2) Uniforme: (43) 3) Di Laplace (o esponenziale bilatera): (44) 4) Esponenziale unilatera: 5) Di Rayleigh: x exp x 0 (46) 6) Binomiale: 7) Di Poisson:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2) Uniforme: (43) 3) Di Laplace (o esponenziale bilatera): (44) 4) Esponenziale unilatera: 5) Di Rayleigh: x exp x 0 (46) 6) Binomiale: 7) Di Poisson:"

Transcript

1 Eserciio N. 5 Si deterinino vlor edio e vrin delle vribili letorie seguenti tutte di notevole interesse prtico: 1) gussin; ) unifore; 3) di Lplce; 4) esponenile unilter; 5) di Rleigh; 6) binoile; 7) di Poisson. Proprio in considerione dell loro iportn prtic, è preliinrente opportuno ricordre le espressioni delle densità di probbilità ssocite lle vribili in oggetto. 1) Gussin: 1 ( µ ) f () ep (4) ) Unifore: 1 b f () b (43) <, > b 3) Di Lplce (o esponenile bilter): f () ep > ( ) (44) 4) Esponenile unilter: ep( ) f () (45) < 5) Di Rleigh: ep () (46) < f 6) Binoile: f () n k n p k k (1 p) n k δ( k) (47) 7) Di Poisson: 11

2 n f () k k λ ep( λ) δ( k) k! (48) Ciò preesso, il clcolo del vlore edio e dell vrin per le vrie distribuioni può essere effettuto pplicndo direttente le forule, e vle dire: f () d (49) ( ) f () d (5) I risultti sono rissunti in Tbell 1. gussin µ unifore ( + b)/ (b ) /1 di Lplce / esponenile unilter 1/ 1/ di Rleigh / binoile np np(1 p) di Poisson λ λ Tbell 1 E opportuno ricordre che, i fini del clcolo dell vrin, viene spesso utilit l uguglin seguente: (51) dove f () d (5) è il oento di ordine dell vribile letori X considert. 1

3 Eserciio N. 6 Un vribile letori gussin X vlor edio nullo e vrin unitri viene pplict d un circuito rddritore doppi seiond l cui crtteristic ingresso-uscit vle /. Deterinre l densità di probbilità dell vribile letori in uscit Y. Ripetere il clcolo ssuendo un rddritore seplice seiond in luogo di quello doppi seiond. Si trtt di un tipico proble di trsforione di vribile letori. L vribile letori in ingresso X è crtterit d un densità di probbilità f () 1 ep (53) Nel cso di rddritore doppi seiond l crtteristic ingresso-uscit è illustrt in Figur 5. Figur 5 Le forule di trsforione di vribile letori, che sono note dll teori, devono essere pplicte trtti, nelle one in cui il lege funionle tr e è onotono. Dll Figur osservio dunque che è necessrio distinguere il cso < e il cso >. Per < si h: d d (54) e quindi: f () d d f () 1 4 ep ep ( ) (55) Per > si h invece: d d (56), coe in preceden, 13

4 f () d d f () 1 4 ep ep ( ) (57) identic ll (55). Inoltre, visto che tnto i vlori di < qunto i vlori di > producono >, le (55) e (57) devono essere sote per ricvre l densità di probbilità risultnte dell vribile Y. In definitiv si h dunque: f () ep ( ) < (58) L second rig dell (58) è giustifict dl ftto che non si hnno vlori di che producono <. Nel cso di rddritore seplice seiond l crtteristic ingresso-uscit è illustrt in Figur 6. Figur 6 Null cbi, rispetto l cso precedente, per i vlori di > (per i quli dunque continu vlere l (57)) entre tutti i vlori di < vengono trsforti in. Ciò signific che d viene d essere ssocit un probbilità divers d ero, e in prticolre: P f ()d { Y } P{ X < } 1 1 ep d (59) L vribile letori Y in uscit dl rddritore seplice seiond è quindi un vribile ibrid, e l su densità di probbilità si scrive f () ep 1 ( ) s () + δ() G (6) dove 1 s G () (61) < è l funione grdino unitrio. 14

5 Eserciio N. 7 Due vribili letorie X e Y, tr loro sttisticente indipendenti, sono descritte d due densità di probbilità unifori, f() e f(), l pri tr e, l second tr b e. Posto X + Y, si ipotii iniilente che si b, e si clcolino: 1) l densità di probbilità di ; ) il vlore edio e l vrin di. Si ripet quindi il clcolo ssuendo b >. Le densità di probbilità di X e Y sono ostrte in Figur 7. f() f() 1/ 1/b -b Figur 7 Nel cso di vribili letorie sttisticente indipendenti, è noto che l densità di probbilità dell so si ottiene coe integrle di convoluione delle densità di probbilità degli ddendi 1 ; si h cioè: f () f ( )f () d (6) dove si è posto, per ggior chire, f() f () e f() f (). Si trtt quindi di prticolrire questo risultto ll eserciio in ese. Nel cso b, le densità di probbilità di X e Y si riducono due funioni rettngolri di ugule estensione, seppur diversente llocte. Il risultto dell convoluione di due funioni di questo tipo è ben noto dll teori dei segnli, producendo inftti un funione tringolre. Quest funione srà lloct tr e +, corrispondenti, rispettivente, vlore inio e vlore ssio di, ed vrà l ndento illustrto in Figur 8. Il vlore edio e l vrin di possono essere deterinti prtire dll f(); nondieno, risult più gevole e significtivo il clcolo diretto prtire dll conoscen delle edie d insiee di X e Y. Si h inftti: X + Y X + Y + ( ) + + (X + Y) (63) X + Y + XY 1 Si teng ben presente che questo risultto è vlido solo per il cso, in ese, di so di vribili letorie sttisticente indipendenti. Nel cso di legi funionli più coplicti o qundo viene eno l ipotesi di sttistic indipenden è necessrio ricorrere forulioni più generli che non vengono qui esinte. 15

6 D ltro cnto, essendo X e Y sttisticente indipendenti, si h XY X Y, entre ( + ) + +. Sostituendo nell second delle (63) ottenio: X + Y + + (64) vendo nche utilito il risultto (51). f() 1/ - Figur 8 In definitiv: il vlor edio dell so è ugule ll so dei vlori edi e l vrin dell so è ugule ll so delle vrine. Dll Tbell 1 (dove e b rppresentno gli estrei dell intervllo di definione dell singol densità di probbilità unifore) ricvio ieditente (per il cso più generle):, b (65) 1, b 1 per cui, sostituendo: b + b 1 (66) Nel cso prticolre di b le (66) forniscono: 6 (67) 16

7 Per b > il risultto dell convoluione non è più un tringolo, divent invece un trpeio così coe illustrto in Figur 9. f() 1/b -b (-b) Figur 9 Il trtto costnte, in prticolre, corrisponde ll on in cui, eseguendo l convoluione, l funione f ( ) è tutt contenut entro l funione f (). Per vlor edio e vrin di vlgono in questo cso le espressioni generli (66). 17

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

v 0 = 2,4 m/s T = 1,8 s v = 0 =?

v 0 = 2,4 m/s T = 1,8 s v = 0 =? Esercitzione n 4 FISICA SPERIMENTALE I (C.L. Ing. Edi.) (Prof. Gbriele Fv) A.A. 00/0 Dinic del punto terile. Un corpo viene lncito lungo un pino liscio inclinto di rispetto ll orizzontle con velocità v

Dettagli

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i!

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i! Esercitzioni di Sttistic Mtemtic A Lezione 6 Appliczioni dell legge dei grndi numeri e dell formul di Chebicev 1.1) Si {X i } i N un successione di vribili letorie i.i.d. (indipendenti ed identicmente

Dettagli

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico Noe Cognoe. Clsse D 9 Novebre 00 erific di Fisic forul Noe grfico Proporzionlità qudrtic invers = ) icordndo i possibili legi tr due grndezze,, coplet l seguente tbell ) Specific il significto dei prefissi

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

16 Stadio amplificatore a transistore

16 Stadio amplificatore a transistore 16 Stdio mplifictore trnsistore Si consideri lo schem di Figur 16.1 che riport ( meno dei circuiti di polrizzzione) uno stdio mplifictore relizzto medinte un trnsistore bipolre nell configurzione d emettitore

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Esperimentazioni di Fisica 1. Prova scritta del 10 settembre 2015 SOLUZIONI

Esperimentazioni di Fisica 1. Prova scritta del 10 settembre 2015 SOLUZIONI Esperimentzioni di Fisic 1 Prov scritt del 10 settembre 015 SOLUZIONI Esp-1 Prov di Esme Secondo ppello - Pge of 8 10/09/015 1. (1 Punti) Quesito. I lti di un foglio di crt di form rettngolre sono misurti

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Calcolo integrale in due e più variabili

Calcolo integrale in due e più variabili Clcolo integrle in due e più vribili 9 dicembre 2010 1 Definizione di integrle Il primo psso st nell definizione e determinzione dell integrle per funzioni due vribili prticolrmente semplici: le funzioni

Dettagli

Lo spettro di un segnale numerico

Lo spettro di un segnale numerico Lo spettro di un segnle numerico Abbimo visto che le prestzioni (P b (e) in funzione di E b /N 0 ) di un costellzione dipendono solo dll disposizione dei suoi segnli nello spzio Euclideo, non dlle forme

Dettagli

Frequenza relativa e probabilità

Frequenza relativa e probabilità Frequenz reltiv e probbilità L probbilità e' un numero che indic con qule frequenz si presentno eventi ssociti d un insieme di possibili risultti di un esperimento. Esempio: Esperimento: Lncio csule di

Dettagli

Variabile casuale uniforme (o rettangolare)

Variabile casuale uniforme (o rettangolare) Vribile csule uniforme (o rettngolre) Le crtteristic principle è che le sue relizzzioni sono equiprobbili Si pplic nelle situzioni in cui il fenomeno: Assume vlori in un intervllo limitto [,b] L probbilità

Dettagli

Le Matrici. 001 ( matrice unità)

Le Matrici. 001 ( matrice unità) Le Mtrici Un mtrice è un tbell di numeri o più in generle di elementi disposti quindi secondo righe e colonne. Le mtrici si indicno con le lettere miuscole dell lfbeto, gli elementi con quelle minuscole

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Legge dei grandi numeri e significato probabilistico della distribuzione normale

Legge dei grandi numeri e significato probabilistico della distribuzione normale Legge dei grndi numeri e ignificto probbilitico dell ditribuione normle Sppimo che l quntità f()d rppreent un indictore dell frione di miure che cdono tr e + d in un dto eperimento qundo l vribile X egue

Dettagli

UNITA 13. GLI ESPONENZIALI

UNITA 13. GLI ESPONENZIALI UNITA. GLI ESPONENZIALI. Le potenze con esponente intero, rzionle e rele.. Le proprietà delle potenze.. Equzioni esponenzili che si riconducono ll stess bse. 4. L funzione esponenzile. 5. Il grfico dell

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Il lavoro di una forza

Il lavoro di una forza Il lvoro di un forz Definizione Nello svolgimento che segue, ci limiteremo lvorre in due dimensioni, su un pino. L grn prte dei risultti che troveremo potrà essere estes immeditmente e senz difficoltà

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica

Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica Noe..Cognoe.clsse 4C 7 Mggio Verific di Mtetic PROBLEMA ( punti In un tringolo ABC il lto BC isur e l ngolo opposto è di. Deterinre in funzione dell piezz di ABC ˆ CH l ndento di f ( essendo CH e bisettrici

Dettagli

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti Algebr linere Algebr Un lgebr è un sistem di segni in cui sono definite delle operzioni Algebr sclre Algebr dei vettori Algebr mtricile In lgebr mtricile un numero è chimto sclre Vettori Vettori vettore

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportmento meccnico dei mterili rtteristiche di sollecitione inemtic ed equilirio del corpo rigido rtteristiche di sollecitione efiniione delle crtteristiche Esempio 1: trve rettiline Esempio : struttur

Dettagli

Vediamo quindi l elenco dei limiti fondamentali, il cui risultato daremo per noto d ora in avanti e lo utilizzeremo ogni volta che sarà necessario.

Vediamo quindi l elenco dei limiti fondamentali, il cui risultato daremo per noto d ora in avanti e lo utilizzeremo ogni volta che sarà necessario. . I iti fondmentli Non bisogn pensre l clcolo di un ite come se si trttsse dvvero di eseguire un operzione mtemtic: in reltà non esiste lcun lgoritmo. L procedur si regge invece su questi due pilstri:

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Frequenza relativa e probabilità

Frequenza relativa e probabilità Frequenz reltiv e roilità L roilità e' un numero che indic con qule frequenz si resentno eventi ssociti d un insieme di ossiili risultti di un eserimento. Esemio: Eserimento: Lncio csule di un ddo Risultto:

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

2 Generalità sulle matrici

2 Generalità sulle matrici 2 Generlità sulle mtrici 21 Definizione e csi prticolri Definizione 21 Mtrice n m Un mtrice n m è un tbell rettngolre di n righe e m colonne i cui elementi sono numeri reli (o complessi) indicizzti con

Dettagli

Integrali definiti (nel senso di Riemann)

Integrali definiti (nel senso di Riemann) Integrli definiti (nel senso di Riemnn) Problem: cos è l re di un figur pin? come clcolrl? Grficmente concetto intuitivo ed evidente. Tecnicmente ci sono definizioni e formule d hoc per le figure elementri.

Dettagli

(somma inferiore n esima), (somma superiore n esima).

(somma inferiore n esima), (somma superiore n esima). Clcolo integrle Appunti integrtivi lle dispense di Mtemtic ssistit rgomento 9 (Integrli definiti) e rgomento (Integrli impropri) cur di C.Znco (Il contenuto di questi ppunti f prte del progrmm d esme)

Dettagli

Il calcolo letterale

Il calcolo letterale Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre le regole di quello

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei Curve e integrli curvilinei E. Polini 13 ottobre 214 curve prmetrizzte Un curv prmetrizzt è un funzione : [, b] R n. Al vrire di t nell intervllo [, b] (con < b) il punto (t) descrive un triettori nello

Dettagli

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u.

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u. Scuol di Architettur Corso di Lure Mgistrle quinquennle c.u. Sommrio È stt descritt un teori pprossimt, dovut Jourwsk, che permette di clcolre le tensioni tngenzili medie presenti in un generic cord (punti

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.04) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Il calcolo letterale

Il calcolo letterale Appunti di Mtemtic Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre

Dettagli

Corso di Modelli Matematici in Biologia Esame del 22 Gennaio 2018

Corso di Modelli Matematici in Biologia Esame del 22 Gennaio 2018 Corso di Modelli Mtemtici in Biologi Esme del Gennio 08 Scrivere chirmente in test ll elborto: Nome Cognome numero di mtricol Risolvere tutti gli esercizi Tempo disposizione: DUE ORE E MEZZA Non e consentito

Dettagli

Matematica A, Area dell Informazione. Complementi al testo

Matematica A, Area dell Informazione. Complementi al testo 1 Preinri Mtemtic A, Are dell Informzione.. 2001-2002, corso prof. Brdi Complementi l testo Proposizione 1 (Proprietà crtteristiche di sup e inf) Si A R un insieme non vuoto e si x R. Allor x = sup A se

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. - Misurazioni indirette - Esempi di stima di incertezze.

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. - Misurazioni indirette - Esempi di stima di incertezze. Generlità sulle Misure di Grndezze Fisiche - Misurzioni indirette - Esempi di stim di incertezze 1 Testi consigliti Norm UNI 4546 - Misure e Misurzioni; termini e definizioni fondmentli - Milno - 1984

Dettagli

Calcolo del coefficiente angolare (in modulo) della retta di Goodman e del rapporto di ampiezza:

Calcolo del coefficiente angolare (in modulo) della retta di Goodman e del rapporto di ampiezza: Esercizio 1 Un pistr in S355 EN 07/1 (Fe5 UNI 7070), liite di ftic stndrd -1 50 MP, delle diensioni indicte in figur e spessore b 15 viene crict con un crico trsversle vribile P - kn e d un crico prllelo

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.4) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Comportamento Meccanico dei Materiali. 2 Esercizio 6. Politecnico di Torino CeTeM CAPITOLO 6

Comportamento Meccanico dei Materiali. 2 Esercizio 6. Politecnico di Torino CeTeM CAPITOLO 6 CAPITOLO 6 Esercizio 6- Un lbero in 39NicrMo3 ( 980 MP p0.2 785 MP) present i tre spllenti illustrti nell igur (vedi esercizio 2-2). Per ognun delle tre geoetrie stire: il liite di tic lessione rotnte

Dettagli

FLESSIONE E TAGLIO (prof. Elio Sacco)

FLESSIONE E TAGLIO (prof. Elio Sacco) Cpitolo FLESSIONE E TALIO (prof. Elio Scco). Sollecitzione di flessione e tglio Si esmin il cso in cui l risultnte delle tensioni genti sull bse dell trve x = L consist in un forz tglinte V, tlechev e

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Lezione 4: Introduzione al calcolo integrale

Lezione 4: Introduzione al calcolo integrale Lezione 4: Introduzione l clcolo integrle PARTE In quest prim prte si introdurrnno i concetti di integrle indenito, denito e improprio. In prticolre si cercherà di trttre in modo intuitivo l'interpretzione

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorto di Anlisi - AA /5 Emnuele Fbbini 8 prile 6 Curve in R ed R 3.. Prmetrizzzione. Scrivere un prmetrizzzione regolre per le seguenti curve:. Segmento di estremi A ; ) e B ; 3). Esiste un formul di

Dettagli

(da dimostrare); (da dimostrare).

(da dimostrare); (da dimostrare). Proprietà delle trsposte Sino, K m,n e si K, llor vlgono le seguenti relzioni: 1) ( )= 2) (+)= + 3) ()= (d dimostrre); (d dimostrre). (dimostrt di seguito); DIM. 2): Devo dimostrre che l mtrice ugule ll

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

Alcune note introduttive alle serie di Fourier.

Alcune note introduttive alle serie di Fourier. Alcune note introduttive lle serie di Fourier. Definizione. Si f : IR IR periodic di periodo e integrbile su [, ]. Diremo coefficienti di Fourier di f i numeri reli = f dx, = IN f cos dx, b = IN e serie

Dettagli

ovviamente uguale al caso delle due cricche laterali. Nel caso di larghezza finita W:

ovviamente uguale al caso delle due cricche laterali. Nel caso di larghezza finita W: Vengono riportte nel seguito lcune tbelle per il clcolo dei fttori di intensità delle tensioni in modo I utili per eseguire gli esercizi di quest lezione, trtte, con il permesso dell editore, dl testo:

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

Pacchetto d onda. e (a2 k 2 ikx) dk (1)

Pacchetto d onda. e (a2 k 2 ikx) dk (1) Pcchetto d ond 1 Clcolo d integrli gussini Per clcolre un integrle del tipo ψ(x) = e ( k ikx) dk (1) l procedur stndrd e di scrivere l espressione che ppre nell esponenzile come il qudrto di un funzione

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006

COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006 COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006 Esercizio. Si consideri il seguente sistem tempo discreto: x(t + ) = Fx(t) + gu(t) = 0 0 0 x(t) + 0 u(t), 0 0 0 y(t) = Hx(t) = x(t), t Z 0 +, dove è un

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Affinità parte terza Pagina 13 di 8 easy matematica di Adolfo Scimone

Affinità parte terza Pagina 13 di 8 easy matematica di Adolfo Scimone Affinità prte terz gin 3 di 8 es tetic di Adolfo Scione Sietrie ssili Definizione - Si chi sietri ssile ogni isoetri che trsfor un punto nel punto sietrico di rispetto d un rett prefisst, dett sse di sietri.

Dettagli

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1 MTRICI E DETERMINNTI CENNI SUI SISTEMI LINERI ngel Dontiello Considerimo un insieme di numeri reli rppresentti tr prentesi qudre o tonde n n ij m m mn ( ) [ ] ij i,,m j,,n Si definisce mtrice un tbell

Dettagli

Dimostrazione del teorema di Gauss Green nel piano

Dimostrazione del teorema di Gauss Green nel piano imostrzione del teorem di Guss Green nel pino Gli eventuli lettori sono pregti di segnlrmi gli eventuli errori di stmp. Grzie! L.V. Ricordimo che: dominio è l chiusur di un perto; dominio normle regolre

Dettagli

11 Altoparlante magnetico

11 Altoparlante magnetico Altoprlnte mgnetico Un ltoprlnte mgnetico h un cono di mss m mntenuto in posizione d un sospensione elstic di costnte k. Il cono, nel suo spostmento, è soggetto d un ttrito viscoso, dovuto ll ccoppimento

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

Lezione 8 LA SPINTA ESERCITATA DA UN FLUIDO SU UNA SUPERFICIE PIANA

Lezione 8 LA SPINTA ESERCITATA DA UN FLUIDO SU UNA SUPERFICIE PIANA Appunti dei corsi di Idrulic e Idrodinic Lezione 8 LA PINTA EERITATA DA UN LUIDO U UNA UPERIIE PIANA In prio luogo ostrio (coe ssunto precedenteente nell LEZIONE 7) che l spint su un supericie pin prodott

Dettagli

Introduzione e strumenti

Introduzione e strumenti Introduzione e strumenti Schemi blocchi Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2 Schemi

Dettagli

14 - Integrazione numerica

14 - Integrazione numerica Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 4 - Integrzione numeric Anno Accdemico 205/206 M. Tumminello, V.

Dettagli

Introduzione e strumenti. Schemi a blocchi

Introduzione e strumenti. Schemi a blocchi Introduzione e strumenti Schemi blocchi Schemi blocchi Convenzioni generli ed elementi bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi

Dettagli

INSIEMI, RETTA REALE E PIANO CARTESIANO

INSIEMI, RETTA REALE E PIANO CARTESIANO INSIEMI, ETTA EALE E PIANO CATESIANO ICHIAMI DI TEOIA SUGLI INSIEMI Un insieme E è definito ssegnndo i suoi elementi, tutti distinti tr loro: se x è un elemento di E scrivimo x E, mentre, se non lo è,

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

3. Modellistica dei sistemi dinamici a tempo continuo

3. Modellistica dei sistemi dinamici a tempo continuo Fondenti di Autotic 3. Modellistic dei sistei dinici tepo continuo Esercizio 1 (es. 10 del Te d ese del 18-9-2002) Si consideri il siste dinico elettrico riportto in figur, i cui coponenti ssuono i seguenti

Dettagli

Anno 2. Potenze di un radicale e razionalizzazione

Anno 2. Potenze di un radicale e razionalizzazione Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente

Dettagli

01 Matematica Liceo \ Unità Didattica N 7 Le proprietà della retta 1

01 Matematica Liceo \ Unità Didattica N 7 Le proprietà della retta 1 Mtetic Liceo \ Unità Didttic N 7 Le proprietà dell rett Unità Didttic N 7 Le proprietà dell rett ) Rette prllele ) Rett pssnte per un punto dto e prllel d un rett dt 3) Rette perpendicolri 4) Rett pssnte

Dettagli

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:...

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:... Sistemi di equzioni lgebriche lineri Un equzione lgebric linere in n incognite si present nell form: 1 1+ 2 2 +... + n n = b dove ( 1, 2,... n ) rppresentno le incognite, 1, 2,... n sono i coefficienti

Dettagli

Scheda per il recupero 2

Scheda per il recupero 2 Sched A Ripsso Sched per il recupero Numeri rzionli e introduzione i numeri reli Definizioni principli DOMANDE RISPOSTE ESEMPI Che cos è un frzione? Qundo un frzione si dice ridott i minimi termini? Un

Dettagli

CONDUTTORI TEMPERATURA E PORTATA

CONDUTTORI TEMPERATURA E PORTATA CONDUTTOR TEPERATURA E PORTATA riscdento di un conduttore è custo d corrente che o percorre. Non è però questo i soo eeento che deterin su tepertur di funionento; ess dipende nche d tri fttori, che sono:

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio.

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio. ppunti di Mtemtic Polinomi Un polinomio è un somm lgeric di monomi. ; c sono polinomi. ; I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche essere considerto

Dettagli

Metodi e Modelli Matematici di Probabilità per la Gestione Prova scritta 29/01/2009

Metodi e Modelli Matematici di Probabilità per la Gestione Prova scritta 29/01/2009 Metodi e Modelli Mtemtici di Probbilità per l Gestione Prov scritt 29/0/2009 Esercizio (4 punti). Un ufficio dell ngrfe effettu due tipi di servizio, che richiedono tempi (letori esponenzili) T id e T

Dettagli

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 3

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 3 Definizione (W, F, P[.]) spzio di proilità : W R è un vriile letori r R A r ={w W : (w) r} F W w w w 3 3 R W A r r R Esempio Esperimento: lncio di un monet W = {T, C} : W R (T) = (C) = r< W T C r A r =

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

Geometria I. Prova scritta del 2 marzo 2016

Geometria I. Prova scritta del 2 marzo 2016 Geometri I Anno ccdemico 0/06 Prov scritt del mrzo 06 Esercizio. Si E il pino euclideo numerico munito delle coordinte cnoniche (x, y). Si consideri il tringolo T con vertici P = (0, 0), P = (, 0), P =

Dettagli

Simulazione di II prova di Matematica Classe V

Simulazione di II prova di Matematica Classe V Liceo Scientifico Pritrio R. Bruni Pdov, loc. Ponte di Brent, 31/05/2018 Simulzione di II prov di Mtemtic Clsse V Studente/ss Risolvi uno dei due problemi. 1. Un tpp giornlier di un percorso di trekking

Dettagli

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale SCIENTIA http://www.scientijournl.org/ Interntionl Review of Scientific Synthesis ISSN 2282-2119 Quderni di Mtemtic 215 Mtemtic Open Source http://www.etrbyte.info L integrle di Mengoli Cuchy e il teorem

Dettagli