METODI CLASSICI DI RILEVAMENTO
|
|
|
- Norma Alessia Elia
- 9 anni fa
- Visualizzazioni
Transcript
1 METODI CLICI DI RILEVMENTO Organizzazione delle operazioni di rilievo L organizzazione dei lavori di rilevamento è normalmente strutturata in fasi successive che seguono una gerarchia da un punto di vista logico (non sempre anche cronologico): 1) Inquadramento 2) Raffittimento 3) Rilievo di dettaglio assando dalla prima alla terza fase aumenta notevolmente il numero dei punti rilevati mentre diminuisce l accuratezza, che nella fase conclusiva (dettaglio) deve essere compatibile con lo scopo del rilievo (cartografia a una certa scala, monitoraggio deformazioni o altro) mentre nelle fasi a monte deve essere superiore. d es., per ottenere nel rilievo di dettaglio un accuratezza planimetrica < 40 cm per una carta catastale 1:2.000, occorre che i punti di inquadramento abbiano accuratezza di ordine circa decimetrico. 1) Rilievi di inquadramento La prima fase prevede la istituzione e la misura di RETI DI INQUDRMENTO costituite da un numero relativamente limitato di punti (detti vertici) opportunamente distribuiti sul territorio 1
2 Questa fase del rilevamento viene oggi svolta quasi sempre con la tecnica satellitare G, realizzando RETI G. rima del G si utilizzavano reti di TRINGOLZIONE, basate su misure di angoli azimutali e distanze, integrate (non sempre) da misure di livellazione trigonometrica per la parte altimetrica Triangolazione a maglie contigue Triangolazione a catena Lo schema classico della triangolazione (VIII sec.) sviluppava al massimo le misure angolari e al minimo le misure delle distanze dette basi (teoricamente ne basterebbe 1 sola per dimensionare la rete), che venivano determinate con misure dirette di precisione, molto laboriose. Con l avvento dei distanziometri (ca ) le misure di distanza hanno assunto sempre più importanza nelle reti fino a realizzare anche in certi casi reti di sole distanze (trilaterazioni). La soluzione ottimale prevede oggi angoli e distanze pressoché in ugual quantità. Con gli schemi a rete si raggiunge una elevata ridondanza (n di misure superiore allo stretto necessario) da cui deriva un elevata accuratezza delle coordinate dei vertici e un buon controllo della propagazione degli errori e della presenza di eventuali errori grossolani. 2
3 Esempi di reti di inquadramento RETE IGM 95: rete G coprente tutta l Italia, realizzata attorno al 1995 in un unico ordine. Datum WG84-ETRF89, coordinate Roma40 determinate con parametri di trasformazione RETE DI TRINGOLZIONE IGM: rete classica coprente tutta l Italia, organizzata in ordini (I, II, III e IV) con densità crescente e accuratezza decrescente. Datum Roma40. RETE DI TRINGOLZIONE DEL CTTO: raffittimento della rete IGM (escluso IV ordine) articolato in 3 livelli gerarchici (rete, sottorete e dettaglio). Datum catastali essel. RETI REGIONLI: Raffittimenti della rete IGM95 e della rete classica di triangolazione IGM operati dalle Regioni per l inquadramento della carta tecnica RETI LOCLI possono essere realizzate per l inquadramento di cantieri di opere e infrastrutture, per il monitoraggio di deformazioni del suolo o di manufatti o per altre esigenze ingegneristiche 2) Rilievi di raffittimento Nella fase di raffittimento si dispone già di una rete di inquadramento, e con ulteriori misure si determinano nuovi punti raffittendo o densificando localmente la rete Le tecniche normalmente impiegate per il raffittimento sono: a) reti di raffittimento b) poligonali c) metodi di intersezione o riattacco 3
4 2.a) Reti di raffittimento i realizza una rete locale di triangolazione comprendente i vertici di nuova determinazione e un congruo numero di vertici della rete di inquadramento Le misure (angoli e distanze) collegano i nuovi punti tra loro e a quelli della rete di inquadramento, in modo da raggiungere una adeguata ridondanza Il calcolo della rete di raffittimento può essere effettuato considerando i vertici di inquadramento noti e privi di errore (quindi fissando tali vertici), oppure eseguendo un primo calcolo intrinseco (a minimi vincoli o a rete libera) seguito da una rototraslazione (Helmert) sui vertici della rete di inquadramento 2.b) oligonali La poligonale è un caso particolare di rete di triangolazione in cui ogni vertice è collegato solo con il precedente e il successivo, mediante misure angolari e di distanza a) oligonale aperta a estremi vincolati a scopo di raffittimento b) oligonale chiusa non orientata (sistema di riferimento locale) utilizzata per rilievi locali Vertici noti (rete inquadramento) Vertici da determinare 4
5 Vantaggi delle poligonali sono la rapidità (e quindi economia) di esecuzione, e la possibilità di attraversare aree difficili per il rilevamento come zone urbane (anche vicoli dei centri storici), zone a bosco, gallerie vantaggio delle poligonali è la scarsa ridondanza. d es. nei due schemi (planimetrici) della figura soprastante si ha: a) Incognite: 4 nuovi vertici x 2 coordinate 8 Osservazioni: 6 angoli + 5 distanze 11 r b) Incognite: 4 x (il vertice sull asse x ha solo la x incognita) Osservazioni: 6 angoli + 6 distanze 12 r er questo motivo il numero dei vertici di una poligonale non deve essere troppo alto, in genere < 10 Una poligonale può essere solo planimetrica o plano-altimetrica. er la parte altimetrica i dislivelli vengono determinati contestualmente alle altre misure mediante gli angoli zenitali (livellazione trigonometrica) e in genere compensati a parte 2.c) Metodi di intersezione o riattacco ono schemi di rilevamento tra i più classici, che consentono in genere di determinare un solo punto incognito ed hanno, nella formulazione classica, ridondanza nulla (numero di osservazioni pari allo stretto necessario). Nella pratica vengono integrati con alcune osservazioni aggiuntive per avere una ridondanza non nulla, e gli schemi classici vengono utilizzati per calcolare le coordinate di prima approssimazione 5
6 2.c.1) Intersezione in avanti o diretta i fa stazione con un teodolite su due vertici noti, e misurando due angoli azimutali si determina un terzo punto incognito Incognite : Dati: α, β (misure) oluzione : d ϑ d Y Y ridondanza r ( ) + ( Y Y ) arctan Y γ ˆ 180 α β ϑ + d + d d sin β sin γ ϑ + α Y cosϑ sinϑ 2 + k 180, k 0,1,2 6
7 Questa tecnica permette la determinazione di punti inaccessibili dato che nel punto incognito non si deve fare stazione né porre riflettori per misura di distanze, è sufficiente che il punto sia visibile La quota di può essere determinata mediante i 2 dislivelli da e misurati con livellazione trigonometrica e successiva compensazione con pesi inversamente proporzionali ai quadrati delle distanze 2.c.2) pertura a terra i fa stazione con un teodolite integrato nel punto incognito, e si misura un angolo e una distanza rispetto a 2 vertici noti Incognite : Dati: γ, d (misure) ridondanza r La soluzione è del tutto analoga a quella del caso precedente, cambiano solo gli elementi di cui si dispone nel triangolo 7
8 E una tecnica semplice e molto utilizzata nei rilievi catastali, dove di solito il punto è un trigonometrico o F accessibile, o uno spigolo di edificio, mentre è un altro trigonometrico a cui non serve accedere. 2.c.3) Intersezione con 2 distanze i fa stazione con un teodolite integrato nel punto incognito, e si misurano 2 distanze rispetto a 2 vertici noti Incognite : Dati: d, d (misure) ridondanza r La soluzione è del tutto analoga a quella dei casi precedenti, cambiano solo gli elementi di cui si dispone nel triangolo Questa tecnica può essere utile per rilievi locali (ad es. per determinare un punto rispetto a 2 fabbricati esistenti) 8
9 2.c.4) Intersezione inversa i fa stazione con un teodolite solo nel punto incognito, e si misurano 2 angoli rispetto a 3 vertici noti. Questo metodo ha il vantaggio di non richiedere stazioni sui trigonometrici, ma solo che essi siano visibili Incognite : Dati: α, α (misure) 1 C C 2 oluzione : ridondanza dalle coordinate dei 3 vertici noti C ˆ ϑ ϑ C r ma poi non si riesce a risolvere il trigonometriche (teoremi dei seni e di Carnot) Esistono varie soluzioni a questo problema (metodo di nellius, quali una delle più usate è quella di Cassini, è possibile calcolare le distanze d e d e l'angolo quadrilatero con le consuete formule othenot, ecc.) tra le basata sulla seguente costruzione grafica : C 9
10 - dal punto si conduce la perpendicolare ad - dal punto C si conduce la perpendicolare a C - dal punto si conduce la perpendicolare a, che interseca le precedenti due in R ed - si traccia la semicirconferenza circoscritta al triangolo rettangolo R e quella circoscritta al triangolo rettangolo R, che sono le due metà di un stessa circonferenza avendo il diametro R in comune - per i punti, C,, si traccia una circonferenza analoga alla precedente - gli angoli R e C sono rispettivamente uguali ad α 1 e α 2 in quanto angoli alla circonferenza che sottendono lo stesso arco - il punto si trova all intersezione delle due circonferenze e può quindi essere trovato graficamente determinando R ed in base agli angoli α 1 e α 2 e poi tracciando le due circonferenze per 3 punti - se i punti,, C, appartengono a 1 stessa circonferenza si ha il cosiddetto caso critico, indeterminato; conviene adottare configurazioni lontane da quella critica 10
11 tante questa costruzione, si dimostra che la soluzione analitica è data dalle seguenti formule: Y R R Y C Y YC + R e infine : + + ( Y Y ) ( ) + ( YC Y ) ( ) Y Y 1 R R R C cotα 1 cotα 1 cotα cotα 2 2 Y + R Y ( Y Y ) R + Y R R 3) Rilievo di dettaglio Le tecniche normalmente impiegate per il rilievo di dettaglio sono: a) rilievo per coordinate polari o celerimetrico b) intersezione in avanti c) G stop and go o RTK 3.a) Rilievo per coordinate polari o celerimetrico i fa stazione in un punto di coordinate note ( ) con un teodolite integrato (con distanziometro) e per ogni punto da rilevare si misura: 11
12 - lettura cerchio orizzontale l i - angolo zenitale ϕ i - distanza inclinata d i - altezza della mira h i Tra i punti osservati da va incluso almeno un punto noto V necessario per l'orientamento della stazione : lettura azimutale su V anomalia direzione V ϑ ϑ ϑ 0 i l i V l + ϑ 0 V ϑ V V x arctan y per confronto si ricava la costante di che sommata l V V x y + k π orientamento : alle letture azimutali fornisce le anomalie dei punti osservati: 12
13 Le distanze inclinate si riducono d 0i d i sinϕ i al piano orizzontale : e infine le coordinate dei punti di dettaglio osservati si ottengono con le formule del trasporto di coordinate : x y i i x y + d + d 0i 0i sinϑ i cosϑ i er la parte altimetrica, i dislivelli tra la stazione e i punti osservati si calcolano dagli angoli zenitali (livellazione trigonometrica) : 1 k 2 i d0i cotϕi + d0i + h hi 2R e infine le quote dei punti osservati si ottengono da : z i z + i (somma algebrica) 3.b) Rilievo per intersezione in avanti i adotta quando i punti da rilevare sono inaccessibili; lo schema e relativa soluzione sono quelli già trattati tra i metodi di riattacco 13
IL PRINCIPIO DELLE INTERSEZIONI
IL PRINCIPIO DELLE INTERSEZIONI Le intersezioni costituiscono, nella topografia classica, un metodo di rilievo di appoggio non autonomo, ma da utilizzare in particolari contesti a integrazione di altre
Indice. Prefazione. 3 Capitolo 1 Gli schemi generali del rilievo topografico e i sistemi di riferimento
Indice IX Prefazione 3 Capitolo 1 Gli schemi generali del rilievo topografico e i sistemi di riferimento 3 1.1 Lo schema generale del rilevamento Topografico 5 1.1.1 Lo schema del rilevamento topografico
PROGETTAZIONE ANNUALE PER COMPETENZE Classe III Genio rurale PT
ISTITUTO D ISTRUZIONE SUPERIORE TECNICA AGRARIA Mario Rigoni Stern Bergamo PROGETTAZIONE ANNUALE PER COMPETENZE Classe III Genio rurale PT Pagina 1 di 7 AREA TECNICO SCIENTIFICA Il piano annuale dell articolazione
UNITÀ I1-3 LE INTERSEZIONI
UNITÀ I1-3 LE INTERSEZIONI IL PRINCIPIO DELLE INTERSEZIONI Le intersezioni costituiscono, nella topografia classica, un metodo di rilievo di appoggio non autonomo, ma da utilizzare in particolari contesti
CORSO COSTRUZIONE AMBIENTE TERRITORIO
ISTITUTO DI ISTRUZIONE SUPERIORE EINAUDI ALBA CORSO COSTRUZIONE AMBIENTE TERRITORIO PROGRAMMA: CLASSE QUARTA SERALE ANNO SCOLASTICO 2018-2019 MATERIA TOPOGRAFIA NESSUN TESTO ADOTTATO DOCENTE CLASSE FIRMA
L integrazione di GPS con altri strumenti topografici
Scuola Regionale Servizi GPS di posizionamento per il territorio o e il catasto 16 Febbraio 2006 L integrazione di GPS con altri strumenti topografici Ing.. Marco Scaioni Politecnico di Milano D.I.I.A.R.
COMPLEMENTI DI TOPOGRAFIA 1. COORDINATE PLANIMETRICHE
OMLMTI DI TOOGRFI 1. OORDIT LIMTRIH In Topografia le determinazioni planimetriche di punti vengono effettuate partendo da altri punti di coordinate note (punti trigonometrici). Il sistema di coordinate
CORSO DI TOPOGRAFIA ITCGS CECCHERELLI ROMA PROF. P. SCIARRA
CORSO DI TOPOGRAFIA ITCGS CECCHERELLI ROMA PROF. P. SCIARRA CLASSE 3E Contenuti Prerequisiti Conoscenze Competenze Modulo A Lo studio delle figure piane x Conoscere le relazioni possedute dalle figure
TRIGONOMETRIA E COORDINATE
Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli
Il rilievo topografico ha lo scopo di determinare, mediante misure, la posizione completa dei punti
CELERIMENSUR Il rilievo topografico ha lo scopo di determinare, CRITERI ORGNIZZTIVI DEI RILIEVI mediante misure, la posizione completa dei punti individuati sul terreno, calcolandone le coordinate plano
RILIEVO E RAPPRESENTAZIONE DEL TERRITORIO
Corsi di Laurea in: - Gestione tecnica del territorio agroforestale e Sviluppo rurale - Scienze forestali e ambientali - Costruzioni rurali e Topografia RILIEVO E RAPPRESENTAZIONE DEL TERRITORIO 4. Il
I.I.S. "Morea-Vivarelli"
I.I.S. "Morea-Vivarelli" FABRIANO Sez. Geometri: Progetto Cinque corso di TOPOGRAFIA & FOTOGRAMMETRIA a.s.2012/2013 prof. FABIO ANDERLINI classe IVa A Geometri PERCORSO ESTIVO PER STUDENTI CON DEBITO FORMATIVO
Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli
Topografia la scienza che studia i mezzi e i procedimenti operativi per il rilevamento e la rappresentazione grafica, su superficie piana (un foglio di carta) di una porzione limitata di terreno.... è
Il problema di Pothenot-Snellius
Il problema di othenot-snellius impostazione alternativa a quella proposta nel testo) Le intersezioni dirette in avanti e laterale) richiedono un semplice e rapido lavoro di calcolo, ma sono spesso complicate
LA CELERIMENSURA RILEVAMENTO PLANO-ALTIMETRICO DI DETTAGLIO E DI APPOGGIO
LA CELERIMENSURA RILEVAMENTO PLANO-ALTIMETRICO DI DETTAGLIO E DI APPOGGIO GENERALITA Nelle operazioni di rilievo plano-altimetrico, relative alla determinazione della posizione dei punti di appoggio (reti
I.S.I.S. CUCUZZA SEZ. GEOMETRI C A L T A G I R O N E PROGRAMMA DI TOPOGRAFIA
I.S.I.S. CUCUZZA SEZ. GEOMETRI C A L T A G I R O N E PROGRAMMA DI TOPOGRAFIA Svolto nella classe IV Sezione C ANNO SCOLASTICO 2005-2006 I GONIOMETRI - Premessa - Microscopio semplice e composto - Il teodolite
Il Rilievo ed il disegno. La documentazione grafica è parte della documentazione di uno scavo archeologico.
Il Rilievo ed il disegno La documentazione grafica è parte della documentazione di uno scavo archeologico. La documentazione grafica è composta da: -Planimetria generale dell area di scavo -Piante di fase
Problemi sulla circonferenza verso l esame di stato
Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza
Verifica di Topografia
ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 5^ Geometri 1) Se il seno e il coseno di
RETI TOPOGRAFICHE. 1. Premessa
RETI TOPOGRAFICHE 1. Premessa Una rete topografica è costituita da un insieme di punti, detti vertici della rete, connessi fra di loro da un insieme di misure di distanze e di angoli azimutali e zenitali;
Indice. Concetti generali. Concetti generali. Metodi numerici. Concetti generali. Concetti generali. Area di un triangolo e formula di camminamento
LOLO DELLE REE oncetti generali Metodi numerici oncetti generali rea di un triangolo e formula di camminamento Formula di Erone oordinate polari oordinate cartesiane Indice Metodi grafo numerici Trilaterazioni
> valutazione degli scarti esistenti tra la forma approssimata e quella reale della Terra
TOPOGRAFIA Geodesia Studio della forma e delle dimensioni della Terra > scelta di modelli semplificati della Terra > valutazione degli scarti esistenti tra la forma approssimata e quella reale della Terra
Svolgimento prova di esame anno 2004
Svolgimento prova di esame anno 2004 Calcolo delle coordinate cartesiane (x,y) dei punti del rilievo rispetto a sistema di riferimento locale avente origine nella stazione 100 In prima analisi occorre
LE LIVELLAZIONI. Sono delle operazioni topografiche che consentono di misurare il dislivello tra due punti. Si possono classificare in:
LE LIVELLZIONI Sono delle operazioni topografiche che consentono di misurare il dislivello tra due punti. Si possono classificare in: TCHEOMETRIC d
CURRICOLO VERTICALE. Genio Rurale
CURRICOLO VERTICALE Anno 2015/16 Disciplina Tecnologie e Tecniche di Rappresentazione Grafica e Genio Rurale Finalità formative Il docente di Tecnologie e Tecniche di rappresentazione Grafica concorre
Verifica di Topografia
ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 4^ Geometri 1) 15 osservazioni sono sufficienti
SUPERIORE DI SAN DANIELE DEL FRIULI VINCENZO MANZINI CORSI DI STUDIO:
ISTITUTO STATALE di ISTRUZIONE SUPERIORE DI SAN DANIELE DEL FRIULI VINCENZO MANZINI CORSI DI STUDIO: Amministrazione, Finanza e Marketing/IGEA Costruzioni, Ambiente e Territorio/Geometri Liceo Linguistico/Linguistico
ESERCIZI. Risolvere il quadrilatero e determinare le coordinate dei due vertici C e D.
1 Dato il quadrilatero ABCD, i cui vertici si seguono in senso antiorario, di cui si conoscono le coordinate dei vertici A e C rispetto a un sistema di assi ortogonali: x A = - 23,55 m x C = 84,80 m y
Topografia e cartografia digitale
Prof. Fausto Sacerdote Topografia e cartografia digitale Capitolo 4. Reti topografiche dispense del corso Modulo Professionalizzante Corso per Tecnico in Cartografia Tematica per i Sistemi Informativi
COMPITI PER LE VACANZE DI TOPOGRAFIA - CLASSI QUARTE. Prof. Barbieri Silvia
OMPITI PER LE VNZE I TOPOGRFI LSSI QURTE Prof. arbieri Silvia Risolvere i seguenti esercizi di topografia ordinati per moduli: la difficoltà dell esercizio è indicata dal numero di (*). Nella risoluzione
RIDUZIONE DELLE DISTANZE
RIDUZIONE DELLE DISTANZE Il problema della riduzione delle distanze ad una determinata superficie di riferimento va analizzato nei suoi diversi aspetti in quanto, in relazione allo scopo della misura,
Dalle Norme Ministeriali. ISTITUTI TECNICI SETTORE TECNOLOGICO Indirizzo Costruzioni, Ambiente e Territorio TOPOGRAFIA.
Dalle Norme Ministeriali ISTITUTI TECNICI SETTORE TECNOLOGICO Indirizzo Costruzioni, Ambiente e Territorio Il docente di Topografia concorre a far conseguire allo studente, al termine del percorso quinquennale,
GEODESIA 2 PARTIAMO DALL IPOTESI DI ESEGUIRE MISURE DIRETTAMENTE SULLA SUPERFICIE DI RIFERIMENTO: L ELLISSOIDE
GEODESIA 2 PARTIAMO DALL IPOTESI DI ESEGUIRE MISURE DIRETTAMENTE SULLA SUPERFICIE DI RIFERIMENTO: L ELLISSOIDE si dimostra che la linea di minor lunghezza che congiunge due punti sull ellissoide è la geodetica:
Sistemi di riferimento
Sistemi di riferimento Cos è un sistema di riferimento? Un sistema di riferimento (SR) è un insieme di regole e misure per la determinazione delle posizioni spazio temporale di un qualsiasi punto sulla
ISTITUTO TECNICO PER GEOMETRI " PACINOTTI"
ISTITUTO TECNICO PER GEOMETRI " PACINOTTI" CONSUNTIVO DELLA PROGRAMMAZIONE SVOLTA a. s. 2017-2018 INDIRIZZO COSTRUZIONI AMBIENTE E TERRITORIO ART. LEGNO Classe 4L Materia TOPOGRAFIA Docente Prof. Domenico
D.Magni - Cartografia catastale (a.a. 2003/04) - L6 / III
Le operazioni per la costruzione della rete sono quelle viste in precedenza nell ambito dello studio della formazione del Nuovo Catasto Terreni (cfr. dispensa L3): In particolare la triangolazione catastale
RILEVAMENTO METRICO IN AMBITO LOCALE. 1. Determinazione della posizione dei punti su un edificio.
RILEVAMENTO METRICO IN AMBITO LOCALE 1. Determinazione della posizione dei punti su un edificio. 1.1. Determinazione per coordinate polari - Si supponga che siano note le coordinate cartesiane (x 0, y
RIPARTIZIONE DELLE SPESE PER LA MANUTENZIONE DI UNA STRADA INTERPODERALE
Massimo Curatolo Laureato in Ingegneria Civile presso l Università di Roma, è capo area presso la struttura centrale della Agenzia del Territorio e si occupa dell osservatorio dei valori immobiliari. Autore
E 100 100 N 100 RILIEVI PLANIMETRICI
200 101 E 100 100 103 102 203 202 201 N 100 300 RILIEVI PLANIMETRICI RILIEVI TOPOGRAFICI CONTROLLO E COMPENSAZIONE RETI DI INQUADRAMENTO SCHEMI GEOMETRICI RETI DI INQUADRAMENTO TRIANGOLAZIONI Indice INTERSEZIONI
ELEMENTI DI TOPOGRAFIA
Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)
ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1
Esercizio n.1 Un appezzamento di terreno quadrilatero ABCD è stato rilevato andando a misurare: AB = 345,65 m AD = 308,68 m CD = 195,44 m a = 95,3852 gon g = 115,5600 gon Rappresentare in scala opportuna
RILIEVO E RAPPRESENTAZIONE DEL TERRITORIO GEOMATICA
GEOMATICA Geomatica è un neologismo, sempre più diffuso anche se non ancora universalmente accettato, che include tutte le discipline del rilevamento territoriale e ambientale, e sottolinea che in esse
PROGETTAZIONE ANNUALE PER COMPETENZE Classe III Genio rurale GAT
ISTITUTO D ISTRUZIONE SUPERIORE TECNICA AGRARIA Mario Rigoni Stern Bergamo PROGETTAZIONE ANNUALE PER COMPETENZE Classe III Genio rurale GAT Pagina 1 di 11 AREA TECNICO - SCIENTIFICA Il piano annuale dell
STRUMENTI SEMPLICI - PROF. FERRARIO 2014/15
Segnali e mire: le funzioni I segnali sono manufatti in grado di materializzare, senza ambiguità, un punto sul terreno; le mire sono manufatti che permettono la visibilità a distanza del segnale. I segnali
R I L I E V O D I U N A S T A N Z A
R I L I E V O D I U N A S T A N Z A D O C E N T E l a u r a t a f f u r e l l i PROGRAMMA DEL CORSO - Geomatica e il rilievo dei beni culturali - Il rilievo diretto - Scale di rappresentazione e concetto
Prerequisiti Per affrontare questo argomento sono necessarie conoscenze in:. atematica di base. Risoluzione di triangoli e quadrilateri. alcolo delle
 N DIVIIONE DEI TERRENI Prerequisiti Per affrontare questo argomento sono necessarie conoscenze in:. atematica di base. Risoluzione di triangoli e quadrilateri. alcolo delle aree. Tecniche di rilievo
Testi verifiche 3 C 3 I a. s. 2008/2009
Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente
Don Bosco, A.S. 2013/14 Compiti per le vacanze - 2A
Don Bosco, A.S. 0/ Compiti per le vacanze - A. Risolvi le seguenti espressioni: [( ) ( ) ] [( ) 5 ] + : ( ) ( ) ( ( ) 5 ) 9 ( 5 ) ( 5 ) ( 7 5 ). Scomponi i seguenti polinomi: a b ax+bx+ay+6by c) x +x d)
ELEMENTI DI TOPOGRAFIA
Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)
Riconfinamento catastale
Riconfinamento catastale APPLICAZIONI PRATICHE ED ESEMPI brevi note a cura del Geometra Carlo Cinelli Considerazioni Generali Creare curiosità per la materia Vi parlerò di: a) Tipologie di Riconfinazione;
Circonferenza e cerchio
Cerchio e circonferenza - 1 Circonferenza e cerchio La circonferenza è il luogo geometrico dei punti del piano equidistanti da un unico punto detto centro. Il cerchio è l insieme costituito dai punti appartenenti
PIANO DI LAVORO PREVENTIVO a. s INDIRIZZO COSTRUZIONI AMBIENTE E TERRITORIO
ISTITUTO TECNICO PER GEOMETRI " PACINOTTI" PIANO DI LAVORO PREVENTIVO a. s. 2016-2017 INDIRIZZO COSTRUZIONI AMBIENTE E TERRITORIO Classe 4E Materia TOPOGRAFIA Docente Prof. Domenico Stumpo LIVELLO DI PARTENZA
Chi non risolve esercizi non impara la matematica.
2.8 esercizi 31 2.8 esercizi hi non risolve esercizi non impara la matematica. 1 Vero o falso? a. I punti (0, 2), (4, 4), (6, 0) e (2, 2) sono i vertici di un quadrato. V F b. Non esiste il coefficiente
Verifiche di matematica classe 3 C 2012/2013
Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico
Compito di matematica Classe III ASA 20 novembre 2014
Compito di matematica Classe III ASA 0 novembre 014 1. Risolvere le seguenti disequazioni irrazionali: 8 x x > 1 x x 1 (x 1) Soluzione (algebrica): La prima disequazione è del tipo A(x) > B(x) e l insieme
ELEMENTI DI TOPOGRAFIA
Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)
ELEMENTI DI TOPOGRAFIA
Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)
CIRCONFERENZA E CERCHIO
CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È
Risposte ai quesiti posti nella verifica
Risposte ai quesiti posti nella verifica classe 4^A Geometri 1) Qual è l espressione del dislivello nella livellazione clisimetrica? AB =Dp+h-l dove: p=pendenza D=distanza h=altezza strumento l=lettura,
Il rilievo fotogrammetrico
Il rilievo fotogrammetrico metodi e strumenti L ORIENTAMENTO 1 Equazioni di collinearità m11 x = xc c m 31 m y = yc c m 21 (X - X ) + m (X - X ) + m 31 (X - X ) + m (X - X ) + m 12 32 22 (Y - Y ) + m (Y
1 Funzioni trigonometriche
1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione
Costruzioni geometriche. (Teoria pag , esercizi )
Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
ISTITUTO TECNICO PER GEOMETRI PACINOTTI. PIANO DI LAVORO PREVENTIVO a. s CORSO COSTRUZIONI AMBIENTE E TERRITORIO
ISTITUTO TECNICO PER GEOMETRI PACINOTTI PIANO DI LAVORO PREVENTIVO a. s. 2016-2017 CORSO COSTRUZIONI AMBIENTE E TERRITORIO Classe 3C Materia TOPOGRAFIA Docente Prof. Domenico Stumpo LIVELLO DI PARTENZA
RILIEVO DIRETTO: strumenti e metodi. dr. arch. anna christiana maiorano _03
RILIEVO DIRETTO: strumenti e metodi dr. arch. anna christiana maiorano gli strumenti per il rilevamento architettonico Nel rilevamento architettonico e urbano vengono impiegati, per compiere le diverse
IIS A.Moro Dipartimento di Matematica e Fisica
IIS A.Moro Dipartimento di Matematica e Fisica Obiettivi minimi per le classi quarte - Matematica UNITA DIDATTICA CONOSCENZE COMPETENZE ABILITA Coniche e luoghi geometrici Le coniche Le coniche e i luoghi
Verifica di Topografia
ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 4^ Geometri 1) Se il seno e il coseno di
Esercizi riepilogativi sulle coniche verso l esame di stato
Esercizi riepilogativi sulle coniche verso l esame di stato n. 9 pag. 55 Sono date le curve α e β definite dalle seguenti relazioni: α : xy x y + 4 = 0 β : luogo dei punti P (k + ; 1 + k ), k R a) Dopo
LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI
LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI SPAZIO: l insieme di tutti i punti. PUNTI ALLINEATI: punti che appartengono alla stessa retta PUNTI COMPLANARI: punti che appartengono allo stesso
GPS e sistemi di riferimento
GPS e sistemi di riferimento Sistemi di riferimento e reti geodetiche Il posizionamento satellitare ha reso necessario l istituzione di sistemi di riferimento mondiali, la cui definizione è stata possibile
Problemi di massimo e minimo
Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi
Compito di matematica Classe III ASA 23 aprile 2015
Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9
ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI
ARROTONDANDO Cosa succede ad accostare figure identiche una all altra? Le figure ottenute che proprietà presentano? Posso trovare un qualche tipo di legge generale? Per rispondere a questa ed altre domande
APPUNTI DI LABORATORIO DI TOPOGRAFIA MODULO 2
PPUNTI DI LORTORIO DI TOPOGRFI MODULO PROLEMI SULLE COORDINTE CRTESINE E POLRI PROF. I.T.P. TRMONTNO NGELO PREMESS Per individuare la posizione di un punto nei piano, e per la successiva rappresentazione
Righe relative ai dati generali dell atto
UNITÀ M2 I DOCUMENTI DEGLI ATTI DI AGGIORNAMENTO Righe relative ai dati generali dell atto Riga tipo 0 (dati statistici) TIPO 0 DATA PROT.LLO COMUNE FOGLIO MAPPALI NOME PROFESS. TITOLO PROVINCIA 1 La riga
ESAME di STATO Disegni a cura del prof. Cristiano DOMENICHELLI Testi della prof.ssa Tiziana LA TORELLA LICEO SCIENTIFICO GALILEO FERRARIS
ESAME di STATO 00 Disegni a cura del prof. Cristiano DOMENICHELLI Testi della prof.ssa Tiziana LA TORELLA LICEO SCIENTIFICO GALILEO FERRARIS 1 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione
g P 200 AB B A B A arctan Y A B d sen
INTERSEZIONE IN AVANTI MEDODI DI RIATTACCO (INT. INVERSA, ERTURA A TERRA) INTERSEZIONE IN AVANTI Elementi noti: A(X A ;Y A ) B (X B ; Y B ) Elementi misurati: A e B Incognite: P (X P ; Y P ) Calcolo ell
Conoscenze. c. è un numero irrazionale d. La misura di una circonferenza si calcola moltiplicando la lunghezza del diametro per..
Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il segmento lungo quanto la circonferenza b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una costante che si indica
Repetitorium trigonometriae - per immagini
Repetitorium trigonometriae - per immagini Regole di base Ipotenusa Opposto Adiacente Tenendo a mente la seguente nomenclatura di un triangolo rettangolo si ha: sin = Opposto Ipotenusa cos = Adiacente
2x e y = 2x - x. 2 Disegnare le due parabole e determinare i loro punti comuni.
PROBLEMA Sono date le parabole y = x 2 1 2 2x e y = 2x - x. 2 Disegnare le due parabole e determinare i loro punti comuni. Le parabole passano per l origine O e per il punto A(8/3,16/9) come si evince
Le coniche retta generatrice
Le coniche Consideriamo un cono retto a base circolare a due falde ed un piano. Le intersezioni possibili tra le due figure sono rappresentate dallo schema seguente Le figure che si possono ottenere sono
I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica
I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio
Si tratta di una funzione definita a tratti, il cui intervallo di definizione è suddiviso in 4 intervalli, AO-OB-BC- CD.
PROBLEMA 1 Sia una funzione continua sull intervallo chiuso [-4, 6]. Il suo grafico, riportato in figura, passa per i punti A(-4;0), O(0,0),B(2;2), C(4;2), D(6;0) e consiste della semicirconferenza di
RETTIFICHE E SPOSTAMENTI
ˆ Ĉ ω RETTIFIHE E SPOSTETI IDIE oncetti generali RETTIFIHE onfine bilatero con un confine rettilineo uscente dal vertice onfine bilatero con un confine rettilineo uscente da un punto in posizione nota
Simulazione seconda prova
Simulazione seconda prova IL TEM E dato un appezzamento di terreno, costituito da due particelle catastali adiacenti, individuate in mappa dai nn. 4-43; i vertici di queste due particelle sono indicati,
DIPARTIMENTO DI TOPOGRAFIA E FOTOGRAMMETRIA
DIPARTIMENTO DI TOPOGRAFIA E FOTOGRAMMETRIA PROGRAMMA SVOLTO DI TOPOGRAFIA A.S. 2013-2014 CLASSE IIIB CAT ELEMENTI DI TRIGONOMETRIA E GONIOMETRIA (Unità A1-A2-A3) Unità di misura degli angoli e trasformazioni
Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci
Corso di Laurea Magistrale in Ingegneria per l Ambiente e il Territorio A.A. 2012-2013 Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci Trasformazioni di coordinate TRASFORMAZIONE DI COORDINATE ALL'INTERNO
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
x + x + 1 < Compiti vacanze classi 4D
Compiti vacanze classi D Ripassare scomposizioni e prodotti notevoli, metodo di Ruffini, razionalizzazioni, equazioni irrazionali. (Libro di prima e seconda). Recuperare formulario con regole di risoluzione
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
Soluzione verifica scritta dell 8/10/2013
Soluzione verifica scritta dell 8/10/013 * * * Problema n. 1 a) Determinare l equazione della parabola con asse parallelo all asse y, avente il vertice nel punto V ; ) e passante per l origine degli assi
