Quantità di moto. Si definisce quantità di moto di un oggetto puntiforme di massa m e velocità v la quantità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Quantità di moto. Si definisce quantità di moto di un oggetto puntiforme di massa m e velocità v la quantità"

Transcript

1 Quantità di moto Si definisce quantità di moto di un oggetto puntiforme di massa m e velocità v la quantità p = m v Si noti che p ha la stessa direzione e lo stesso verso di v. La seconda legge della dinamica F = m a si può anche scrivere F = d p Se F = 0 (o se la risultante delle forze che agiscono sull oggetto è nulla) la quantià di moto è costante F = 0 d p = 0 p = cost Impulso di una forza F = d p F = d p se ad un oggetto viene applicata un forza per un intervallo di tempo infinitesimo la sua quantità di moto varia della quantità infinitesima d p. Se la forza è applicata per un intervallo di tempo finito t f t i La quantità t f t i tf t i F = pf p i d p = p fin p in F è detta impulso della forza F tf J = F t i l impulso di una forza che agisce su un punto materiale è uguale alla variazione della quantità di moto dell oggetto: J = p

2 Le dimensioni dell imulso sono quelle di una forza per un tempo e quindi la sua unità di misura è Newton secondi Sistemi di punti materiali Consideriamo il moto complessivo di un sistema meccanico composto da più oggetti puntiformi soggetto a forze esterne e interne. Ad esempio gli oggetti potrebbero essere collegati tra di loro a coppie con delle funi: le forze di tensione delle funi sono delle interne; potrebbero essere soggetti alla forza peso (forze esterne). Se indichiamo con m i e p i la massa e la quantità di moto dell i-esimo oggetto, la seconda legge della dinamica: i 1 + F 21 + F 31 + = d p F 12 + F 32 + = d p 2 è la risultante delle forze esterne che agiscono sul corpo i; F ji è la forza interna con cui il corpo j agisce sul corpo i. Sommiamo membro a membro tutte le equazioni: nella somma del membro a sinistra sopravvivono solo le forze esterne, poichè, per la terza legge della dinamica, F ij = F ji. Si ottiene perciò: i = dp i Indichiamo con P la quantità di moto totale del sistema P = p i F i est dp = che è la seconda legge della meccanica generalizzata a un sistema di punti materiali.

3 (N.B. non confondere P con la forza peso!!) Se la risultante delle forze esterne è nulla F i est = 0 d P = 0 P = costante la quantità di moto totale del sistema si conserva P in = P fin Questa è un equazione vettoriale, quindi se una componente lungo uno degli assi coordinati della forza totale esterna agente su un sistema è nulla, la compenente della quantità di moto lungo quell asse si conserva. Nello studio di un sistema di oggetti puntiformi materiali è conveniente introdurre un punto particolare, il centro di massa. Vedremo che questo punto si muove come se tutta la massa del sistema fosse concentrata in esso e come se tutte le forze agissero su quel punto. In altre parole, se F è la risultante di tutte le forze esterne al sistema e M è la massa totale del sistema, il centro di massa è un punto che si muove con un accelerazione data da a = F /M. Ad esempio il moto del centro di massa dei frammenti di un fuoco artificiale che esplode in volo segue la traiettoria parabolica che seguirebbe il proiettile se non esplodesse (nel caso in cui si trascuri l attrito e fino all istante in cui alcuni dei frammenti cominciano ad arrivare a terra). Nel caso di un sistema costituito da due oggetti puntiformi di massa m 1 e m 2 nelle posizioni r 1 e r 2 (in un dato sistema di riferimento (Oxyz)), la coordinata del centro di massa è definita da r CM = m 1 r 1 + m 2 r 2

4 che si generalizza la caso di N oggetti di massa m i e vettori posizione r i r CM = 1 M m i r i M = dove M è la massa totale del sistema. Le componenti di questo vettore r CM = x CM î + y CM ĵ + z CMˆk sono date in termini delle componenti dei vettori posizione r i = x i î + y i ĵ + z iˆk dei singoli oggetti x CM = 1 M m i x i y CM = 1 M m i m i y i z CM = 1 M m i z i Mostriamo ora che, se M è fissata, cioè nessun oggetto lascia o entra nel sistema durante il moto, l equazione del moto per il centro di massa è i = M a CM dove a CM è l accelerazione del centro di massa. Dimostrazione: dalla definizione di r CM si ha M r CM = m 1 r 1 + m 2 r m N r N derivando rispetto al tempo M v CM = m 1 v 1 + m 2 v m N v N = p i P dove v i e p i sono la velocità e la quantità di moto dell iesimo oggetto e v CM è la velocità del centro di massa: la quantità di moto totale del sistema è uguale al prodotto della massa totale del sistema per la velocità del suo centro di massa.

5 Derivando un altra volta si ha M a CM = d P = i Il sistema nel suo insieme si muove se fosse un unico punto materiale di massa M concentrata tutta nel suo centro di massa, a cui è applicata la risultante delle forza esterne. v CM (e a CM ) non sono la velocità (e l accelerazione) di nessuna delle particelle che costituiscono il sistema, il valore di v CM dice come in media il sistema si sta spostando. In effetti r CM, v CM e a CM sono le medie pesate sulle masse dei vettori posizione, delle velocità e delle accelerazioni dei singoli oggetti. Se N i = 0 a CM = 0 la velocità del centro di massa è costante. Impulso: come per il punto materiale, possiamo definire l impulso che una o più forze esterne cedono a un sistema di punti materiali tf J = Fest = dp = P fin P in t i l impulso di una forza esterna che agisce su un sistema di punti materiali è uguale alla variazione della quantità di moto totale del sistema. D altra parte la quantità di moto del sistema è pari alla quantità di moto di un punto di massa pari alla massa totale del sistema che si muove con velocità v CM, quindi si ha anche J = M( v CM, fin v CM, in)

6 Urti Un urto è un evento nel quale sotto l azione di una forza relativamente intensa due o più corpi entrano in contatto per un intervallo di tempo relativamente breve. Le forze agenti per un tempo breve rispetto al tempo di osservazione del sistema sono dette forze impulsive. Le forze che intervengono durante un urto sono forze impulsive. In un fenomeno d urto almeno uno dei corpi è in moto e quindi il sistema possiede una certa energia e una certa quantità di moto. Vogliamo studiare come queste quantità cambiano dopo l urto. Durante l urto a causa del brevissimo tempo di interazione le forze esterne si possono trascurare: J est = t+τ t 0 quindi la quantità di moto complessiva del sistema si conserva. Consideriamo il caso di due corpi A e B che si urtano. Durante la collisione A esercita su B la forza F (t) e B esercita su A la forza F (t): la loro intensità varia nel tempo ma istante per istante le due forze sono uguali ed opposte (azione e reazione). Queste forze fanno variare la quantità di moto di entrambi i corpi, questa variazione dipende dalla forza e dal tempo

7 durante il quale la forza agisce. applicata al corpo B si ha Dalla relazione F = d p/ d p B = F (t) Integrando questa relazione da un tempo iniziale t i (subito prima della collisione) a un tempo finale t f (subito dopo la collisione) si ha tf p B,f p B,i = d p B = F = J Sul corpo A agisce la forza F (t) e quindi la variazione della quantità di moto di A è t i di conseguenza p A,f p A,i = tf t i ( F ) = J p B,f p B,i = ( p A,f p A,i ) la variazione della quantità di moto di A è uguale ed opposta alla variazione della quantità di moto di B. Un urto si dice elastico se le forze impulsive che si generano nell urto sono conservative: la variazione dell energia potenziale elastica durante la fase di compressione si trasforma in energia cinetica nella fase di rilascio e non si ha dissipazione di energia. In questo caso l energia meccanica prima e dopo l urto è la stessa. Un urto si dice parzialmente o totalmente anelastico quando una parte dell energia meccanica iniziale del sistema (o tutta) viene dissipata nell urto: l energia meccanica non si conserva.

8 In un urto completamente anelastico dopo l urto i due corpi restano attaccati formando un unico corpo: l energia spesa per deformare i due corpi non viene più recuperata e l energia meccanica non si conserva. Urto completamente anelastico in una dimensione: un corpo di massa m 1 e velocità v 1 (proiettile) incide su un corpo di massa m 2 fermo (bersaglio); dopo l urto i due corpi rimangono incollati. Dalla conservazione della quantità di moto m 1 v 1 = ( )v v = m 1v 1 dove v è la velocità dei due corpi (uniti) dopo l urto. N.B. La quantità di moto totale si conserva e quindi la velocità del centro di massa è costante ed è pari a v la velocità dell oggetto finale. Esempio: Pendolo balistico: si tratta di un dispositivo per misurare la velocità di un proiettile. È formato da un blocco di legno di massa M sospeso a due lunghe funi. Un proiettile di massa m e velocità orizzontale v è sparato contro il blocco e vi si conficca. Dopo l urto il blocco oscilla e si alza di un tratto h sopra il livello iniziale. Una misura di h permette di

9 determinare la velocità del proiettile. Le forze che agiscono sul sistema sono la forza peso e la tensione delle funi. L urto avviene in un tempo così breve che l impulso di queste forze si può considerare trascurabile e durante l urto si conserva la quantità di moto totale. L urto è completamente anelastico quindi la velocità del sistema blocco+proiettile subito dopo l urto è V = m m + M v ( ) Dopo l urto il proiettile rimane nel blocco e entrambi si sollevano di un tratto h. In questa fase possiamo applicare la conservazione dell energia meccanica, tra lo stato (A) subito dopo l urto in cui il blocco+proiettile parte con velocità V e lo stato (B) in cui arriva alla quota massima h dove si ferma istantaneamente (dopo di che il blocco ridiscende e continua ad oscillare). Prendendo come livello zero dell energia potenziale gravitazionale quello dello stato A (cioè U(A) = 0) si ha 1 2 (m + M)V 2 = (m + M)gh V 2 = 2gh Utlizzando (*) si ricava la velocità del proiettile v = m + M 2gh m (si noti che la tensione delle funi non interviene perchè è sempre ortogonale al moto del blocco quindi non compie lavoro e non contribuisce all energia meccanica).

10 Urto elastico in una dimensione Consideriamo due corpi che si muovono lungo una retta e compiono un urto elastico (il moto è unidimensionale, le velocità saranno positive o negative a seconda del verso): v 1 v 2 v 1 v 2 Nell urto si conservano la quantità di moto e l energia meccanica del sistema formato dalle due masse: dalla conservazione della quantità di moto si ha m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v 2 dalla conservazione dell energia meccanica si ha 1 2 m 1v m 2v2 2 = 1 2 m 1v m 2v 2 2 (si noti che l energia potenziale non compare perchè è la stessa prima e dopo l urto). Da queste due uguaglianze si possono ricavare v 1 e v 2 e si trova v 1 = m 1 m 2 v 1 + 2m 2 v 2 v 2 = 2m 1 v 1 + m 2 m 1 v 2 Casi particolari: m 1 = m 2 v 1 = v 2 v 2 = v 1 i due corpi si scambiano le velocità. In particolare se il corpo 1 era fermo prima dell urto (v 1 = 0), dopo l urto la palla urtante si ferma e l altra parte con la velocità della palla urtante: v 1 = v 2 v 2 = 0

11 bersaglio fisso: Un altra situazione particolare è quella in cui uno dei due corpi è inizialmente fermo, ad es. v 2 = 0 v 1 = m 1 m 2 v 1 v 2 = 2m 1 v 1 Possiamo considerare due sottocasi: m 2 >> m 1 (bersaglio massicio) v 1 v 1 v 2 2m 1 m 2 v 1 il proiettile praticamente rimbalza e inverte la sua velocità mentre il bersaglio si mette in moto con una piccola velocità (perchè m 1 /m 2 << 1). Nel limite m 2, urto contro una parete ferma, v 1 = v 1 e v 2 = 0. m 1 >> m 2 (proiettile massiccio) v 1 v 1 v 2 2v 1 il proiettile prosegue praticamente indisturbato nel suo moto in avanti mentre il bersaglio scatta in avanti con una velocità doppia di quella del proiettile.

12 Urto elastico in due dimensioni Quando l urto non è frontale (cioè il centro di massa non è allineato con la direzione del moto), dopo l urto i corpi non si muovono lungo l asse iniziale Supponiamo che il corpo m 2 sia fermo. Proiettando sugli assi coordinati l equazione della conservazione della quantità di moto, m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v 2, si trova m 1 v 1x = m 1 v 1x + m 2 v 2x m 1 v 1y = m 1 v 1y + m 2 v 2y dove v 1x = v 1 cos θ 1, v 1y = v 1 sin θ 1, v 2x = v 2 cos θ 2, v 2y = v 2 sin θ 2. Se l urto è elastico, l energia meccanica si conserva, quindi le equazioni che descrivono l urto sono m 1 v 1x = m 1 v 1x + m 2 v 2x m 1 v 1y = m 1 v 1y + m 2 v 2y 1 2 m 1v1 2 = 1 2 m 1v m 2v 2 2 dove v 1 2 = v 2 1x + v 2 1y e v 2 2 = v 2 2x + v 2 2y. Note la velocità iniziale e le masse, si hanno tre equazioni e quattro incognite v 1x, v 1y, v 2x e v 2y, e per risolvere il problema occorre aver misurato una delle quattro.

4b.Quantità di moto e urti

4b.Quantità di moto e urti 4b.Quantità di moto e urti La quantità di moto di un oggetto che possa essere schematizzato come un punto materiale di massa m e di velocità è definita come il prodotto della massa per la velocità del

Dettagli

Sistema arciere-arco

Sistema arciere-arco Sistema arciere-arco Consideriamo un ragazzo su uno sateboard mentre cade. Oltre alla forza peso che gestisce il moto verso il basso durante la caduta, nella direzione orizzontale al terreno avremo che

Dettagli

URTI: Collisioni fra particelle (e/o corpi) libere e vincolate.

URTI: Collisioni fra particelle (e/o corpi) libere e vincolate. URTI: Collisioni fra particelle (e/o corpi) libere e vincolate. Approssimazione di impulso: l interazione fra le due particelle e/o corpi puntiformi è istantanea e l azione delle forze esterne durante

Dettagli

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 QUANTITA DI MOTO DEFINIZIONE(1) m v Si chiama quantità di moto di un punto materiale il prodotto della sua massa per la sua velocità p = m v La quantità di moto è una grandezza vettoriale La dimensione

Dettagli

Urti tra due punti materiali

Urti tra due punti materiali 2 8.2 URTI ELASTICI ED ANELASTICI 1 8.1 - Urti tra due punti materiali Un urto è un evento isolato nel quale una forza relativamente intensa agisce, per un tempo relativamente breve, sui corpi che entrano

Dettagli

URTI: Collisioni o scontro fra particelle libere [e vincolate].

URTI: Collisioni o scontro fra particelle libere [e vincolate]. URTI: Collisioni o scontro fra particelle libere [e vincolate]. Due punti materiale (o corpi estesi) collidono quando durante il loro moto si vengono a trovare nello stesso punto (o regione) dello spazio,

Dettagli

Sistemi di più particelle

Sistemi di più particelle Sistemi di più particelle Finora abbiamo considerato il modo di una singola particella. Che cosa succede in sistemi di molte particelle, o in un sistema non puntiforme? Scomponendo il sistema in N particelle

Dettagli

Fisica. Esercizi. Mauro Saita Versione provvisoria, febbraio 2013.

Fisica. Esercizi. Mauro Saita   Versione provvisoria, febbraio 2013. Fisica. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2013. Indice 1 Principi di conservazione. 1 1.1 Il pendolo di Newton................................ 1 1.2 Prove

Dettagli

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R Esercizio 1 Un corpo puntiforme di massa m scivola lungo una pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. a) Determinare il valore

Dettagli

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

8.1 - Urti tra due punti materiali

8.1 - Urti tra due punti materiali 8.1 - Urti tra due punti materiali 8.1 - Urti tra due punti materiali Un urto è un evento isolato nel quale una forza relativamente intensa agisce, per un tempo relativamente breve, sui corpi che entrano

Dettagli

URTI: Collisioni/scontro fra due corpi puntiformi (o particelle).

URTI: Collisioni/scontro fra due corpi puntiformi (o particelle). URTI: Collisioni/scontro fra due corpi puntiformi (o particelle). I fenomeni di collisione avvengono quando due corpi, provenendo da punti lontani l uno dall altro, entrano in interazione reciproca, e

Dettagli

CAPITOLO 4: DINAMICA DEI SISTEMI DI PUNTI MATERIALI:

CAPITOLO 4: DINAMICA DEI SISTEMI DI PUNTI MATERIALI: CAPITOLO 4: DINAMICA DEI SISTEMI DI PUNTI MATERIALI: 4.1 Il centro di massa. Nel precedente capitolo si è parlato ampiamente della dinamica di un punto materiale, ossia di quel ramo della meccanica che

Dettagli

URTI: Collisioni fra particelle (e/o corpi) libere e vincolate.

URTI: Collisioni fra particelle (e/o corpi) libere e vincolate. URTI: Collisioni fra particelle (e/o corpi) libere e vincolate. Approssimazione di impulso: l interazione fra le due particelle e/o corpi è istantanea e l azione delle forze esterne durante l urto non

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con

Dettagli

Urti. Urto e conservazione della quantità di moto

Urti. Urto e conservazione della quantità di moto Urti Urto e conservazione della quantità di moto Urto totalmente anelastico in due dimensioni Urti elastici in una dimensione Casi speciali Urto elastico contro un muro Urto in due dimensioni (accenni)

Dettagli

La quantità di moto. Il masso ha più quantità di moto della persona in fuga.

La quantità di moto. Il masso ha più quantità di moto della persona in fuga. La quantità di moto Il masso ha più quantità di moto della persona in fuga. La quantità di moto La quantità di moto: esprime l inerzia nel movimento, cioè la difficoltà di fermare un oggetto in movimento

Dettagli

Meccanica dei sistemi di punti materiali

Meccanica dei sistemi di punti materiali Meccanica dei sistemi di punti materiali Centro di massa Conservazione della quantità di moto Teorema del momento angolare Conservazione del momento angolare Teoremi di König Urti Antonio Pierro @antonio_pierro_

Dettagli

Fenomeni d urto. Dott.ssa Elisabetta Bissaldi

Fenomeni d urto. Dott.ssa Elisabetta Bissaldi Fenomeni d urto Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Esercizio 8.1 Il pendolo balistico è un dispositivo che veniva usato per misurare la velocità di

Dettagli

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola Fisica 15 Dicembre 2011 Test a risposta singola ˆ Una forza si dice conservativa quando: Il lavoro compiuto dalla forza su un qualsiasi cammino chiuso è nullo Il lavoro compiuto dalla forza su un qualsiasi

Dettagli

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4D 8 dicembre 008 EIFICA DI FISICA: lavoro ed energia Domande ) Forze conservative ed energia potenziale: (punti:.5) a) Dai la definizione di forza conservativa ed indicane le proprietà.

Dettagli

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d.

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d. Esercizio 1 Due blocchi di ugual massa m 1 = m sono collegati ad un filo ideale lungo l. Inizialmente, i due corpi sono mantenuti fermi e in contatto tra loro su un piano inclinato di θ con il quale i

Dettagli

Soluzione del Secondo Esonero A.A , del 28/05/2013

Soluzione del Secondo Esonero A.A , del 28/05/2013 Soluzione del Secondo Esonero A.A. 01-013, del 8/05/013 Primo esercizio a) Sia v la velocità del secondo punto materiale subito dopo l urto, all inizio del tratto orizzontale con attrito. Tra il punto

Dettagli

FISICA. MECCANICA: Principio conservazione quantità di moto. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. MECCANICA: Principio conservazione quantità di moto. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA MECCANICA: Principio conservazione quantità di moto Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LA QUANTITA DI MOTO QUANTITA DI MOTO Consideriamo un corpo di massa m che si

Dettagli

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2 1 Problema 1 Un blocchetto di massa m 1 = 5 kg si muove su un piano orizzontale privo di attrito ed urta elasticamente un blocchetto di massa m 2 = 2 kg, inizialmente fermo. Dopo l urto, il blocchetto

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 6. Dinamica degli urti

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 6. Dinamica degli urti 61 - Introduzione Cap 6 Dinamica degli urti Si ha urto tutte le volte che due corpi vengono a contatto ed hanno, nei punti della superficie di contatto, componenti delle velocitá, perpendicolari alla superficie

Dettagli

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica. Argomento 7 Quantità di moto e urti

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica. Argomento 7 Quantità di moto e urti Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 7 Quantità di moto e urti 2 La quantità di moto La quantità di moto di un corpo di massa m e velocità Ԧv è: Ԧq = m Ԧv La quantità

Dettagli

QUANTITA' DI MOTO SECONDA LEGGE DI NEWTON QUANTITA' DI MOTO* SECONDA LEGGE DI NEWTON (espressione equivalente) * In inglese momentum

QUANTITA' DI MOTO SECONDA LEGGE DI NEWTON QUANTITA' DI MOTO* SECONDA LEGGE DI NEWTON (espressione equivalente) * In inglese momentum QUANTITA' DI MOTO SECONDA LEGGE DI NEWTON QUANTITA' DI MOTO* SECONDA LEGGE DI NEWTON (espressione equivalente) * In inglese momentum QUANTITA' DI MOTO DI UN SISTEMA Ricordando che: Si può scrivere: RELAZIONE

Dettagli

p i = 0 = m v + m A v A = p f da cui v A = m m A

p i = 0 = m v + m A v A = p f da cui v A = m m A Esercizio 1 Un carrello di massa m A di dimensioni trascurabili è inizialmente fermo nell origine O di un sistema di coordinate cartesiane xyz disposto come in figura. Il carrello può muoversi con attrito

Dettagli

1 PARZIALE - FISICA I per SCIENZE GEOLOGICHE A.A. 2018/2019, 11 febbraio 2019

1 PARZIALE - FISICA I per SCIENZE GEOLOGICHE A.A. 2018/2019, 11 febbraio 2019 PARZIALE - FISICA I per SCIENZE GEOLOGICHE A.A. 208/209, febbraio 209 ESERCIZIO PREREQUISITI In un piano cartesiano XY sono dati il vettore a = 2i + 2j e un vettore b giacente sull asse X. a) le coordinate

Dettagli

Risoluzione problema 1

Risoluzione problema 1 UNIVERSITÀ DEGLI STUDI DI PDOV FCOLTÀ DI INGEGNERI Ing. MeccanicaMat. Pari. 015/016 1 prile 016 Una massa m 1 =.5 kg si muove nel tratto liscio di un piano orizzontale con velocita v 0 = 4m/s. Essa urta

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Esercizio 1 Un corpo rigido è formato da un asta di lunghezza L = 2 m e massa trascurabile, ai cui estremi sono fissati due corpi puntiformi,

Dettagli

Quantità di moto e urti

Quantità di moto e urti INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu LEZIONE DEL 14 15 OTTOBRE 2008 Quantità di moto e urti 1 Il lavoro La quantità di moto di una particella di massa m che si muove con velocità

Dettagli

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura:

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura: Esercizio 1 Un blocco di massa M inizialmente fermo è lasciato libero di muoversi al tempo t = 0 su un piano inclinato scabro (µ S e µ D ). a) Determinare il valore limite di θ (θ 0 ) per cui il blocco

Dettagli

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα.

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα. Esercizio 1 a) Fissiamo un asse di riferimento x parallelo al piano inclinato, diretto verso l alto e con origine nella posizione iniziale del corpo alla base del piano. Sia m la massa del corpo, P la

Dettagli

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina

Dettagli

Lezione XVI Impulso, forze impulsive e urti

Lezione XVI Impulso, forze impulsive e urti Lezione XVI Impulso, forze impulsive e urti 1 Impulso di una forza Sempre nell ambito della dinamica del punto materiale, dimostriamo il semplice teorema dell impulso, che discende immediatamente dalla

Dettagli

Esonero 14 Novembre 2016

Esonero 14 Novembre 2016 Esonero 14 Novembre 2016 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esercizio 1 Un corpo di massa m è inizialmente fermo

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Esercizio 1 Un asta rigida di lunghezza L = 0.8 m e massa M è vincolata nell estremo A ad un perno liscio ed è appesa all altro estremo

Dettagli

Lavoro, energia, urti. Esercizi.

Lavoro, energia, urti. Esercizi. Lavoro, energia, urti. Esercizi. Mauro Saita Per commenti o segnalazioni di errori scrivere, per favore, a maurosaita@tiscalinet.it Febbraio 204 Indice Lavoro. Energia. Urti. 2 Soluzioni 5 Lavoro. Energia.

Dettagli

IMPULSO E QUANTITÀ DI MOTO STA DLER DOCUMENTI T R AT T I O ISPIRATI DA L WEB

IMPULSO E QUANTITÀ DI MOTO STA DLER DOCUMENTI T R AT T I O ISPIRATI DA L WEB IMPULSO E QUANTITÀ DI MOTO DI LUIGI BOSCAINO BIBLIOGRAFIA: I PROBLEMI DELLA FISICA - CUTNELL, JOHNSON, YOUNG, STA DLER DOCUMENTI T R AT T I O ISPIRATI DA L WEB L IMPULSO Il grafico a destra rappresenta

Dettagli

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia

Dettagli

Moodle. La dinamica 10/11/16. valido per corpi macroscopici. oltre quello serve meccanica relativistica di Einstein

Moodle. La dinamica 10/11/16. valido per corpi macroscopici. oltre quello serve meccanica relativistica di Einstein Moodle Iscrivetevi alla pagina Moodle di questo corso! Tutte le trasparenze + quiz settimanale I quiz valgono come il parziale Senza limite di tentativi moodle.unica.it -> login esse3 -> Facolta di scienze

Dettagli

Relazioni fondamentali nella dinamica dei sistemi

Relazioni fondamentali nella dinamica dei sistemi Relazioni fondamentali nella dinamica dei sistemi L. P. 2 Maggio 2010 1. Quantità di moto e centro di massa Consideriamo un sistema S costituito da N punti materiali. Il punto i (i = 1,..., N) possiede

Dettagli

Dinamica. Obbiettivo: prevedere il moto dei corpi una volta note le condizioni iniziali e le interazioni con l'ambiente

Dinamica. Obbiettivo: prevedere il moto dei corpi una volta note le condizioni iniziali e le interazioni con l'ambiente Dinamica Obbiettivo: prevedere il moto dei corpi una volta note le condizioni iniziali e le interazioni con l'ambiente Tratteremo la Dinamica Classica, valida solo per corpi per i quali v

Dettagli

Nome Cognome Numero di matricola Coordinata posizione

Nome Cognome Numero di matricola Coordinata posizione Nome Cognome Numero di matricola Coordinata posizione Terzo compito di Fisica Generale + Esercitazioni, a.a. 07-08 4 Settembre 08 ===================================================================== Premesse

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Lezione 5. L equilibrio dei corpi. Lavoro ed energia.

Lezione 5. L equilibrio dei corpi. Lavoro ed energia. Lezione 5 L equilibrio dei corpi. Lavoro ed energia. Statica E la parte della Meccanica che studia l equilibrio dei corpi. Dai principi della dinamica sappiamo che se su un corpo agiscono delle forze allora

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio:

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio: Meccanica 24 Aprile 2018 Problema 1 (1 punto) Un blocco di mass M=90 kg è attaccato tramite una molla di costante elastiìca K= 2 10 3 N/m, massa trascurabile e lunghezza a riposo nulla, a una fune inestensibile

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

F (t)dt = I. Urti tra corpi estesi. Statica

F (t)dt = I. Urti tra corpi estesi. Statica Analogamente a quanto visto nel caso di urto tra corpi puntiformi la dinamica degli urti tra può essere studiata attraverso i principi di conservazione. Distinguiamo tra situazione iniziale, prima dell

Dettagli

PROVA PARZIALE DEL 27 GENNAIO 2016

PROVA PARZIALE DEL 27 GENNAIO 2016 PROVA PARZIALE DEL 27 GENNAIO 2016 February 2, 2016 Si prega di commentare e spiegare bene i vari passaggi, non di riportare solo la formula finale. PROBLEMA 1) Due blocchi, collegati da uno spago privo

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

v 2 f Dopo l urto, esprimiamo ancora l energia cinetica totale del sistema secondo König:

v 2 f Dopo l urto, esprimiamo ancora l energia cinetica totale del sistema secondo König: Esercizio Un proiettile di massa m =8gèlanciatocontrounloccodimassaM =2.5 kg,inizialmenteariposoal ordo di un tavolo liscio ad altezza h =mdalsuolo. Ilproiettilesiconficcanelloccoe,dopol urto, cade a distanza

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1 7 Una molla ideale di costante elastica k 48 N/m, inizialmente compressa di una quantità d 5 cm rispetto alla sua posizione a riposo, spinge una massa m 75 g inizialmente ferma, su un piano orizzontale

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 208/209 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (6 ore): Matteo Avolio Lezione del 04/04/209 2 h (3:30-5:30, Aula G0, Golgi) - SOLUZIONI ESERCITAZIONI LAVORO

Dettagli

Lezione 7 IMPULSO QUANTITA di MOTO URTI

Lezione 7 IMPULSO QUANTITA di MOTO URTI Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Lezione 7 IMPULSO QUANTITA di MOTO URTI Quantità di moto 2 La quantità di moto di un corpo è il prodotto della massa

Dettagli

3.Dinamica e forze. La dinamica è quella parte della meccanica che studia il moto di un corpo facendo riferimento alle cause esterne che lo generano.

3.Dinamica e forze. La dinamica è quella parte della meccanica che studia il moto di un corpo facendo riferimento alle cause esterne che lo generano. 3.Dinamica e forze La dinamica è quella parte della meccanica che studia il moto di un corpo facendo riferimento alle cause esterne che lo generano. Le due grandezze fondamentali che prendiamo in considerazione

Dettagli

Università di Ferrara Dipartimento di Scienze Chimiche e Farmaceutiche Corso di Laurea Triennale in Chimica AA: Fisica 1.

Università di Ferrara Dipartimento di Scienze Chimiche e Farmaceutiche Corso di Laurea Triennale in Chimica AA: Fisica 1. Università di Ferrara Dipartimento di Scienze Chimiche e Farmaceutiche Corso di Laurea Triennale in Chimica AA: 2018-2019 Fisica 1 Modulo 6 Quantità di moto, urti e centro di massa Dr. Luciano L. Pappalardo

Dettagli

x : p x,i = 2 MV 0 = MV 3 cosθ MV 4 cosθ 4 = p x,f y : p y,i = 0 = MV 3 sinθ 3 3 MV 4 sinθ 4 = p x,f

x : p x,i = 2 MV 0 = MV 3 cosθ MV 4 cosθ 4 = p x,f y : p y,i = 0 = MV 3 sinθ 3 3 MV 4 sinθ 4 = p x,f Esercizio 1 Il corpo 1 e il corpo 2, entrambi considerabili come puntiformi, si trovano su un piano orizzontale xy privo di attrito. Inizialmente, rispetto al sistema di riferimento inerziale x y, il corpo

Dettagli

FORZE E PRINCIPI DELLA DINAMICA (1/29)

FORZE E PRINCIPI DELLA DINAMICA (1/29) FORZE E PRINCIPI DELLA DINAMICA (1/29) una forza applicata ad un corpo, libero di muoversi, lo mette in movimento o lo arresta (effetto dinamico della forza); una forza, applicata ad un corpo vincolato,

Dettagli

Lezione 4 Energia potenziale e conservazione dell energia

Lezione 4 Energia potenziale e conservazione dell energia Lezione 4 Energia potenziale e conservazione dell energia 4. Energia potenziale e conservazione dell energia Energia potenziale di: Forza peso sulla superficie terrestre Serway, Cap 7 U = mgh di un corpo

Dettagli

Si chiama campo di forze una zona di spazio in cui sia possibile associare ad ogni punto un vettore forza

Si chiama campo di forze una zona di spazio in cui sia possibile associare ad ogni punto un vettore forza Lavoro ed Energia Si chiama campo di forze una zona di spazio in cui sia possibile associare ad ogni punto un vettore forza F= F r cioè la forza agente sul punto dipende dalla sua posizione. Un campo di

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

DINAMICA 2. Quantità di moto e urti Attrito tra solidi Attrito viscoso Forza elastica Proprietà meccaniche dei solidi Forza centripeta

DINAMICA 2. Quantità di moto e urti Attrito tra solidi Attrito viscoso Forza elastica Proprietà meccaniche dei solidi Forza centripeta DINAMICA 2 Quantità di moto e urti Attrito tra solidi Attrito viscoso orza elastica Proprietà meccaniche dei solidi orza centripeta 2 Seconda Legge di Newton: quantità di moto Dalla seconda Legge di Newton

Dettagli

DINAMICA DEI SISTEMI DI PUNTI MATERIALI

DINAMICA DEI SISTEMI DI PUNTI MATERIALI DINAMICA DEI SISTEMI DI PUNTI MATERIALI DOWNLOAD Il pdf di questa lezione (0418a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 18/04/2012 CENTRO DI MASSA Si consideri un insieme di

Dettagli

DINAMICA DEL PUNTO MATERIALE

DINAMICA DEL PUNTO MATERIALE DINAMICA DEL PUNTO MATERIALE Studio delle cause che determinano il moto Introduzione di nuove grandezze: massa e forza Affermazione di Galileo: la forza determina una variazione del moto, non il moto stesso

Dettagli

Forze conservative. Conservazione dell energia. Sistemi a molti corpi 1 / 37

Forze conservative. Conservazione dell energia. Sistemi a molti corpi 1 / 37 Forze conservative Il nome forze conservative deriva dal fatto che le forze che appartengono a questa categoria sono tali da conservare l energia. Una forza è conservativa se il lavoro da essa compiuto

Dettagli

Quantità di moto. p=m v

Quantità di moto. p=m v Quantità di moto Come l'energia, ha una legge di conservazione che semplifica lo studio dei problemi Ha più moto un treno che si muove a 20 Km/h o una lepre alla stessa velocità? Ha piu' moto una lepre

Dettagli

DINAMICA DEL PUNTO MATERIALE. Studio delle cause che determinano il moto Introduzione di nuove grandezze:

DINAMICA DEL PUNTO MATERIALE. Studio delle cause che determinano il moto Introduzione di nuove grandezze: DINAMICA DEL PUNTO MATERIALE Studio delle cause che determinano il moto Introduzione di nuove grandezze: massa e forza Affermazione di Galileo: la forza determina una variazione del moto, non il moto stesso

Dettagli

La lezione di oggi. Urti. Quantità di moto. Cinematica rotazionale

La lezione di oggi. Urti. Quantità di moto. Cinematica rotazionale La lezione di oggi Quantità di moto Urti Cinematica rotazionale ! Quantità di moto e impulso! Urti elastici e anelastici! Cinematica rotazionale 3 La quantità di moto p mv " E una grandezza vettoriale

Dettagli

Un modello di studio. Gli urti tra palline

Un modello di studio. Gli urti tra palline QUANTITA DI MOTO Un modello di studio Gli urti tra palline Newton osservò che la velocità e la massa hanno un ruolo importante nel moto Quantità di Moto La quantità di moto di un corpo è il prodotto della

Dettagli

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica.

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. Questo capitolo vuole fornire una serie di esempi pratici dei concetti illustrati nei capitoli precedenti con qualche approfondimento. Vediamo subito

Dettagli

4. I principi della meccanica

4. I principi della meccanica 1 Leggi del moto 4. I principi della meccanica Come si è visto la cinematica studia il moto dal punto di vista descrittivo, ma non si sofferma sulle cause di esso. Ciò è compito della dinamica. Alla base

Dettagli

Meccanica 17 giugno 2013

Meccanica 17 giugno 2013 Meccanica 17 giugno 2013 Problema 1 (1 punto) Un punto si muove nel piano y-x con legge oraria: Con x,y misurati in metri, t in secondi. a) Determinare i valori di y quando x=1 m; b) Determinare il modulo

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.5 Urti

Anno Accademico Fisica I 12 CFU Esercitazione n.5 Urti Anno Accademico 2016-2017 Fisica I 12 CFU Esercitazione n.5 Urti Esercizio n.1 In un piano una particella A si muove con una velocità di 5 m/s diretta lungo la bisettrice del I e III quadrante e con il

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

ESERCIZIO 1. Diagramma delle forze. , da cui si ricava: v 2 1 L. a) T = m

ESERCIZIO 1. Diagramma delle forze. , da cui si ricava: v 2 1 L. a) T = m ESERCIZIO 1 Un corpo di massa m = 100 g è collegato a uno degli estremi di un filo ideale (inestensibile e di massa trascurabile) di lunghezza L = 30 cm. L altro capo del filo è vincolato ad un perno liscio.

Dettagli

Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze):

Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): Forze Conservative In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): L = f i F d r, può dipendere dal percorso seguito dalla particella. Se il lavoro fatto da una forza

Dettagli

FISICA GENERALE PER INFORMATICA Prova scritta, 12 Gennaio 2007

FISICA GENERALE PER INFORMATICA Prova scritta, 12 Gennaio 2007 FISICA GENERALE PER INFORMATICA Prova scritta, 12 Gennaio 2007 1. Una particella si muove sul piano x y piano e la sua posizione ad ogni istante Ø è data dal vettore Ö ¾ ص Ø ½µ Trovare: a) la forma della

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è

Dettagli

Meccanica dei Sistemi e Termodinamica modulo di: Urti e Reazioni Corsi di Laurea in: Fisica e Astrofisica, Tecnologie Fisiche Innovative

Meccanica dei Sistemi e Termodinamica modulo di: Urti e Reazioni Corsi di Laurea in: Fisica e Astrofisica, Tecnologie Fisiche Innovative Meccanica dei Sistemi e Termodinamica modulo di: Urti e Reazioni Corsi di Laurea in: Fisica e Astrofisica, Tecnologie Fisiche Innovative Lezioni ( docente: Savrié Mauro ) lunedì : 11:00-13:00 aula G1 martedì:

Dettagli

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it)

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it) Esercizio 001 Si consideri un piano inclinato di un angolo = 30 rispetto all orizzontale e di lunghezza L = 1 m. Sul piano è posta una massa m = 5, 0 kg collegata alla cima del piano tramite una molla

Dettagli

Forze conservative. Ø Il sistema deve consistere di due o più oggetti ed il corpo ed il resto del sistema devono interagire mediante una forza

Forze conservative. Ø Il sistema deve consistere di due o più oggetti ed il corpo ed il resto del sistema devono interagire mediante una forza Forze conservative Affinché si possa parlare di energia potenziale di un sistema, il sistema e le forze che agiscono su di esso devono avere determinate proprietà. Ø Il sistema deve consistere di due o

Dettagli

Dinamica. Giovanni Torrero maggio 2006

Dinamica. Giovanni Torrero maggio 2006 Dinamica Giovanni Torrero maggio 006 1 I sistemi di riferimento inerziali Nello studio della dinamica sono molto importanti i sistemi di riferimento rispetto ai quali vengono studiati i fenomeni. L esperienza

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

Lezione mecc n.21 pag 1. Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento

Lezione mecc n.21 pag 1. Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento Lezione mecc n.21 pag 1 Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento Lezione mecc n.21 pag 2 28 aprile 2006 Esercizio 2 Nella

Dettagli

Meccanica A.A. 2011/12 - Secondo compito d'esonero 11 giugno 2012

Meccanica A.A. 2011/12 - Secondo compito d'esonero 11 giugno 2012 Un asta omogenea di massa M e lunghezza si trova in quiete su di un piano orizzontale liscio e privo di attrito; siano P =(,/ P =(,-/ le coordinate cartesiane degli estremi dell asta in un dato sistema

Dettagli

1 Fisica 1 ( )

1 Fisica 1 ( ) 1 Fisica 1 (08 01-2002) Lo studente risponda alle seguenti domande (2 punti per ogni domanda) 1) Scrivere il legame tra la velocità lineare e quella angolare nel moto circolare uniforme 2) Un punto materiale

Dettagli

Lezione 3 Dinamica del punto

Lezione 3 Dinamica del punto Lezione 3 Dinamica del punto Argomenti della lezione Principio di inerzia (prima legge di ewton) 2 legge di ewton 3 legge di ewton (principio di azione e reazione) Quantità di moto Risultante delle forze

Dettagli

Lecce- XI scuola estiva di fisica Mirella Rafanelli. I sistemi estesi. La dinamica oltre il punto..

Lecce- XI scuola estiva di fisica Mirella Rafanelli. I sistemi estesi. La dinamica oltre il punto.. Lecce- XI scuola estiva di fisica - 2018 Mirella Rafanelli I sistemi estesi La dinamica oltre il punto.. Lecce- XI scuola estiva di fisica - 2018 Mirella Rafanelli Nota bene: quanto segue serve come strumento

Dettagli

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

Tutorato di Fisica 1 - AA 2014/15

Tutorato di Fisica 1 - AA 2014/15 Tutorato di Fisica - AA 04/5 Emanuele Fabbiani 8 febbraio 05 Quantità di moto e urti. Esercizio Un carrello di massa M = 0 kg è fermo sulle rotaie. Un uomo di massa m = 60 kg corre alla velocità v i =

Dettagli

Corso di Fisica Generale 1

Corso di Fisica Generale 1 Corso di Fisica Generale 1 a.a. 2018/2019 corso di laurea in Ingegneria dell'automazione, Informatica, Biomedica, Telecomunicazioni ed Elettronica canali CIS-FER e RON-Z 11 lezione ( 8 / 11 / 2018) Prof.

Dettagli