t (min) UH (1/min) Tabella 1. Idrogramma unitario
|
|
|
- Viola Massaro
- 8 anni fa
- Visualizzazioni
Transcript
1 Esercizio n 1 Assegnato l idrogramma unitario riportato in tabella 1 calcolare l idrogramma alla sezione di chiusura di un bacino di 500 ha a fronte dello ietogramma di pioggia totale riportato in tabella e assumendo un coefficiente Φ per il calcolo della pioggia netta pari a 5 mm/ora. (N.B. dimensionalmente l UH fornito è t -1 ) t (min) UH (1/min) Tabella 1. Idrogramma unitario t (min) i (mm/ora) Tabella. Ietogramma di pioggia Esercizio n Partendo dai seguenti valori di altezze di precipitazione osservate a passo semi-orario in un pluviometro calcolare con il metodo CN la pioggia netta per un bacino per il quale è stato stimato un valore del CN(II)=89, un valore delle perdite iniziali Ia=5 mm ed assumendo che nei 5 giorni antecedenti non vi siano state precipitazioni. Disegnare lo ietogramma di pioggia netta e totale. t P incr h mm Pagina 1 di 9
2 Esercizio n In tabella sono riportate le altezze di precipitazione massime annue per la durata di 1 ora osservate nella stazione pluviometrica di Ferrara. Valutare il tempo di ritorno di un evento di precipitazione di durata 1 h in cui sono stati registrati 7 mm di pioggia. Valutare inoltre mediante il test del χ con quale livello di significatività potrebbe essere accettato l adattamento della distribuzione di probabilità di gumbel al campione di dati. ANNO H (mm) ANNO H (mm) Pagina di 9
3 Esercizio n 1 Assegnato l idrogramma unitario riportato in tabella 1 calcolare l idrogramma alla sezione di chiusura di un bacino di superficie S=500 ha a fronte dello ietogramma di pioggia totale riportato in tabella e assumendo un coefficiente Φ per il calcolo della pioggia netta pari a 5 mm/ora. (N.B. dimensionalmente l UH fornito è t -1 ) t (min) UH (1/min) Tabella 1. Idrogramma unitario Soluzione t (min) i (mm/ora) Tabella. Ietogramma di pioggia Mediante il metodo Φ, assegnato il parametro Φ=5 mm si determina il seguente ietogramma di pioggia netta: t (min) i_netta (mm/ora) cui corrispondono le seguenti altezze di pioggia netta: t (min) h_netta (mm) Fissato t=15 minuti, l idrogramma (in m /s) alla sezione di chiusura è dato da: Pagina di 9
4 U1 h1 Q( 1 t) = S = 4.16 m / s U h1 U1 h Q( t) = + S = m / s U h U h U h Q( t) = S =.4 m / s U h U h U h Q( 4 t) = S = 0.04 m / s ( ) U h U h Q 5 t = + S = m / s ( ) U h Q 6 t = S = 4.17 m / s ( ) = Q 7 t 0 m / s essendo U espresso in [min -1 ], h in [mm] e S in [ha] Pagina 4 di 9
5 Esercizio n Partendo dai seguenti valori di altezze di precipitazione osservate a passo semi-orario in un pluviometro calcolare con il metodo CN la pioggia netta per un bacino per il quale è stato stimato un valore del CN(II)=89, un valore delle perdite iniziali Ia=5 mm ed assumendo che nei 5 giorni antecedenti non vi siano state precipitazioni. Disegnare lo ietogramma di pioggia netta e totale. t P incr h mm Soluzione Dal momento che nei 5 giorni antecedenti l evento considerato non vi sono state precipitazioni, ai fini del calcolo della pioggia netta si deve utilizzare il CN(I), ovvero, dato CN(II)=89, si avrebbe: 4.CN(II) CN(I)= CN(II) = A fronte di tale valor di CN si ottiene quindi: CN 77.6 S=74.75 mm Ia=5.00 mm P incr P cum Pn cum Pn incr Fa (perd cum) i i_netta h mm mm mm mm mm (mm/h) (mm/h) Pagina 5 di 9
6 5 0 5 Pn [mm/h] 0 15 P tot Pn t [h] Pagina 6 di 9
7 Esercizio n In tabella sono riportate le altezze di precipitazione massime annue per la durata di 1 ora osservate nella stazione pluviometrica di Ferrara. Valutare il tempo di ritorno di un evento di precipitazione di durata 1 h in cui sono stati registrati 7 mm di pioggia. Valutare inoltre mediante il test del χ con quale livello di significatività potrebbe essere accettato l adattamento della distribuzione di probabilità di gumbel al campione di dati. ANNO H (mm) ANNO H (mm) Soluzione Sulla base del campione di dati, mediante il metodo dei momenti si stimano i parametri della distribuzione di Gumbel: F x ( x) σ. ( x u) = exp exp ; α = 1 645α ; µ = u α ; essendo ˆ µ = 6.65 mm Pagina 7 di 9
8 ˆ σ = mm da cui u=0.6, α= La probabilità cumulata F H (h) corrispondente ad una altezza di precipitazione h=7 mm sarà: h u FH ( h) = exp exp = 0.81 α ed il corrispondente tempo di ritorno sarà: 1 T = 5. F = anni. 1 H ( h) Per valutare l adattamento della distribuzione di probabilità assumo k=5 classi equiprobabili (p i =0.), ovvero: F Q 0 -inf inf Essendo il numero totale di osservazioni pari N=49, il numero atteso di osservazioni per ogni classe sarebbe pari a N p i = 9.8. Il numero n i effettivo di osservazioni che ricade in ciascuna classe è: Pagina 8 di 9
9 Cui corrisponde 5 i= 1 ( n Np ) i i χ = =.1 Np i Per un livello di significatività α=0.5 dalle tabelle della distribuzione χ ottengo χ5 1,0.5 =.77 per cui, essendo.77>.1, posso accettare H 0 al livello di significatività α=0.5, mentre per un livello di significatività α=0.5 dalle tabelle della distribuzione χ ottengo χ5 1,0.5= 1.9 per cui, essendo 1.9<.1, non posso accettare H 0 al livello di significatività α=0.5. Pagina 9 di 9
Esercizio n 1. Esercizio n 2. Esercizio n 3. Corso di Idrologia 19 settembre 2011 Prova Scritta
Corso di Idrologia 9 settembre 0 sercizio n Si stimi il valore del parametro φ per il calcolo della pioggia netta di un bacino di km per il quale a fronte dello ietogramma di tabella è stato osservato
Esame di Idrologia - 1 Gennaio 1111 Saranno assegnati tre punti per ciascuna risposta corretta. Utilizzare 4 cifre significative per le risposte.
Studente 1: nome 1 1. In un bacino idrografico di dominio 707 km 2 è stata misurata una altezza di afflusso meteorico pari a 195.1 mm in un mese di 31 giorni. Calcolare la portata media mensile del deflusso
Stima della portata di piena: un esempio
Stima della portata di piena: un esempio Giuseppe Pino APAT Dipartimento Nucleare, Rischio Tecnologico e Industriale 1 aprile 2008 Stima della portata di massima piena Obiettivo: determinare la portata
Università della Calabria
Università della Calabria FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria Civile CORSO DI IDROLOGIA N.O. Prof. Pasquale Versace SCHEDA DIDATTICA N 3 CURVE DI PROBABILITÀ PLUVIOMETRICA A.A. 00- CURVE
Idraulica e Idrologia: Lezione 5
Idraulica e Idrologia: Lezione 5 Agenda del giorno - Modello CN-SCS: ESERCIZI 1 MODELLO CN - SCS MODELLAZIONE DELLA FORMAZIONE DEL DEFLUSSO: METODO CN-SCS I modelli di piena sono formati da due moduli
Insegnamento di Idrologia. Esercitazione n. 4
Insegnamento di Idrologia Esercitazione n. 4 Si vogliono costruire delle opere di difesa lungo un affluente del torrente Staffora. Poiché non esistono osservazioni di portata, occorre stimare la portata
6. Applicazione di curve di probabilità pluviometrica in ambito di verifica.
6. Applicazione i curve i probabilità pluviometrica in ambito i verifica. Viene qui riportato un esempio i applicazione i curve i probabilità pluviometrica per la eterminazione el perioo i ritorno i un
Lezione 8: Esercizi di Idrologia
Lezione 8: Esercizi di Idrologia Problemi di Idrologia 1 Problemi di bilancio idrologico Problema 1 Alla sezione di ciusura di un bacino idrografico di 40 km di superficie è stata registrata una portata
STATISTICA AZIENDALE Modulo Controllo di Qualità
STATISTICA AZIENDALE Modulo Controllo di Qualità A.A. 009/10 - Sottoperiodo PROA DEL 14 MAGGIO 010 Cognome:.. Nome: Matricola:.. AERTENZE: Negli esercizi in cui sono richiesti calcoli riportare tutte la
1. Pluviometria sulla città di Napoli
Il nubifragio del 17 e 18 settembre 2005 a Napoli 1. Pluviometria sulla città di Napoli Le precipitazioni registrate dai pluviometri in telemisura di Napoli Camaldoli e Napoli Capodimonte hanno avuto inizio
DI IDROLOGIA TECNICA PARTE III
FACOLTA DI INGEGNERIA Laurea Specialistica in Ingegneria Civile N.O. Giuseppe T. Aronica CORSO DI IDROLOGIA TECNICA PARTE III Idrologia delle piene Lezione XIX: I metodi indiretti per la valutazione delle
GNDCI Linea 1. Rapporto di sintesi sulla valutazione delle piene in Italia 11. SINTESI DEL RAPPORTO REGIONALE SICILIA
11. SINTESI DEL RAPPORTO REGIONALE SICILIA 11.1 Premessa In questa breve nota vengono sintetizzati i risultati salienti del Progetto VAPI per la stima delle portate di assegnato tempo di ritorno, per qualsiasi
FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 21/09/2011
FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 1/9/11 ESERCIZIO 1 (+3++3) La seguente tabella riporta la distribuzione di frequenza dei valori di emoglobina nel sangue (espressi
Idraulica e idrologia: Lezione 9
Idraulica e idrologia: Lezione 9 Agenda del giorno - Relazioni per la stima della portata al colmo; - Tempo di corrivazione di un bacino; - Metodo razionale. 1 LINEA SEGNALATRICE DI PROBABILITA PLUVIOMETRICA
La famiglia delle distribuzioni GEV - I
La famiglia delle distribuzioni GEV - I La distribuzione generalizzata degli eventi estremi (GEV) è la distribuzione teoricamente attesa per i massimi all interno di blocchi temporali di dimensione molto
LINEE GUIDA E INDIRIZZI OPERATIVI PER L ATTUAZIONE DEL PRINCIPIO DELLA INVARIANZA IDRAULICA
PRESIDÈNTZIA PRESIDENZA AUTORITA DI BACINO REGIONALE DELLA SARDEGNA LINEE GUIDA E INDIRIZZI OPERATIVI PER L ATTUAZIONE DEL PRINCIPIO DELLA INVARIANZA IDRAULICA (articolo 47 delle NTA del PAI) Allegato
Evento alluvionale del 12/13 Novembre 2014
via Nino Dall Oro 4-269 LODI tel. 37-4289 r.a. fax 37-5393 email: [email protected] Evento alluvionale del 2/3 Novembre 24 Analisi idrologica relativa al Bacino del colatore Venere Studio Interno preliminare
Approssimazione normale alla distribuzione binomiale
Approssimazione normale alla distribuzione binomiale P b (X r) costoso P b (X r) P(X r) per N grande Teorema: Se la variabile casuale X ha una distribuzione binomiale con parametri N e p, allora, per N
FACOLTA DI INGEGNERIA
FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 5 ARGOMENTO: VERIFICA DEL MODELLO
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
si tratta del test del chi-quadro di adattamento e di quello di indipendenza. 1 l ipotesi che la popolazione segua una legge fissata;
di : dado : normale Finora abbiamo visto test d ipotesi per testare ipotesi differenti, ma tutte concernenti il valore atteso di una o due popolazioni. In questo capitolo vediamo come testare 1 l ipotesi
Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}
Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n
REGIONALIZZAZAIONE DELLE PRECIPITAZIONI: LE APPLICAZIONI
REGIONALIZZAZAIONE DELLE PRECIPITAZIONI: LE APPLICAZIONI Alessandro SANTUCCI Regione Toscana Seminario RISCHIO ALLUVIONI IN TOSCANA: PRECIPITAZIONI ED EFFETTI AL SUOLO Firenze, Firenze, 22 22 aprile aprile
Statistica Applicata all edilizia: il modello di regressione
Statistica Applicata all edilizia: il modello di regressione E-mail: [email protected] 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione
PREMESSA... 3 INQUADRAMENTO IDRAULICO DELL AREA... 5 CALCOLO DELLA PORTATA TOTALE (METEORICA + NERA)... 8 DIMENSIONAMENTO TUBAZIONI...
RELAZIONE IDRAULICA per il dimensionamento del sistema di smaltimento delle acque miste (meteoriche e reflue) derivanti da nuova lottizzazione in Loc. Viustino, San Giorgio piacentino (PC) INDICE PREMESSA...
Esercitazione 8 del corso di Statistica 2
Esercitazione 8 del corso di Statistica Prof. Domenico Vistocco Dott.ssa Paola Costantini 6 Giugno 8 Decisione vera falsa è respinta Errore di I tipo Decisione corretta non è respinta Probabilità α Decisione
La precipitazione. Misura della precipitazione
La precipitazione. Misura 2. Distribuzione nello spazio (afflusso) 3. Disponibilità di dati storici 4. Caratterizzazione del clima Misura della precipitazione 2 Misura della Precipitazione Strumenti Pluviometro
Test delle Ipotesi Parte I
Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test
La dipendenza. Antonello Maruotti
La dipendenza Antonello Maruotti Outline 1 Distribuzioni doppie 2 Medie e varianze condizionate 3 Indici di associazione Distribuzione doppia Definizione Una distribuzione doppia si ha quando su di uno
Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi
Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi Esercizio 1 Data la variabile casuale X con funzione di densità f(x) = 2x, per 0 x 1; f(x) = 0 per x [0, 1], determinare: a) P( - 0,5 < X< 0,7) b)
DIMENSIONAMENTO IDROLOGICO IDRAULICO DEI PRINCIPALI CANALI ED ATTRAVERSAMENTI IN CONDOTTA DI PROGETTO
DIMENSIONAMENTO IDROLOGICO IDRAULICO DEI PRINCIPALI CANALI ED ATTRAVERSAMENTI IN CONDOTTA DI PROGETTO Il rapporto tra l intervento di realizzazione del ciclodromo progettato e l assetto idrografico di
La precipitazione. Misura della precipitazione
La precipitazione 1. Misura 2. Distribuzione nello spazio (afflusso) 3. Disponibilità di dati storici 4. Caratterizzazione del clima 1 Misura della precipitazione 2 Misura della Precipitazione Strumenti
UNIVERSITA DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA IDRAULICA, MARITTIMA E GEOTECNICA
UNIVERSITA DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA IDRAULICA, MARITTIMA E GEOTECNICA CORSO DI COSTRUZIONI IDRAULICHE A.A. 00-0 PROF. LUIGI DA DEPPO ING. NADIA URSINO ESERCITAZIONE N : Progetto
Fin qui si sono considerate le variabili casuali ciascuna per proprio conto. Ora consideriamo la possibilità di relazioni tra variabili.
Sistemi di variabili casuali Fin qui si sono considerate le variabili casuali ciascuna per proprio conto. Ora consideriamo la possibilità di relazioni tra variabili. Esempi: - il massimo annuale della
Statistica. Esercitazione 3 9 maggio 2012 Coefficiente di variazione. Serie storiche. Connessione e indipendenza statistica
Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 20/202 Statistica Esercitazione 3 9 maggio 202 Coefficiente di variazione. Serie storiche.
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 giugno 26 Statistica Esercizio Sia {X n } n una famiglia di v.a. di media µ e varianza σ 2. Verificare che X = n n X i σ 2 = n (X i µ) 2 S 2 = n
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE. a.a.
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 CDF empirica
Statistica. Esercitazione 14. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice. Verifica di ipotesi
Esercitazione 14 Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () 1 / 14 Ex.1: Verifica Ipotesi sulla media (varianza nota) Le funi prodotte da un certo macchinario hanno una
Statistica descrittiva II
Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni
Confronto tra due popolazioni Lezione 6
Last updated May 9, 06 Confronto tra due popolazioni Lezione 6 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura I anno, II semestre Concetti visti nell ultima lezione Le media
Statistical Process Control
Statistical Process Control ESERCIZI II Esercizio 1. Una ditta che produce schermi a cristalli liquidi deve tenere in controllo il numero di pixel non funzionanti. Vengono ispezionati venti schermi alla
STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE
STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente
SCHEDA EVENTO PLUVIO 12 maggio 2010
INQUADRAMENTO METEOROLOGICO Centro Funzionale Decentrato SCHEDA EVENTO PLUVIO 12 maggio 2010 SITUAZIONE GENERALE Da vari giorni persistono impulsi umidi sud-occidentali associati ad un ampia depressione
Distribuzione di Probabilità
Distribuzione di Probabilità Sia X variabile con valori discreti X 1, X 2,..., X N aventi probabilità p 1, p 2,..., p N ( i p i = 1) (X variabile discreta aleatoria, o stocastica, o casuale, random) Funzione
UNIVERSITÀ DEGLI STUDI DI PERUGIA
SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale
I appello di calcolo delle probabilità e statistica
I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle abelle riportate alla fine del documento. Esercizio 1 La concentrazione media di sostanze inquinanti osservata nelle acque di un fiume
Esercizi di statistica
Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..
Politecnico di Torino. Esercitazioni di Protezione idraulica del territorio
Politecnico di Torino Esercitazioni di Protezione idraulica del territorio a.a. 2012-2013 ESERCITAZIONE 1 VALUTAZIONE DELLA RARITÀ DI UN EVENTO PLUVIOMETRICO ECCEZIONALE 1. Determinazione del periodo di
Istituzioni di Statistica e Statistica Economica
Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 1 A. I dati riportati nella seguente tabella si riferiscono
FACOLTÀ DI INGEGNERIA
a.a. 2012/2013 FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN: INGEGNERIA DELLE COSTRUZIONI EDILI E DEI SISTEMI AMBIENTALI Insegnamento: COSTRUZIONI IDRAULICHE OGGETTO: QUADERNO DELLE ESERCITAZIONI dott. ANDREA
ESAME. 9 Gennaio 2017 COMPITO B
ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto
Analisi di frequenza regionale delle precipitazioni estreme
Macroattività B - Modellazione idrologica Attività B1 - Regionalizzazione precipitazioni Analisi di frequenza regionale delle precipitazioni estreme Relazione Tecnica Finale Febbraio 2014 Sommario Metodologia
Test per l omogeneità delle varianze
Test per l omogeneità delle varianze Le carte di controllo hanno lo scopo di verificare se i campioni estratti provengono da un processo produttivo caratterizzato da un unico valore dello s.q.m. σ. Una
Test d ipotesi: confronto fra medie
Test d ipotesi: confronto fra medie Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona CONFRONTO FRA MEDIE 1) confronto fra una media campionaria e una media di popolazione
CENTRO FUNZIONALE REGIONALE RAPPORTO DI EVENTO FOSSO SETTEBAGNI DICEMBRE 2008
CENTRO FUNZIONALE REGIONALE RAPPORTO DI EVENTO FOSSO SETTEBAGNI 1012 DICEMBRE 2008 Periodo evento di piena Dal 10 al 12 dicembre 2008. Condizioni meteo di riferimento Dalla mattinata del 10 dicembre l
Macroattività B - Modellazione idrologica Attività B1: Regionalizzazione precipitazioni
ACCORDO DI COLLABORAZIONE SCIENTIFICA TRA REGIONE TOSCANA E DIPARTIMENTO DI INGEGNERIA CIVILE E AMBIENTALE DELL UNIVERSITA DEGLI STUDI DI FIRENZE PER ATTIVITA DI RICERCA PER LA MITIGAZIONE DEL RISCHIO
Corso di Statistica Esercitazione 1.8
Corso di Statistica Esercitazione.8 Test su medie e proporzioni Prof.ssa T. Laureti a.a. 202-203 Esercizio Un produttore vuole monitorare i valori dei livelli di impurità contenute nella merce che gli
RELAZIONE IDROLOGICA IDRAULICA
RELAZIONE IDROLOGICA IDRAULICA 1. PREMESSA In relazione ai lavori di realizzazione della nuova rotatoria sulla S.S. 16 Adriatica al km 326+040 in corrispondenza dell intersezione con la S.P. 24 Bellaluce
Dettaglio smaltimento acque interrato e dimensionamento della vasca di raccolta delle acque meteoriche
Piano Esecutivo Convenzionato area 4PE Lotto 2 Proprietà La Costruttiva s.r.l. Comune di Buttigliera d asti Via Moriondo Dettaglio smaltimento acque interrato e dimensionamento della vasca di raccolta
Esercitazione 1.3. Indici di variabilità ed eterogeneità. Prof.ssa T. Laureti a.a
Corso di Statistica Esercitazione.3 Indici di variabilità ed eterogeneità Concentrazione Asimmetria Prof.ssa T. Laureti a.a. 202-203 Esercizio Si considerino i seguenti dati relativi al numero di addetti
Ulteriori applicazioni del test del Chi-quadrato (χ 2 )
Ulteriori applicazioni del test del Chi-quadrato (χ 2 ) Finora abbiamo confrontato con il χ 2 le numerosità osservate in diverse categorie in un campione con le numerosità previste da un certo modello
Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali
Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si
Intervalli di confidenza
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
Lezione 16. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 16. A. Iodice. Ipotesi statistiche
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 23 Outline 1 2 3 4 5 6 () Statistica 2 / 23 La verifica delle ipotesi Definizione Un ipotesi statistica
Esame di COSTRUZIONI IDRAULICHE 2 (corso B) Prof.ssa Patrizia Piro Appello scritto del 28 giugno 2011 studente:
Appello scritto del 28 giugno 2011 studente: Compito A In un bacino urbano di circa 4.5 Km 2 è presente una rete di drenaggio per le sole acque piovane che converge tutta in un unico collettore. Si determini,
R=Q(T)/q(T): R come funzione dei parametri del bacino e del tempo di ritorno.
Lo studio statistico delle piene Caratteristiche diverse: a seconda del problema (solo portata al colmo, oppure intera onda di piena) e a seconda dei dati disponibili. Classificazione: analisi basate su
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Stimatore media campionaria Il tempo in minuti necessario a un certo impiegato dell anagrafe
Statistica. Lezione 8
Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 8 a.a 2011-2012 Dott.ssa Daniela
Statistica a breve termine: metodo delle onde apparenti
Esercitazione 1 Statistica a breve termine: metodo delle onde apparenti Si calcolino, applicando il metodo delle onde apparenti, le seguenti proprietà della registrazione ondametrica fornita nelle figure
Fondamenti di statistica per il miglioramento genetico delle piante. Antonio Di Matteo Università Federico II
Fondamenti di statistica per il miglioramento genetico delle piante Antonio Di Matteo Università Federico II Modulo 2 Variabili continue e Metodi parametrici Distribuzione Un insieme di misure è detto
Contenuti: Capitolo 14 del libro di testo
Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4
