ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI
|
|
|
- Francesco Pepe
- 9 anni fa
- Visualizzazioni
Transcript
1 ARROTONDANDO Cosa succede ad accostare figure identiche una all altra? Le figure ottenute che proprietà presentano? Posso trovare un qualche tipo di legge generale? Per rispondere a questa ed altre domande ci si occupa del caso di tessere a forma di triangolo equilatero e si cerca per ogni configurazione quella che presenta perimetro minimo. FIGURE CON TRIANGOLI EQUILATERI Problema: trovare la figura che presenta il minor perimetro utilizzando di volta in volta un numero crescente di tessere a forma di triangolo equilatero. Si costruiscano varie figure utilizzando di volta in volta un numero di tessere crescente. Si conti il perimetro delle figure così ottenute. In questa ricostruzione per ogni numero di tessere sono presentati solo alcuni esempi. 1 tessera Con una tessera la configurazione è obbligatorio a ha un perimetro minimo pari a 3. tessere Con due tessere vi è ancora un unica configurazione che ovviamente presenta il perimetro minimo pari a 4. 3 tessere Ancora con tre tessere vi è un unica configurazione con perimetro pari a 5. 4 tessere Quando si hanno a disposizione le configurazioni possibili sono molteplici, tuttavia tutte hanno un perimetro pari a 6.
2 5 tessere Con cinque tessere si ritrova le stesse considerazioni fatte nel caso precedente. In questa situazione però il perimetro è sempre pari a 7. 6 tessere Nel caso di sei tessere le caratteristiche iniziano a mutare. Ora si possono trovare configurazioni che presentano un perimetro pari a otto e una configurazione di minimo con perimetro pari a 6. tale configurazione è l esagono regolare. 7 tessere Qui vengono proposti alcuni esempi. Anche in questo caso si scopre che vi è una configurazione di minimo con perimetro pari a 7. Tutte le altre configurazioni hanno un perimetro pari ad un numero dispari. 8 tessere Con otto tessere vi sono molte configurazioni che presentano tutte un perimetro pari. Tuttavia a differenza degli altri casi, vi sono ben quattro configurazioni di minimo perimetro pari a 8. 9 tessere Questo caso è simile al precedente. Vi sono moltissime configurazioni che presentano perimetro dispari e vi sono più configurazioni che minimizzano il perimetro che in questo caso è pari a 9.
3 10 tessere Con dieci tessere si hanno molte configurazioni che presentano un perimetro pari, ma a differenza dei due casi visti in precedenza qui vi è un unica configurazione di minimo pari ad 8. Ora si potrebbe continuare aumentano di volta in volta il numero di tessere, ma già con questi dieci casi si possono fare utili considerazioni. Innanzitutto si osservi che con un numero dispari di triangoli si ottiene sempre un perimetro di valore dispari, mentre con un numero pari di tessere tale perimetro è pari. Altra considerazione importante che viene evidenziata dal quarto caso in poi è come la configurazione di minimo perimetro sia riconducibile alla figura dell esagono regolare. Infatti tutte le configurazioni di minimo o devono completare un esagono regolare o presentano tessere che lo circondano sul suo perimetro esterno. Questo è facilmente osservabile nel caso a dieci tessere dove la configurazione di minimo sono due esagoni regolari sovrapposti. Inoltre si osservi come non tutte le configurazioni di minimo perimetro siano simmetriche. Nonostante sia difficile identificare una regola che vada bene per un numero qualsiasi di tessere, si intuisce che conviene raggruppare le tessere a formare esagoni regolari e cercare il più possibile le simmetrie sistema. Ultima annotazione è il fatto che il problema poteva essere espresso in un altra forma e cioè trovare tra tutte le figure formate da triangoli equilateri e di medesima area quella di perimetro minimo.
4 Ora però ci si può interrogare in un altra maniera. Avendo provato varie configurazioni con celle elementari di varia forma, ci si potrebbe chiedere quale è la figura piana che presenta il minor perimetro a parità di area? Tuttavia appare chiaro che una dimostrazione per esempi è alquanto difficoltosa e laboriosa. Si può però osservare come considerando solo una categoria di figure la risposta sia alquanto semplice da dimostrare. Ad esempio tra tutti i triangoli di stessa area quello equilatero possiede il perimetro minimo. Tra i quadrilateri è il quadrato, tra i pentagoni è quello regolare. In generale tra tutti i poligoni con fissato numero di lati e area assegnata, quello regolare ha perimetro minore. Ma allora, tra tutti i poligoni regolari qual è quello con perimetro minimo? PERIMETRO DI UN POLIGONO REGOLARE Problema: trovare il perimetro di un poligono regolare conoscendo il numero di lati e l area totale. Si consideri un poligono regolare qualsiasi, dove si ha: n = numero di lati ( n, n 3) p = lunghezza perimetro l = lunghezza lato. È immediata la relazione tra le tre grandezze p = n l Si evidenzi il centro del poligono regolare e lo si unisca con i vertici del poligono. Con questa operazione si costruiscono tanti triangoli isosceli quanti sono i lati del poligono in α questione. Si osserva che l angolo al vertice α di ognuno di questi triangoli così ottenuti è pari a α = π n
5 Si tracci l altezza relativa al lato (la base del triangolo) e la indico con h. Sapendo che la base del triangolo è pari al lato e misura l, utilizzando semplici formule trigonometriche posso ricavare la relazione tra l ed h: l α = h tan Con semplici passaggi si ricava: l h = tan L area del triangolo A TRI ottenuto è: A TRI l h l = = 4tan L area del poligono regolare A è n volte quella del singolo triangolo: nl A= n ATRI = 4tan p Ma so che l = e dunque: n Da cui ottengo p A = 4n tan p= n Atan Si consideri di aumentare il numero di lati all infinito ( n ). In questa situazione il poligono regolare si confonde col cerchio. Ricordando che lim n n tan = π si ottiene p = π A Si dimostra facilmente la precedente formula, ricordando che p = π r e A = π r dove r rappresenta il raggio del cerchio: π π π r = p= A = r = π r
6 = Si osservi che la funzione p( n) n Atan è decrescente e convergente al valore π A, come già osservato. Per dimostrare questa proprietà è possibile disegnare la funzione e osservare il suo comportamento. 4,6 4,5 4,4 4,3 4, perimetro 4,1 4 3,9 3,8 3,7 3,6 3, numero lati
7 Avendo intuito che i poligoni regolari sono speciali rispetto agli altri, tra di essi ne esistono alcuni che presentano delle caratteristiche uniche che non sono proprie di tutti? Ci si potrebbe chiedere qual è o quali sono i poligoni regolari che permettono di ricoprire perfettamente un pavimento facendo in modo che tra una tessera e l altra non vi siano buchi? PAVIMENTAZIONI REGOLARI Problema: trovare con quali poligoni regolari è possibile formare pavimentazioni regolari. Considero poligoni regolari di n lati ( n, n 3). Attorno ad ogni vertice si raggruppano m poligoni regolari α α α ( m, m 3). Valuto ora il valore dell angolo alla circonferenza α. Si evidenzi il centro del poligono regolare e lo si unisca con i vertici del poligono. Con questa operazione si costruiscono tanti triangoli isosceli quanti sono i lati del poligono in questione. La somma degli angoli di ogni triangolo è pari a π. La somma degli angoli interni di un poligono regolare è pari a quella dei triangoli di cui è composto meno l angolo giro formato dagli angoli al vertice di ogni triangolo. In formule: n α = n π π, da cui si ottiene: n α = π n In ogni vertice si raggruppano m di questi angoli e si ottiene un angolo giro: m α = π p m π = π p Da cui m 1 = 1 1 m = 1 n = n m
8 Quella precedente è la relazione (*) che deve essere verificata per avere pavimentazioni regolari. Si verifichi ora quali sono i poligoni, dunque i valori di n (e di m) per i quali essa è verificata. Per fare ciò si utilizzi inizialmente una dimostrazione numerica. Si osservi che la relazione è simmetrica. Se n = 3 da (*) si ottiene m = 6. Poiché si ottiene un numero naturale il triangolo equilatero è soluzione del problema. Avendo osservato che la relazione (*) è simmetrica si ha come soluzione anche con n = 6 e m = 3, che rappresenta un esagono regolare. Se n = 4 da (*) si ottiene m = 4. Poiché si ottiene come prima un numero naturale il quadrato è soluzione del problema. Se n = 5 da (*) si ottiene m = Poiché non si ottiene un numero naturale il pentagono regolare non è soluzione del problema. Se n = 7 da (*) si ottiene m = Poiché come prima non si ottiene un numero naturale l ettagono regolare non è soluzione del problema. Si potrebbe continuare tale dimostrazione sempre nel seguente modo affrontando un numero infinito di casi. Si utilizzi ora una dimostrazione alternativa per minimo di n per il quale vale la seguente relazione > + n 3 n > 7. Voglio trovare il valore Si è posto m = 3 in quanto il suo inverso è il valore maggiore che si può ottenere al variare di m. Si osservi che per n = 8 si ha > + = Dato che si ha 1 > 1 si dimostra che per n > 7 non vi sono soluzioni. n n + 1 Riassumendo: gli unici poligoni regolari che permettono di ottenere una pavimentazione regolare sono il triangolo equilatero, il quadrato e l esagono regolare.
CIRCONFERENZA E CERCHIO
CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È
I POLIGONI. DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata.
I POLIGONI COS È UN POLIGONO? DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata. Un poligono è fatto di: - SEGMENTI detti LATI - ESTREMI DEI
Problemi sulla circonferenza verso l esame di stato
Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza
Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio
Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio ELEMENTI DI GEOMETRI PIN. MISURE RIGURDNTI TRINGOLI, PRLLELOGRMMI, POLIGONI REGOLRI, CERCHIO La geometria piana si occupa delle
Le sezioni piane del cubo
Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli
Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.
1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.
LINEE SEMPLICI INTRECCIATE. Colora di giallo le linee semplici, di verde quelle intrecciate.
LINEE SEMPLICI INTRECCIATE Colora di giallo le linee semplici, di verde quelle intrecciate. Disegna di rosa le linee semplici, di azzurro quelle intrecciate. LINEE APERTE CHIUSE Colora di giallo le linee
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa
Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD.
Esercizio 1a Disegna un piano cartesiano ortogonale ed in esso inserisci i punti che seguono, poi uniscili nell ordine dato: Secondo te che tipo di quadrilatero hai ottenuto? Perché? Quali sono le sue
Verifiche di matematica classe 3 C 2012/2013
Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico
1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica
Gli elementi fondamentali della geometria Esercizi supplementari di verifica Esercizio 1 a) V F Si dice linea retta una qualsiasi linea che non ha né un inizio né una fine. b) V F Il punto è una figura
Anno 4 Superficie e volume dei solidi
Anno 4 Superficie e volume dei solidi Introduzione In questa lezione parleremo del volume e della superficie dei solidi, imparando a trattare con semplicità il loro calcolo tramite le formule Al termine
Repetitorium trigonometriae - per immagini
Repetitorium trigonometriae - per immagini Regole di base Ipotenusa Opposto Adiacente Tenendo a mente la seguente nomenclatura di un triangolo rettangolo si ha: sin = Opposto Ipotenusa cos = Adiacente
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto
LA CIRCONFERENZA e IL CERCHIO
LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più
Equivalenza delle figure piane
Capitolo Equivalenza Poligoni equivalenti - erifica per la classe seconda Teoremi di Pitagora ed Euclide COGNOME............................... NOME............................. Classe....................................
Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh
Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli
I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due.
I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. A D B H C K Una particolarità del parallelogramma è che mantiene le sue caratteristiche anche quando
Rapporto apotema lato nel poligono regolare determinato per mezzo della tangente e calcolo dell area di Luciano Porta
Rapporto apotema lato nel poligono regolare determinato per mezzo della tangente e calcolo dell area di Luciano Porta La determinazione dell area del poligono regolare (ad eccezione di quella del triangolo
LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI
LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI SPAZIO: l insieme di tutti i punti. PUNTI ALLINEATI: punti che appartengono alla stessa retta PUNTI COMPLANARI: punti che appartengono allo stesso
C.P.I.A. CENTRO PROVINCIALE PER
C.P.I.A. CENTRO PROVINCIALE PER L ISTRUZIONE DEGLI ADULTI SEDE DI CATANZARO - Via T. Campanella n 9 DISPENSE DI GEOMETRIA PERCORSO DI ISTRUZIONE DI PRIMO LIVELLO PRIMO PERIODO DIDATTICO A.S. 2017/2018
Circonferenza e cerchio
Circonferenza e cerchio è il luogo dei punti che hanno dal centro una distanza assegnata. La figura costituita da tutti i punti di una circonferenza e dai suoi punti interni si chiama Prendi uno spago,
Costruzioni geometriche. (Teoria pag , esercizi )
Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)
circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio
POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag )
POLIGONI REGOLARI. ( Libro : teoria pag. 52 61; esercizi pag. 120 128) Un poligono è detto regolare quando Possiamo costruire un poligono regolare partendo o dalla circonferenza circoscritta al poligono
Esercizi di geometria per il corso PAS A059
Esercizi di geometria per il corso PAS A059 1. Dato un rombo con un angolo di 60 trovare il rapporto tra il raggio del cerchio inscritto nel rombo e il raggio del piu piccolo cerchio che contiene interamente
LE FRAZIONI. 1 Scrivi la frazione corrispondente alla parte colorata. cinque settimi. dieci quindicesimi. nove diciottesimi. dodici ventiquattresimi
LE FRAZIONI Scrivi la frazione corrispondente alla parte colorata. 3 7 9 Riscrivi la frazione in cifre e colora la parte indicata. cinque settimi dieci quindicesimi nove diciottesimi dodici ventesimi quattordici
1 Congruenza diretta e inversa
1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.
Proporzioni tra grandezze
Definizione Due grandezze omogenee A e B (con B 0) e altre due grandezze omogenee C e D (con D 0) si dicono in proporzione quando il rapporto tra le prime due è uguale al rapporto tra la terza e la quarta
01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5
GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di
Esercizi sul cubo. Prisma e cilindro
Esercizi sul cubo 1. Dimostra la formula della diagonale del cubo. 2. Ein würfelförmiger Kasten hat eine Kantenlänge von 16cm. Er wird mit Würfeln von 4cm Kantenlänge ganz gefüllt. Wie viele Würfel kann
GEOMETRIA PIANA. Legenda: l = lato. a, b, c = dimensioni d1, d2 oppure d, D = diagonali 2P = perimetro r = raggio π (pi greco) = 3,14 b
GEOMETRIA PIANA Legenda: A = area h = atezza = ato = ase o ase minore B = ase maggiore a,, c = dimensioni d1, d oppure d, D = diagonai P = perimetro r = raggio π (pi greco) = 3,14 d a A P d h r B D d c
IGiochidiArchimede-SoluzioniBiennio 23 novembre 2005
PROGETTO OLIMPIADI DI MATEMATIA U.M.I. UNIONE MATEMATIA ITALIANA SUOLA NORMALE SUPERIORE IGiochidiArchimede-SoluzioniBiennio 3 novembre 00 1 Griglia delle risposte corrette Risoluzione dei problemi Problema
Conoscenze. c. è un numero irrazionale d. La misura di una circonferenza si calcola moltiplicando la lunghezza del diametro per..
Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il segmento lungo quanto la circonferenza b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una costante che si indica
LE TRASFORMAZIONI GEOMETRICHE
LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il
Ministero della Difesa Direzione Generale per il Personale Militare I Reparto - 3^ Divisione. BANCA DATI MATEMATICA II^ IMMISSIONE Concorso VFP4 2012
Ministero della ifesa irezione Generale per il Personale Militare I Reparto - 3^ ivisione N TI MTEMTI II^ IMMISSIONE oncorso VFP4 2012 Servizio inerente la fornitura di due archivi di quesiti e materiali
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE
FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO 008-009 ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento:
C7. Circonferenza e cerchio - Esercizi
C7. Circonferenza e cerchio - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dare la definizione di luogo geometrico. 2) Indicare almeno due luoghi geometrici. 3) Dare la definizione di asse di un segmento come
Problemi di geometria
1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola
Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA
Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA CERCHIO SIMMETRIA GEOMETRIA SOLIDA A cura di Maurizio Cesca PROGETTO STRANIERI SMS Maffucci-Pavoni -
Problemi di geometria
1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm
LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza.
LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una... che si
Anno 2. Circonferenza e retta: definizioni e proprietà
Anno 2 Circonferenza e retta: definizioni e proprietà 1 Introduzione I Sumeri furono tra i primi popoli ad occuparsi di matematica, e in particolare di problemi relativi alla. La è una figura geometrica
Introduzione. Nome. per la geometria. per le frazioni
Introduzione Questo volume contiene una serie di esercizi per gli alunni della scuola elementare dalla classe terza in poi, che mirano a consolidare i concetti matematici di base di geometria e di algebra
Teoremi di geometria piana
la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti
Quesito 1 Si calcoli. 3 2 2 4 3 3 = 3 2 4 3 = 2 ln3 = 8 81 2,3. 1 = 2 3 2 3 = 2 3 1+1 2 1 = = =ln81. Soluzione 1
ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 0 PIANO NAZIONALE INFORMATICA Questionario Quesito Si calcoli 3 3 è 0 0 Applicando De L Hospital si ha: -,3 3 3 4 3 3 = infatti: 0 = 3 4 3 3 = 3 4
LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.
LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza
DIDATTICA DELLA GEOMETRIA Lezione n 3
DIDATTICA DELLA GEOMETRIA Lezione n 3 PERCORSI NELLA GEOMETRIA SOLIDA LA RELAZIONE DI EULERO f+v=s+2 Possiamo fare un po di algebra con la Geometria solida! Quanti vertici ha un prisma a base triangolare?
Poligoni inscritti e circoscritti ad una circonferenza
Poligoni inscritti e circoscritti ad una circonferenza Def: 1. Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della La circonferenza si dice circoscritta al poligono.
AREE DEI POLIGONI. b = A h
AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.
C7. Circonferenza e cerchio
7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio
Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa.
Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Lato Vertice Angolo interno Angolo esterno I lati del poligono sono segmenti che costituiscono la linea spezzata.
VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA
VERIFICA DI MATEMATICA 11 febbraio 016 classe a D Nome...Cognome... ARITMETICA 1. Scrivi l enunciato delle proprietà fondamentale, dell invertire e del permutare. Applicale alla seguente proporzione, dimostrando
quadrilatero generico parallelogramma rombo rettangolo quadrato
Pavimentare 1. Quali forme di quadrilateri puoi costruire? Schizza tutte le forme possibili e scrivi il loro nome. 2. Cosa rappresentano i piccoli punti rossi sui lati del quadrilatero? 3. a) Costruisci
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60
L ampiezza degli angoli si misura in gradi (simbolo ), da 0 a 360. sottomultipli
In un poligono possiamo prendere diversi tipi di misure: L ampiezza degli angoli La misura dei lati ed il perimetro La misura della sua superficie o area. L ampiezza degli angoli si misura in gradi (simbolo
d) l/2. Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (d)
Su ciascuna delle facce di un cubo di lato l si appoggia una piramide retta avente come base la faccia del cubo Che altezza deve avere la piramide affinché la somma dei volumi del cubo e delle piramidi
Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.
SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,
Istituzioni di Matematiche II Recupero seconda prova intermedia (6 giugno 2003)
Istituzioni di Matematiche II Recupero seconda prova intermedia (6 giugno 2003) Nome Cognome 1. Considerando gli oggetti in figura, costruire: (a) il poligono ottenuto dal poligono A per riflessione rispetto
Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed
ppunti di geometria.s. 14-15 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo esterno
Problemi di secondo grado con argomento geometrico (aree e perimetri)
Problemi di secondo grado con argomento geometrico (aree e perimetri) Impostare con una o due incognite 1. Un rettangolo ha perimetro 10 cm ed è tale che l area gli raddoppia aumentando di 1 cm sia la
Esame di Stato di Liceo Scientifico Corso di Ordinamento
Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 006 Sessione Ordinaria 006 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto Finale 4 Problema
4^C - Esercitazione recupero n 4
4^C - Esercitazione recupero n 4 1 Un filo metallico di lunghezza l viene utilizzato per deitare il perimetro di un'aiuola rettangolare a Qual è l'aiuola di area massima che è possibile deitare? b Lo stesso
Con la mente e con le mani Il calcolo delle aree: esa1o, approssimato, errato
Con la mente e con le mani Il calcolo delle aree: esa1o, approssimato, errato di Franco Ghione e Daniele Pasquazi 10 cm. Quanto vale l area di un triangolo equilatero che ha il lato lungo 10 centimetri?
In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo
In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato
LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b
Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione
Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b)
Riferimenti bibliografici: Poliedri regolari - Forme Maria Dedò Ed. Zanichelli - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: (a) e (c) non (b) Definizione: Un poliedro
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli
Circonferenze e cerchi
Alunno/a... Geometria Classe... Sez.... Data... Circonferenze e cerchi 1 Definisci la circonferenza: 2 Definisci il settore circolare: 3 Definisci la figura che nel disegno è colorata in grigio: 4 Osserva
Gli enti geometrici fondamentali
capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento
Giochi con due specchi. (Laboratorio sulla simmetria rotazionale)
Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Prima parte. Abbiamo a disposizione alcune coppie di specchi, dei piccoli oggetti (poligoni, matite, palline), alcuni disegni. Tra due
LA MATEMATICA DEI POLIEDRI REGOLARI
LA MATEMATICA DEI POLIEDRI REGOLARI Essi simbolizzano il desiderio di Armonia e di ordine dell uomo, ma nello stesso tempo la loro perfezione desta in noi il senso della nostra impotenza. I poliedri regolari
POLIGONI INSCRITTI E CIRCOSCRITTI AD UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI AD UNA CIRCONFERENZA Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della circonferenza. La circonferenza si dice circoscritta al
Un poligono può avere tre, quattro, cinque o più lati. Il vertice è il punto d incontro di due lati; i vertici si indicano
Pagina 1 di 13 I poligoni I poligoni sono figure piane che hanno come contorno una linea spezzata chiusa formatada almeno tre segmenti consecutivi. Un poligono può avere tre, quattro, cinque o più lati.
Risposte ai quesiti D E H D
Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia
Tassellazioni del piano
Tassellazioni del piano Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere proprietà di figure del piano e dello spazio. Individuare proprietà invarianti per isometrie nel piano.
Test di autovalutazione
Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.
Le figure geometriche
La geometria In Egitto nel XIV secolo a.c. la geometria nasce per misurare la terra (geometria = misura della terra) perché il Nilo con le sue piene, cancellava spesso i limiti fra i campi. E dunque una
CIRCONFERENZA E CERCHIO
CIRCONFERENZA E CERCHIO Definizione di circonferenza La circonferenza è una linea chiusa i cui punti sono tutti equidistanti da un punto fisso detto CENTRO Definizione di cerchio Si definisce CERCHIO la
POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) Un poligono è detto regolare quando.
POLIGONI REGOLARI. ( Libro : teoria pag. 54 61; esercizi pag. 120 128) Un poligono è detto regolare quando. Possiamo costruire un poligono regolare partendo o dalla circonferenza circoscritta al poligono
Classifichiamo i poligoni
Geometria La parola geometria significa misura (metria) della terra (geo). La geometria si occupa dello studio della misura e della forma degli oggetti disposti nello spazio. Le idee primitive (che vengono
TRIGONOMETRIA E COORDINATE
Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli
Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15)
(Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (vertici, lati, diagonali, convessità, angoli, perimetro) 6.2 I triangoli 6.3 I quadrilateri 6.4 I poligoni regolari 6.5 Le altezze 6.6 Le aree Un poligono è la parte
% Logica matematica e ragionamento numerico
% Logica matematica e ragionamento numerico 1 * Geometria euclidea Test n. 3 (Tempo: minuti) 1 Sia ABCD un quadrilatero; quale delle seguenti affermazioni è sempre VERA? A ABCD può essere un rettangolo
Allenamenti di Matematica
rescia, 3-4 febbraio 2006 llenamenti di Matematica Geometria 1. Il trapezio rettangolo contiene una circonferenza di raggio 1 metro, tangente a tutti i suoi lati. Sapendo che il lato obliquo è lungo 7
