DI IDROLOGIA TECNICA PARTE III
|
|
|
- Miranda Alfonsina Battaglia
- 8 anni fa
- Visualizzazioni
Transcript
1 FACOLTA DI INGEGNERIA Laurea Specialistica in Ingegneria Civile N.O. Giuseppe T. Aronica CORSO DI IDROLOGIA TECNICA PARTE III Idrologia delle piene Lezione XIX: I metodi indiretti per la valutazione delle portate al colmo di piena (La modellazione stocastica A-D)
2 GENERALITA Previsione quantile precipitazione h T (Derivazione CPP di fissato T) Modellazione a evento singolo Modello A-D Previsione del quantile richiesto Q T Isofrequenza (T invariante)
3 GENERALITA La modellazione a evento singolo permette la derivazione della Q max ipotizzando che il tempo di ritorno della Q max sia lo stesso dell evento critico derivato dalla CPP. La trasformazione A-D è lineare in probabilità La FFC si ricava simulando la trasformazione A-D con eventi singoli di differente tempo di ritorno T Non possono essere specificate condizioni al contorno diverse da quelle fissate per l evento critico (es. condizioni imbibizione del suolo, variabilità campo di precipitazione) Malgrado ci si trovi a manipolare variabili aleatorie, le tecniche di modellazione sono classicamente deterministiche
4 GENERALITA Modello stocastico precipitazioni (ietogrammi distribuiti secondo una fissata legge di probabilità) Modellazione stocastica Modello stocastico A-D Distribuzione probabilità Q max (FFC) Distribuzione probabilità perdite idrologiche Distribuzione probabilità parametri e struttura IUH
5 GENERALITA La modellazione stocastica della trasformazione A-D prevede la simulazione dei processi idrologici tenendo conto del fatto che nella realtà le grandezze idrologiche che entrano in gioco sono note non in forma deterministica ma attraverso le loro distribuzioni di probabilità.
6 GENERALITA Modellare stocasticamente una trasformazione A-D significa implementare uno strumento statistico-matematico che sia in grado di fornire una distribuzione finale di probabilità di una variabile idrologica di interesse (Q max, V p, ecc.) a partire e combinando opportunamente le distribuzioni di probabilità delle grandezze che intervengono nella definizione della variabile di interesse
7 GENERALITA Idrologia delle piene Derivazione della distribuzione di probabilità delle portate al colmo (Eagleson, 1972) gli statistici di piena sono derivati a partire dalla da una modellazione stocastica dei processi idrologici che contribuiscono alla formazione della portata di piena Metodi analitici complessità matematica difficoltà nella stima dei parametri delle leggi di distribuzione derivate eccessiva semplificazione nella descrizione dei processi idrologici rigidità del metodo Metodi di simulazione MonteCarlo migliore descrizione dei processi idrologici onerosità computazionale taratura dei modelli afflussi-deflussi flessibilità del metodo più adatti a bacini parzialmente strumentati
8 METODI MONTE CARLO I metodi Monte Carlo sono delle procedure di tipo numerico (simulazione) che permettono di generare set di valori (campione) di una variabile aleatoria appartenente a una popolazione di cui è nota la distribuzione di probabilità
9 METODI MONTE CARLO Idrologia delle piene Il metodo si basa sul fatto che se è nota la F(x) di una variabile è possibile ricavare un campione della variabile aleatoria x semplicemente invertendo la F(x) e generando un set di valori compresi tra 0 e 1 di una variabile aleatoria U uniformemente distribuita F(x) (trasformazione dell integrale di probabilità) Es: la F(x) è una esponenziale di parametro λ λx = 1 e 1 x = ln[ 1 U] λ F(U) Uniforme(0,1)
10 METODI MONTE CARLO Data la sua natura numerica, affinché il metodo Monte Carlo sia in grado di fornire risultati accurati e consistenti occorre fissare l attenzione su due aspetti dell implementazione del metodo: La dimensione e il numero di campioni da generare La generazione dei numeri casuali U(0,1)
11 METODI MONTE CARLO Se la simulazione Monte Carlo viene utilizzata per determinare la probabilità p con cui si verifica un evento, occorre determinare la dimensione N del campione in maniera tale da avere una sufficiente accuratezza nella stima di p Se n indica un numero osservato di occorrenze all interno del campione di numerosità N, uno stimatore di p risulta essere n/n. Se le realizzazione sono indipendenti, n risulta essere una variabile distribuita secondo una binomiale con parametri N e p L errore standard di stima di p risulta essere: p(1 p) σ p ˆ = N
12 METODI MONTE CARLO Affinché i limiti di confidenza (1-α) siano minori o uguali di un errore percentuale ε di p la dimensione N del campione generato deve soddisfare la relazione: N = z 2 α ε (1 2 2 p p)
13 METODI MONTE CARLO Idrologia delle piene Esempio : generazione numeri casuali estratti dalla distribuzione GEV I massimi annuali di portata al colmo del F. Oreto registrati alla stazione di Ponte Parco sono distribuiti secondo una GEV con parametri κ = , u = 63.5 m 3 /s, ed α = s/m x = u + κ α x = 63.5 [ ( ) 1 ] 1 lnu κ [ ( ) ] 1 lnu 10 simulazioni di numerosità N = 57 sono state effettuate e riportate in carta probabilistica di Gumbel Q (m 3 /s) variabile ridotta, y
14 METODI MONTE CARLO Generatore numeri casuali Modello stocastico precipitazioni (generazione ietogrammi sintetici di assegnata frequenza) Idrologia delle piene Esempio struttura modello stocastico A-D Uso del suolo, condizioni di saturazione del bacino Modellazione risposta idrologica Modello stocastico piogge effettive (distribuzione precipitazioni effettive condizionata sulle condizioni del bacino) Modello stocastico trasferimento deflussi (generazione Q max ) No isofrequenza Analisi inferenziale Q max (plotting position)
DI IDROLOGIA TECNICA PARTE III
FACOLTA DI INGEGNERIA Laurea Specialistica in Ingegneria Civile N.O. Giuseppe T. Aronica CORSO DI IDROLOGIA TECNICA PARTE III Idrologia delle piene Lezione XI: Generalità Generalità Piena: significativo
Teoria dei Fenomeni Aleatori AA 2012/13
Simulazione al Calcolatore La simulazione al calcolatore (computer simulation), (nel caso qui considerato simulazione stocastica) si basa sulla generazione, mediante calcolatore, di sequenze di numeri
Università della Calabria
Università della Calabria FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria Civile CORSO DI IDROLOGIA N.O. Prof. Pasquale Versace SCHEDA DIDATTICA N 3 CURVE DI PROBABILITÀ PLUVIOMETRICA A.A. 00- CURVE
Statistica Metodologica Avanzato Test 1: Concetti base di inferenza
Test 1: Concetti base di inferenza 1. Se uno stimatore T n è non distorto per il parametro θ, allora A T n è anche consistente B lim Var[T n] = 0 n C E[T n ] = θ, per ogni θ 2. Se T n è uno stimatore con
Lezione 8: Esercizi di Idrologia
Lezione 8: Esercizi di Idrologia Problemi di Idrologia 1 Problemi di bilancio idrologico Problema 1 Alla sezione di ciusura di un bacino idrografico di 40 km di superficie è stata registrata una portata
Simulazione dei dati
Simulazione dei dati Scopo della simulazione Fasi della simulazione Generazione di numeri casuali Esempi Simulazione con Montecarlo 0 Scopo della simulazione Le distribuzioni di riferimento usate per determinare
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,
Statistica Metodologica
Statistica Metodologica Esercizi di Probabilita e Inferenza Silvia Figini e-mail: [email protected] Problema 1 Sia X una variabile aleatoria Bernoulliana con parametro p = 0.7. 1. Determinare la media
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Stimatore media campionaria Il tempo in minuti necessario a un certo impiegato dell anagrafe
t (min) UH (1/min) Tabella 1. Idrogramma unitario
Esercizio n 1 Assegnato l idrogramma unitario riportato in tabella 1 calcolare l idrogramma alla sezione di chiusura di un bacino di 500 ha a fronte dello ietogramma di pioggia totale riportato in tabella
Il calcolo del VAR operativo mediante la metodologia stocastica parametrica. Simona Cosma
Il calcolo del VAR operativo mediante la metodologia stocastica parametrica Simona Cosma Contenuti Il VAR operativo: inquadramento concettuale La metodologia attuariale EVT (Extreme Value Theory) Il VAR
Generazione di numeri random. Distribuzioni uniformi
Generazione di numeri random Distribuzioni uniformi I numeri random Per numero random (o numero casuale) si intende una variabile aleatoria distribuita in modo uniforme tra 0 e 1. Le proprietà statistiche
Intervalli di confidenza
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
Stima della portata di piena: un esempio
Stima della portata di piena: un esempio Giuseppe Pino APAT Dipartimento Nucleare, Rischio Tecnologico e Industriale 1 aprile 2008 Stima della portata di massima piena Obiettivo: determinare la portata
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE. a.a.
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 CDF empirica
UNIVERSITÀ DEGLI STUDI DI PERUGIA
SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale
La famiglia delle distribuzioni GEV - I
La famiglia delle distribuzioni GEV - I La distribuzione generalizzata degli eventi estremi (GEV) è la distribuzione teoricamente attesa per i massimi all interno di blocchi temporali di dimensione molto
Idraulica e idrologia: Lezione 9
Idraulica e idrologia: Lezione 9 Agenda del giorno - Relazioni per la stima della portata al colmo; - Tempo di corrivazione di un bacino; - Metodo razionale. 1 LINEA SEGNALATRICE DI PROBABILITA PLUVIOMETRICA
Analisi Regionale di Frequenza delle piene
Analisi Regionale di Frequenza delle piene (VALUTAZIONE PROBABILISTICA DELLE PIENE) [email protected]; [email protected] 1 Schema concettuale della Protezione Idraulica del Territorio PIANIFICAZIONE
VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul
1 Introduzione alla Teoria della Probabilità... 1 1.1 Introduzione........................................ 1 1.2 Spazio dei Campioni ed Eventi Aleatori................ 2 1.3 Misura di Probabilità... 5
MODELLISTICA DI IMPIANTI E SISTEMI Syllabus e Testi di Riferimento Prof. Giuseppe Iazeolla
Syllabus e Testi di Riferimento MIS 1 di 7 MODELLISTICA DI IMPIANTI E SISTEMI Syllabus e Testi di Riferimento Prof. Giuseppe Iazeolla Syllabus da testo 1 (la numerazione fa riferimento ai capitoli del
IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA
Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale
ESAME. 9 Gennaio 2017 COMPITO B
ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto
Esempio (Azzalini, pp. 6-15)
Inferenza statistica procedimento per indurre le caratteristiche non note di un aggregato a partire dalle informazioni disponibili su una parte di esso. Obiettivo del corso presentare la teoria ed i metodi
λ è detto intensità e rappresenta il numero di eventi che si
ESERCITAZIONE N 1 STUDIO DI UN SISTEMA DI CODA M/M/1 1. Introduzione Per poter studiare un sistema di coda occorre necessariamente simulare gli arrivi, le partenze e i tempi di ingresso nel sistema e di
Statistica Inferenziale
Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione
05. Errore campionario e numerosità campionaria
Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Riepilogo lezione 9 Abbiamo visto metodi per la determinazione di uno stimatore puntuale e casi per: Carattere con
Calcolo delle probabilità e statistica
Grazia Vicario Raffaello Levi Calcolo delle probabilità e statistica per 1ngegner1 - GO... PROGenO 00 LeoNARDO BOLOGNA r r, ) - Universi!a' IU~V Venezia DEPCIA w 1852 BIBLIOTECA G.ASTENGO G. Vicario~ R.
Tipi di variabili. Indici di tendenza centrale e di dispersione
Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)
Stima puntuale di parametri
Probabilità e Statistica Esercitazioni a.a. 006/007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
Gestione delle scorte - modello stocastico -
Gestione delle scorte - modello stocastico - Prof. Riccardo Melloni [email protected] Università di Modena and Reggio Emilia Dipartimento di Ingegneria Enzo Ferrari via Vignolese 905, 41100,
Esercitazioni di Statistica
Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni [email protected] Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto
GNDCI Linea 1. Rapporto di sintesi sulla valutazione delle piene in Italia 11. SINTESI DEL RAPPORTO REGIONALE SICILIA
11. SINTESI DEL RAPPORTO REGIONALE SICILIA 11.1 Premessa In questa breve nota vengono sintetizzati i risultati salienti del Progetto VAPI per la stima delle portate di assegnato tempo di ritorno, per qualsiasi
PAROLE CHIAVE Accuratezza, Accuracy, Esattezza, PRECISIONE, Precision, Ripetibilità, Affidabilità, Reliability, Scarto quadratico medio (sqm), Errore
PAROLE CHIAVE Accuratezza, Accuracy, Esattezza, PRECISIONE, Precision, Ripetibilità, Affidabilità, Reliability, Scarto quadratico medio (sqm), Errore medio, Errore quadratico medio (eqm), Deviazione standard,
DI IDROLOGIA TECNICA PARTE III
FACOLTA DI INGEGNERIA Laurea Specialistica in Ingegneria Civile N.O. Giuseppe T. Aronica CORSO DI IDROLOGIA TECNICA PARTE III Idrologia delle piene Lezione XII: I metodi diretti per la valutazione delle
Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota)
STATISTICA (2) ESERCITAZIONE 5 26.02.2014 Dott.ssa Antonella Costanzo Esercizio 1. Stima intervallare: IC per la media incognita (varianza ignota) Il responsabile del controllo qualità di un azienda che
Modelli descrittivi, statistica e simulazione
Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone ([email protected]) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)
PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE
PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE (da un idea di M. Impedovo Variabili aleatorie continue e simulazione Progetto Alice n. 15, ) 1. La simulazione Nelle schede precedenti
Esercizio n 1. Esercizio n 2. Esercizio n 3. Corso di Idrologia 19 settembre 2011 Prova Scritta
Corso di Idrologia 9 settembre 0 sercizio n Si stimi il valore del parametro φ per il calcolo della pioggia netta di un bacino di km per il quale a fronte dello ietogramma di tabella è stato osservato
Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura
INDICE GENERALE Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura XI XIV XV XVII XVIII 1 LA RILEVAZIONE DEI FENOMENI
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Riepilogo lezione 8 Abbiamo visto: Metodi per la determinazione di uno stimatore Metodo di massima verosimiglianza
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando
LEZIONI DI STATISTICA MEDICA
LEZIONI DI STATISTICA MEDICA Lezione n.11 - Principi dell inferenza statistica - Campionamento - Distribuzione campionaria di una media e di una proporzione - Intervallo di confidenza di una media e di
0 z < z < 2. 0 z < z 3
CALCOLO DELLE PROBABILITÀ o - 7 gennaio 004. Elettronica : 4; Nettuno: 3.. Data un urna di composizione incognita con palline bianche e nere, sia K = il numero di palline bianche nell urna è il doppio
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
STATISTICA ESERCITAZIONE
STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in
Corso di Statistica Industriale
Corso di Statistica Industriale Corsi di Laurea Specialistica in Ingegneria Gestionale e Ingegneria Meccanica Docente: Ilia Negri Orario del corso: Martedì: dalle 14.00 alle 16.00 Venerdì: dalle 10.30
Test per l omogeneità delle varianze
Test per l omogeneità delle varianze Le carte di controllo hanno lo scopo di verificare se i campioni estratti provengono da un processo produttivo caratterizzato da un unico valore dello s.q.m. σ. Una
Il campionamento e l inferenza. Il campionamento e l inferenza
Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento
Fin qui si sono considerate le variabili casuali ciascuna per proprio conto. Ora consideriamo la possibilità di relazioni tra variabili.
Sistemi di variabili casuali Fin qui si sono considerate le variabili casuali ciascuna per proprio conto. Ora consideriamo la possibilità di relazioni tra variabili. Esempi: - il massimo annuale della
CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati
CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 1. Dati gli eventi A,B,C, ognuno dei quali implica il successivo, e tali che P (A) è metà della probabilità di B, che a sua volta ha probabilità metà di quella
Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza
Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 16/06/2016 NOME: COGNOME: MATRICOLA: Esercizio 1 Cinque lettere
Contenuti: Capitolo 14 del libro di testo
Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4
Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva
Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.
Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1
Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni
Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo
Statistica 2 Esercitazioni Dott. L 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: [email protected]
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. La v.c. Uniforme Continua Secondo alcuni sondaggi sul sito della Apple (technical support site,
Laboratorio di Calcolo I. Applicazioni : Metodo Monte Carlo
Laboratorio di Calcolo I Applicazioni : Metodo Monte Carlo 1 Monte Carlo Il metodo di Monte Carlo è un metodo per la risoluzione numerica di problemi matematici che utilizza numeri casuali. Si applica
Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17
Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
Modulo Simulazione Parte 1. Simulazione ad Eventi Discreti: Concetti Base. Organizzazione del modulo
Modulo Simulazione Parte 1 Simulazione ad Eventi Discreti: Concetti Base Ing. R.G. Garroppo Organizzazione del modulo Simulazione ad eventi discreti: concetti base Testo: J. Banks, J.S. Carson, B.L. Nelson
Calcolo delle Probabilità 2
Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale
FACOLTA DI INGEGNERIA
FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 5 ARGOMENTO: VERIFICA DEL MODELLO
Il confronto fra medie
L. Boni Obiettivo Verificare l'ipotesi che regimi alimentari differenti non producano mediamente lo stesso effetto sulla gittata cardiaca Ipotesi nulla IPOTESI NULLA La dieta non dovrebbe modificare in
Il metodo Monte Carlo. Esempio di transizione al caos. Numeri (pseudo)casuali. λ 1. Analisi dati in Fisica Subnucleare
Analisi dati in Fisica Subnucleare Introduzione al metodo Monte Carlo (N.B. parte di queste trasparenze sono riciclate da un seminario di L. Lista) Il metodo Monte Carlo È una tecnica numerica che si basa
Elementi di statistica per l econometria
Indice Prefazione i 1 Teoria della probabilità 1 1.1 Definizioni di base............................. 2 1.2 Probabilità................................. 7 1.2.1 Teoria classica...........................
Regressione Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007
Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il costo mensile Y di produzione e il corrispondente volume produttivo X per uno dei propri stabilimenti. Volume
STATISTICHE, DISTRIBUZIONI CAMPIONARIE E INFERENZA
Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 STATISTICHE, DISTRIBUZIONI CAMPIONARIE
b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta):
ESERCIZIO 1 Una grande banca vuole stimare l ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto. Si seleziona un campione di 100 clienti su cui si osserva
LE DISTRIBUZIONI CAMPIONARIE
LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria
4. Si supponga che il tempo impiegato da una lettera spedita dall Italia per arrivare a destinazione segua una distribuzione normale con media
Esercizi sulle distribuzioni, il teorema limite centrale e la stima puntuale Corso di Probabilità e Inferenza Statistica, anno 007-008, Prof. Mortera 1. Sia X la durata in mesi di una valvola per radio.
