre inognite (x, y, z), ssoito ll mtrie b A = b. Dimostrre (usndo Rouhé-Cpelli) he tle sistem: h soluzioni se e solo se rk A = 2, oppure rk A = e / = b/b = / = d/d ; non h soluzione nel so restnte, ioè qundo rk A =, e / = b/b = / d/d. In prtiolre, non h mi un uni soluzione. Questo i riord qulos? Dovrebbe riordri le intersezioni fr pini nello spzio Eserizio 2.4. Disutere le soluzioni di & x + 2y + z = 2 x 2y + z = 6 % x 4y + 4z = 3 Risolvere il sistem, d esempio on Crmer (siome è un uni soluzione). Eserizio 2.5. Per quli k P R il sistem & x + y z = 2x + 2y + z = 0 % x + y + 2z = k è risolubile? Trovrne le soluzioni. k = Eserizio 2.6. Risolvere il sistem omogeneo x + y + z = 0 & 2x + y 3z = 0 x y = 0 % 4x + 5y + 2z = 0 trmite riduzione dell mtrie ssoit. 6

7 Eserizio 2.7. Il sistem & 3x + y 2z + t = x + 2y t = 2 % 4x + 3y 2z = 3 può vere un sol soluzione? No H rngo mssimo? No Mostrre he h soluzione se e solo se 3 = + 2, e in questo so i sono 2 soluzioni. In so ontrrio, il rngo dell mtrie omplet è 3 ą 2 e non i sono soluzioni. Eserizio 2.8. Trovre le 2 soluzioni del sistem " 3x + y 2z + t = x + 2y t = 3 Eserizio 2.9. Sino dte le pplizioni lineri R 2 f Ñ R 3 R 3 g x Þ Ñ y y x x + 3y Ñ R 3 u v Þ Ñ w u + 2w u + v 2v + w Srivere, rispetto lle bsi nonihe, le mtrii M f P R 3,2, M g P M 3,3, M g f P R 3,2. Verifire he 2 7 = M g f = M g M f. 3 3 Eserizio Srivere, rispetto lle bsi nonihe di R 4, l mtrie ssoit ll mpp linere f è un isomorfismo? f f : R 4 Ñ R 4 x x + y y z Þ Ñ z t t t y Eserizio Risolto (mtrie di pssggio). Si B = t e, e 2, e 3 u l bse noni di R 3 e C = t, 2 u l bse noni di R 2. Prendimo due ltre bsi:, & 0. B = % f = e e 2 =, f 2 = e e 3 = 0, f 3 = e 2 + e 3 = - 0 " * 0 C = + 2 =, 2 = 7

8 Si f : R 3 Ñ R 2 l mpp linere ssoit, medinte le bsi nonihe, ll mtrie 0 A =. 0 Trovre l mtrie M C,B f. Soluzione. L mtrie di pssggio d B B è l mtrie N ssoit ll utomorfismo di R 3 dto d e i ÞÑ f i : tle mtrie h nelle sue olonne le omponenti di f i nell bse B, ioè: N = Allo stesso modo, l mtrie di pssggio d C C è l mtrie P ssoit ll utomorfismo di R 3 he mnd ÞÑ + 2, 2 ÞÑ 2. Le olonne sono quindi le omponenti di + 2 edi 2, rispettivmente, lette nell bse C. Quindi: 0 P L mtrie ert è M C,B f = P A N. Quindi: = M C,B f = P A N = 8

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5).

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5). Corso di Lure in Ingegneri Informti (A-Co, J-Pr) - Ingegneri Elettroni (A-Co, J-Pr) - Ingegneri Industrile (F-O) - Ingegneri Gestionle - Ingegneri Elettri - Ingegneri Meni - Ingegneri REA Prov sritt di

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Determinnti: metodo dei minori Dt un mtrie n n on elementi ij Il suo erminnte srà dto dll somm dei erminnti di tutti i suoi minori (n-) (n-) ottenuti

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Prodotto tr mtrii d Dte mtrii x Il prodotto delle due mtrii produe un nuov mtrie on un numero di righe pri l numero di righe dell mtrie e numero

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

5. Quanti blocchi ha la forma di Jordan di f(x, y, z, s, t) = (0, y + z, y + z, t, 0)?

5. Quanti blocchi ha la forma di Jordan di f(x, y, z, s, t) = (0, y + z, y + z, t, 0)? Ing. erospzile e meccnic. Geometri e lgebr T. Prov del 24/01/2018 cod. 8919280 Nome Cognome Mtricol 1. Il rngo di 1 2 0 0 2 0 è: 2 4 3 ; d 5. 1 2 0 2. Le coordinte di 1, 1, 0 rispetto ll bse di C 3 formt

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

15. Cambiamenti di base in uno spazio vettoriale.

15. Cambiamenti di base in uno spazio vettoriale. 5 Cmbimenti di bse in uno spzio vettorile 5 Esempio Si VR uno spzio vettorile di dimensione e si B = (u, u, u ) un su bse Sino v = 5u + 6u, v = u u + 5u, v = u + u + u, v = u 4u 7u Si M l mtrice vente

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MTRICI E DETERMINNTI di vinenzo sudero 1 DEFINIZIONI Per mtrie si intende un tell di elementi ordinti per righe e per olonne Di un mtrie oorre speifire il numero di righe, di olonne e l insieme ui pprtengono

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n :

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n : Mtemtic II. Generlità sui sistemi lineri Un sistem linere è un sistem di m equzioni lineri (cioè di primo grdo) in n incognite,, n : n n b b m mn n m (*) Un soluzione del sistem linere è un n-upl di numeri

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

; c. ; d nessuna delle precedenti In R 5 [x] distanza tra x e x 2 rispetto al prodotto scalare p, q = 1

; c. ; d nessuna delle precedenti In R 5 [x] distanza tra x e x 2 rispetto al prodotto scalare p, q = 1 Ing. erospzile e meccnic. Geometri e lgebr T. Prov del 08/01/2018 cod. 701385 Nome Cognome Mtricol 1. L conic definit d x 2 + y 2 4xy = 1 è: ellisse iperbole prbol; d un punto. 2. Le coordinte di rispetto

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN UTILIA SULL INTGRAL MULTIPLO SCONDO RIMANN Avvertenz: tutto iò detto nel seguito vle in R n e non solo in R 2. 1. INTGRAL DI RIMANN SU RTTANGOLI Un insieme R 2 si die essere un rettngolo (hiuso) se = [,b]

Dettagli

Tutorato di GE110. (a)det(a) = k 2. Se k 0 si ha che r(a) = 3 e quindi! soluzione del tipo: k ; 2; 5 )

Tutorato di GE110. (a)det(a) = k 2. Se k 0 si ha che r(a) = 3 e quindi! soluzione del tipo: k ; 2; 5 ) Universitá degli Studi Rom Tre - Corso di Lure in Mtemtic Tutorto di GE0 AA 0-0 - Docente: Prof Angelo Felice Lopez Tutori: Drio Ginnini e Giuli Slustri Tutorto 7 4 Aprile 0 Si determinino esplicitmente,

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Geometria BAER Canale I Esercizi 13

Geometria BAER Canale I Esercizi 13 Geometri BAER Cnle I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che bbimo ftto quest prte un po in frett, m si può sempre provre. Esercizio. Si scrivno le equzioni delle prbole

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Rom Tre - Corso di Lure in Mtemtic Tutorto di GE0 AA 04-05 - Docente: Prof Angelo Felice Lopez Tutori: Federico Cmpnini e Giuli Slustri Soluzioni Tutorto 8 Aprile 05 Si determinino

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

n! A = lim ; 2 2n (n!) 2 (2n)! n = a2 n a 2n a 2 n a 2n 2 2 = A, n n n+ 1 2

n! A = lim ; 2 2n (n!) 2 (2n)! n = a2 n a 2n a 2 n a 2n 2 2 = A, n n n+ 1 2 Il 3 o psso è provto. 4 o psso Conludimo l dimostrzione: Dl o psso bbimo n! ( e n A = lim ; n n n) d ltronde risult, ome è file verifire, e pertnto di pssi 3 e segue 2 2n (n!) 2 (2n)! n = 2 n 2n 2, 2 π

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

DISEQUAZIONI RAZIONALI

DISEQUAZIONI RAZIONALI DISEQUAZIONI RAZIONALI Un disequzione è un disuulinz r due espressioni letterli per l qule si rierno i vlori delle lettere he rendono l disuulinz ver. Primo prinipio di equivlenz: A B A ± M B ± M dove

Dettagli

1. Elementi di analisi funzionale Esercizi

1. Elementi di analisi funzionale Esercizi . Elementi di nlisi funzionle Esercizi http://www.cirm.unibo.it/~brozzi/mi/pdf/mi-cp.-ese.pdf.. Spzi vettorili.. Spzi vettorili normti.-. Dimostrre l diseguglinz tringolre in C n reltivmente ll norm (

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA SCUOLA DI SCIENZE. Statistica per le tecnologie e le scienze

UNIVERSITA DEGLI STUDI DI PADOVA SCUOLA DI SCIENZE. Statistica per le tecnologie e le scienze Corsi di lure: 1.1 Sino UNIVERSITA DEGLI STUDI DI PADOVA SCUOLA DI SCIENZE Sttistic per l economi e l impres Sttistic per le tecnologie e le scienze 1 1 1 A(α) = α 2 + 1 α 2 + 1 e (α) = α + 1 dove α C.

Dettagli

Geometria I. Prova scritta del 2 marzo 2016

Geometria I. Prova scritta del 2 marzo 2016 Geometri I Anno ccdemico 0/06 Prov scritt del mrzo 06 Esercizio. Si E il pino euclideo numerico munito delle coordinte cnoniche (x, y). Si consideri il tringolo T con vertici P = (0, 0), P = (, 0), P =

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

5. Autovalori e autovettori di matrici reali.

5. Autovalori e autovettori di matrici reali. 5 Autovlori e utovettori di mtrici reli Definizione 5 Dt un mtrice A M n si dice utovlore di A un numero rele tle che X per cui n, n, AX = λ X L mtrice X si dice utovettore reltivo ll'utovlore λ λ Vicevers

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro L ELLISSE 1. L ellisse ome luogo geometrio.. Equzione dell ellisse on i fuohi sull sse. 3. Le proprietà dell ellisse.. Clolo dei semissi, dei vertii, dei fuohi e rppresentzione grfi. 5. Equzione dell ellisse

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Algebra lineare ... Per indicare la relazione tra vettore riga e vettore colonna si usa il simbolo T (operazione di trasposizione)

Algebra lineare ... Per indicare la relazione tra vettore riga e vettore colonna si usa il simbolo T (operazione di trasposizione) Alger linere. Vettori: definizioni Un ettore x n dimensioni è un insieme ordinto di n numeri x ( x x...x n ) I numeri x x...xn sono detti omponenti del ettore x. I ettori possono essere sritti sotto form

Dettagli

La risoluzione di una disequazione di secondo grado

La risoluzione di una disequazione di secondo grado L risoluzione di un disequzione di seondo grdo Quest nno le disequzioni srnno importntissime. Non si prlerà però proprimente di disequzioni m di studire il segno di un funzione. In effetti un numero può

Dettagli

2 Generalità sulle matrici

2 Generalità sulle matrici 2 Generlità sulle mtrici 21 Definizione e csi prticolri Definizione 21 Mtrice n m Un mtrice n m è un tbell rettngolre di n righe e m colonne i cui elementi sono numeri reli (o complessi) indicizzti con

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Richiami sulle matrici (TITOLO)

Richiami sulle matrici (TITOLO) Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione prile Introduzione lle trsformzioni F. Cliò Richimi sulle mtrici (TITOLO) Lezione prile Trsformzioni Mtrici: Definizioni

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni Integrle di Riemnn 1 Funzioni integrbili Dto un intervllo non degenere [, b], indichimo con T[, b] l collezione dei sottoinsiemi finiti di [, b] che contengono {, b}. Ogni D T[, b] si chimerà suddivisione

Dettagli

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica Esercizi di Geometri - Foglio Corso di Lure in Mtemtic A. Sottospzi ffini. Esercizio A.1 Esempi e non-esempi di sottospzi ffini Determinre quli dei seguenti insiemi sono sottospzi ffini (precisndo di qule

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ironferenz. Dre l definizione di ironferenz ome luogo di punti. L ironferenz è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d un punto

Dettagli

0.1 Teorema di Lax-Milgram

0.1 Teorema di Lax-Milgram 0. Teorem di Lx-Milgrm Definizione. (Form sesquilinere) Si H uno spzio di Hilbert su C. Un form sesquilinere sul cmpo C è un ppliczione : H H C linere nell prim componente e ntilinere nell second (cioè

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

Algebra lineare - Applicazioni. Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova

Algebra lineare - Applicazioni. Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova Algebr linere - Appliczioni Antonino Polimeno Diprtimento di Scienze Chimiche Università degli Studi di Pdov 1 Sistemi lineri - 1 Sistem sottodeterminto (n>m), sovrdeterminto (n

Dettagli

; c. ; d. ; b. 15. Quante soluzioni ha in R 3 il sistema AX=0 con A=? a 0; b 1; c ; d

; c. ; d. ; b. 15. Quante soluzioni ha in R 3 il sistema AX=0 con A=? a 0; b 1; c ; d Nome Cognome Mtricol 1. Qule di questi insiemi di vettori gener R 3 [x]? 0,1,x,x 2,x 3 x 2 +x 1; b x,x 2,x 3 2 x,x+,x 2 x,3+x+4x 2 +x 3 ; d nessuno. 2. Si A un mtrice 3x3 coefficienti reli. Allor deta

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi.

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi. Corso di Anli Alger di Bse ^ Lezione Equzioni di. Equzioni di. Equzioni fttorili. Equzioni iqudrtihe. Equzioni inomie. Equzioni frtte. Allegto Eserizi. EQUAZIONI ALGEBRICHE EQUAZIONI DI GRADO Con il termine

Dettagli

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione Anlisi Rele Esercizi 3 ottobre 2008 ) Tutte le distnze introdotte lezione sono invrinti per trslzioni; ovvero d(x y) = d(x + z y + z) per ogni x y e z. Definire su X = R un metric non invrinte per trslzioni.

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 0/ CLASSI SECONDE IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse terz, onsiglimo lo svolgimento piere di eserizi

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

CONDIZIONE NECESSARIA E SUFFICIENTE perché il sottoinsieme W di V sia sottospazio di V è che sia:

CONDIZIONE NECESSARIA E SUFFICIENTE perché il sottoinsieme W di V sia sottospazio di V è che sia: SPAZI VETTORIALI CONDIZIONE NECESSARIA E SUFFICIENTE perché il sottoinsieme W di V si sottospzio di V è che si: (λ w + µ u) V per ogni u, w V e ogni λ, µ R CONDIZIONE NECESSARIA (m NON SUFFICIENTE) perché

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita EQUAZONE ALGEBRCA D SECONDO GRADO o QUADRATCA in un inognit 1 form omplet oeffiienti b 4 (disriminnte) formule risolutive b se > due rdii reli e distinte (se e hnno segni disordi è positivo) b b (form

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milno Corso di Anlisi e Geometri Federico Lstri federico.lstri@polimi.it Teoremi per l second prov. Dimostrzioni. 8 Dicembre 208 Indice Teoremi per l second prov in itinere. Dimostrzioni.

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

(da dimostrare); (da dimostrare).

(da dimostrare); (da dimostrare). Proprietà delle trsposte Sino, K m,n e si K, llor vlgono le seguenti relzioni: 1) ( )= 2) (+)= + 3) ()= (d dimostrre); (d dimostrre). (dimostrt di seguito); DIM. 2): Devo dimostrre che l mtrice ugule ll

Dettagli

Sistemi a Radiofrequenza II. Guide Monomodali

Sistemi a Radiofrequenza II. Guide Monomodali Eserizio. Ordinre le frequenze di tglio dei modi di un guid rettngolre on b, qundo: b / < b < b / Soluzione: L ostnte riti è ugule per modi TE e TM: K Frequenz Criti: f K V f m V n f π b Tglio dei modi:

Dettagli

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere,

Dettagli

ELEMENTI DI TEORIA DEI NUMERI

ELEMENTI DI TEORIA DEI NUMERI ELEMENTI DI TEORIA DEI NUMERI 1. Richimi di teori Con Z indichimo l insieme dei numeri reltivi. Comincimo con il ricordre l definizione di quoziente e resto dell divisione di due numeri in Z. Definizione

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Proiettività della Retta e del Piano.

Proiettività della Retta e del Piano. Introduzione. In queste note proponimo l clssificzione delle proiettività per l rett proiettiv ed il pino proiettivo su un corpo lgebricmente chiuso. Nel cso dell rett studieremo nche il cso del corpo

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze:

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze: Codii di Huffmn Codii di Huffmn I odii di Huffmn vengono mpimente usti nell ompressione dei dti (pkzip, jpeg, mp3). Normlmente permettono un risprmio ompreso tr il 2% ed il 9% seondo il tipo di file. Sull

Dettagli