Argomenti Capitolo 1 Richiami

Documenti analoghi
misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

Esercitazione di Analisi Matematica II

Appunti sul corso di Complementi di Matematica (modulo Analisi)

Capitolo 1 Vettori applicati e geometria dello spazio

Vettori e geometria analitica in R 3 1 / 25

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax

I VETTORI DELLO SPAZIO

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

LA RETTA NEL PIANO CARTESIANO

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

Prodotto scalare e ortogonalità

Prodotto scalare e norma

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

LEZIONE 6. Typeset by AMS-TEX

x 1 Fig.1 Il punto P = P =

Soluzione. a) Per la bilinearità e la simmetria del prodotto scalare, b) Si sfruttano la bilinearità e la simmetria del prodotto scalare.

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

Elementi di Algebra Lineare Spazi Vettoriali

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Geometria Analitica nello Spazio

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

Il valore assoluto (lunghezza, intensita )

Parte 11. Geometria dello spazio II

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

TUTTO (o quasi tutto ) SULLA RETTA di Leonardo Calconi

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

1 Rette e piani nello spazio

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.

Parte 10. Geometria dello spazio I

Richiami sugli insiemi numerici

1 Nozioni utili sul piano cartesiano

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Geometria analitica del piano pag 32 Adolfo Scimone

Esercizi di Geometria Affine

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008

1 Applicazioni lineari

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Geometria BATR-BCVR Esercizi 9

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag.

Grandezze scalari e vettoriali

1.1 Coordinate sulla retta e nel piano; rette nel piano

1 Cenni di teoria degli insiemi

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani.

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

Ferruccio Orecchia. esercizi di GEOMETRIA 1

FUNZIONI GONIOMETRICHE

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi svolti. Geometria analitica: rette e piani

Condizione di allineamento di tre punti

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.

2. I numeri reali e le funzioni di variabile reale

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

Coordiante omogenee e proiezioni

y 5z = 7 y +8z = 10 +3z = 3

GEOMETRIA LINEARE E CONICHE - GIUGNO Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di calcolo vettoriale

1.4 Geometria analitica

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO

Esercizi sui vettori liberi (i, j, k è una base ortonormale positiva)

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

LA GEOMETRIA DELLO SPAZIO

La matematica del CAD. Vettori e Matrici

Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune.

1- Geometria dello spazio. Vettori

GEOMETRIA 1 Corso di Geometria 1 (prima parte)

Corso multimediale di matematica

CAP. 1 - GLI ELEMENTI PRIMITIVI

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

ALCUNI RICHIAMI GENERALI

Informatica Grafica. Un introduzione

Momento angolare L. P. Maggio Prodotto vettoriale

Prodotto interno (prodotto scalare definito positivo)

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

Quadro riassuntivo di geometria analitica

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

Punti nel piano cartesiano

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Vettori del piano. Questo materiale non deve essere considerato come sostituto

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Esercizi per Geometria II Geometria euclidea e proiettiva

1.3. Logaritmi ed esponenziali

TRASFORMAZIONI GEOMETRICHE

Transcript:

Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme delle coppie di numeri reali R 2 si rappresenta geometricamente con l insieme dei punti di un piano euclideo in cui sia stato fissato un sistema di coordinate cartesiane. Il linguaggio di R 2 si trasferisce a π e viceversa, per cui si parla, ad esempio, di circonferenza, cerchio, rettangolo in R 2. L insieme delle terne di numeri reali R 3 si rappresenta geometricamente con l insieme dei punti di uno spazio euclideo in cui sia stato fissato un sistema di coordinate cartesiane. Il linguaggio di R 3 si trasferisce a Σ e viceversa per cui si parla, ad esempio, di sfera, parallelepipedo, distanza in R 3. Grandezze scalari e grandezze vettoriali Una grandezza scalare é una grandezza che puó essere individuata da un numero che ne esprime la misura rispetto a una grandezza presa come unitá. Esempi di grandezze scalari sono la massa, la temperatura, l area, la lunghezza, il volume. Una grandezza vettoriale é una grandezza che viene individuata da un numero reale (che ne esprime la misura) una direzione un verso e puó essere rappresentata tramite un segmento orientato. esempi Spostamento di un punto lungo una traiettoria. Forza applicata a un punto materiale. Velocitá di un punto p(t) mobile. Sia Σ uno spazio euclideo e sia S l insieme dei segmenti orientati di Σ. In S si definisce una relazione di equivalenza R per cui due segmenti orientati pq e p 1 q 1 sono equivalenti se hanno stessa lunghezza, stessa direzione e stesso verso. La relazione R é detta relazione di equipollenza. Chiameremo vettore geometrico, individuato da un segmento orientato pq, e scriveremo v= pq, la classe di equivalenza di pq secondo R, cioé l insieme costituito da pq e da tutti i segmenti 1

orientati ad esso equipollenti. Diremo direzione, verso, norma (o modulo) di un vettore la direzione, il verso, la lunghezza di un qualunque segmento orientato che lo individua. L insieme dei vettori geometrici, cioé l insieme quoziente S/R, viene denotato col simbolo V Σ e si chiama spazio vettoriale geometrico a tre dimensioni. Relazioni fra vettori, rette, piani I vettori v e w si dicono paralleli se hanno stessa direzione. equiversi se hanno stessa direzione e stesso verso. perpendicolari se lo sono due segmenti orientati che li rappresentano. Un vettore v e una retta r si dicono paralleli se hanno la stessa direzione. Un vettore v e un piano π si dicono paralleli se π é parallelo a un segmento orientato che rappresenta v. I vettori v e w si dicono complanari se sono paralleli a uno stesso piano. Operazioni fra vettori Con le grandezze scalari si opera sommandole e sottraendole con le ordinarie regole dell algebra. Con le grandezze vettoriali si opera sommandole e sottraendole con la regola del parallelogramma. Somma dei vettori u= pq e v= qs é il vettore denotato con u+v individuato dal segmento orientato ps Prodotto di un vettore u per uno scalare λ é il vettore denotato con λu di modulo λ u, stessa direzione di u, verso uguale o opposto a seconda che lo scalare sia positivo o negativo. Se lo scalare é 0 o u = 0 si pone λu=0. Struttura dello spazio vettoriale geometrico Lo spazio V Σ ha la struttura di spazio vettoriale rispetto alle operazioni di somma di vettori e di prodotto di un vettore per uno scalare. Lo Spazio vettoriale geometrico a una dimensione V R segmenti orientati giacenti su una retta. Lo Spazio vettoriale geometrico a due dimensioni V Π segmenti orientati giacenti in un piano. si costruisce in modo analogo partendo dai si costruisce in modo analogo partendo dai 2

Basi di uno spazio vettoriale geometrico Poichè uno spazio vettoriale geometrico ha la struttura di spazio vettoriale, si puó parlare in V Σ di: - combinazione lineare di vettori, - vettori linearmente dipendenti, - vettori linearmente indipendenti, - base di V Σ, - componenti di un vettore rispetto a una base. E importante osservare che: Due vettori non nulli sono paralleli se e solo se sono linearmente dipendenti. Tre vettori non nulli e non paralleli sono complanari se e solo se sono linearmente dipendenti. Se in Σ viene introdotto un sistema di riferimento cartesiano i versori i,j,k degli assi x,y,z costituiscono una base di V Σ e le componenti di un vettore v rispetto a tale base si dicono componenti cartesiane di v. Due vettori non nulli sono linearmente dipendenti, e quindi paralleli, se e solo se la matrice costituita dalle loro componenti cartesiane ha rango minore di 2. Tre vettori non paralleli sono linearmente dipendenti, e quindi complanari, se e solo se la matrice costituita dalle loro componenti cartesiane ha rango minore di 3. Prodotto scalare di due vettori geometrici Per definire il prodotto scalare é necessaria la nozione di angolo determinato da due vettori. Ricordiamo che: - Angolo determinato da due semirette s 1 e s 2 di origine o in un piano π é l angolo convesso di lati s 1 e s 2. - Angolo determinato da due semirette s 1 e s 2 di origine o nello spazio é l angolo convesso di lati s 1 e s 2 giacente nel piano individuato dalle due semirette ( se le semirette hanno la stessa direzione si considera un qualunque piano che le contiene.) -Angolo determinato da due semirette s 1 e s 2 di origini diverse nello spazio é l angolo convesso di lati s 1 e s 2 semirette parallele ed equiverse a s 1 e s 2 rispettivamente e aventi la stessa origine. Possiamo dare le definizioni: 3

- L angolo determinato da due vettori u e v, denotato con ûv, é l angolo determinato da due semirette orientate equiverse a u e v rispettivamente. - Il prodotto scalare di due vettori non nulli u e v é il numero reale u v = u v cos(ûv). Se uno dei vettori é nullo si pone il prodotto scalare uguale a 0. - Il prodotto scalare é nullo se i vettori sono ortogonali. - Il prodotto scalare é dato dal modulo di uno dei due vettori per la componente scalare dell altro nella direzione e verso del primo. - Il prodotto scalare di due vettori é uguale alla somma dei prodotti delle componenti cartesiane dei due vettori. Lo spazio euclideo Σ come uno spazio vettoriale Fissato un punto o in Σ, per ogni punto p si considera il segmento orientato op e quindi il vettore geometrico u = op. La corrispondenza che a p fa corrispondere u= op definisce una corrispondenza biunivoca fra Σ e V Σ che ci permette definire delle operazioni che strutturano lo spazio euclideo Σ come uno spazio vettoriale. Operazioni in Σ - Somma di due punti p e q é il punto s soddisfacente alla condizione che op + oq = os e scriveremo p + q = s - Prodotto di un punto p per uno scalare λ é il punto q soddisfacente alla condizione che λ op = oq. - Opposto di un punto p é il punto q tale che oq = ( 1) op e scriveremo q = p. - Differenza di due punti p e q é il punto s tale che os = op + ( 1) oq. Lo spazio euclideo Σ ha la struttura di spazio vettoriale rispetto alle operazioni di somma di due punti e di prodotto di un punto per uno scalare. Conseguenze della struttura vettoriale in Σ : - i punti vengono chiamati vettori, - si definisce norma di p come p = op. - si definisce il prodotto scalare di due punti p e q come p q = op oq. - due punti p e q si dicono linearmente dipendenti se lo sono i vettori v = op e w = oq cioé se i punti o, p e q sono allineati, - tre punti p, q, s sono linearmente dipendenti se lo sono i vettori v = op e w = oq k = os 4

cioé se i punti o, p, q, s sono complanari, - tre punti p, q e p giacciono su una stessa retta se q p e p p giacciono su una stessa retta per o cioé se q p e p p sono linearmente dipendenti, - quattro punti q, p,q e p giacciono su una stessa piano se q p, q p e p p giacciono su uno stesso piano per o cioé se q p, q p e p p sono linearmente dipendenti, - se in Σ é fissata una terna di assi cartesiani, i punti (1,0,0), (0,1,0), (0,0,1) costituiscono una base di Σ. Equazioni vettoriali ed equazioni scalari di rette, segmenti e piani Equazione di una retta per o - L equazione vettoriale di una retta per o e q é p = λ q, perché p appartiene alla retta per o e q se i vettori v = op e w = oq sono paralleli cioé se p e q sono linearmente dipendenti. - Le equazioni scalari (parametriche) di una retta per o e q, se p = (x i ), e q = (q i ), i = 1, 2, 3, sono Equazione di una retta per due punti x i = λ q i, λ R. - L equazione vettoriale di una retta per p 1 e p 2 é p p 1 = λ (p 2 p 1 ), λ R, in quanto i punti p, p 1, e p 2 appartengono a una stessa retta r se p p 1 e p 2 p 1 appartengono alla parallela a r per o. - Le equazioni scalari (parametriche) di una retta per i punti p 1 e p 2, se p = (x i ), p 1 = (p 1 ) i e p 2 = (p 2 ) i,, i = 1, 2, 3, sono x i x 1 i = λ (x 2 i x 1 i ), λ R. Equazione di un piano per p 1, p 2 e o - L equazione vettoriale di un piano per p 1, p 2 e o é p = α p 1 + β p 2, α, β R, 5

perché tre punti appartengono a uno stesso piano per o se e solo se sono linearmente dipendenti. - Le equazioni scalari di un piano per p 1, p 2 e o, se p = (x i ), p 1 = (p 1 ) i e p 2 = (p 2 ) i, i = 1, 2, 3, sono x i x 1 i = λ (x 2 i x 1 i ). Equazione di un piano per p 1, p 2 e p 3 - L equazione vettoriale di un piano per p 1, p 2 e p 3 é p p 1 = α (p 2 p 1 ) + β (p 3 p 1 ), α, β R, in quanto i punti p, p 1, p 2 e p 3 appartengono a uno stesso piano π se e solo se p p 1 p 3 p 1 e p 2 p 1 appartengono al piano passante per o e parallelo a π. - Le equazioni scalari di un piano per p 1, p 2 e p 3, se p = (x i ), p 1 = (p 1 ) i e p 2 = (p 2 ) i, i = 1, 2, 3 é x i = p 1 i + α p 2 i + β p 3 i, α, β R. Prodotto vettoriale di due vettori geometrici Per definire il prodotto vettoriale sono necessarie le nozioni di verso positivo in uno spazio euclideo e di terna di vettori orientata positivamente. Se x, y, z sono tre semirette non complanari di origine o, dicesi triedro di origine o e spigoli x, y, z l intersezione dei tre semispazi di origine il piano determinato da due semirette e contenente la terza. Se β é il triedro sopra definito,la quaterna (β, x, y, z) dicesi triedro orientato di sostegno β. Due triedri orientati (β, x, y, z) e (β, x, y, z ) si dicono concordi se, sovrapposto il piano contenente le semirette x, y con quello contenente x,y, le semirette z e z si trovano nello stesso semispazio. La relazione di concordanza é una relazione di equivalenza. Le classi di equivalenza sono solo due e diconsi versi. Se si fissa un verso lo si dice positivo. Un triedro dicesi orientato positivamente se appartiene alla classe del verso positivo. Nello spazio fisico si individua un verso destrorso (pollice, indice e medio della mano destra) e un verso sinistrorso (pollice, indice e medio della mano sinistra). Una terna di vettori (u, v, w) linearmente indipendenti si dice di verso positivo se é di verso positivo il triedro di origine un punto qualunque e di spigoli tre semirette parallele e concordi con u, v, w. 6

Due terne di vettori linearmente indipendenti si dicono concordi se sono entrambe orientate positivamente o entrambe negativamente. Dati due vettori non nulli e non paralleli u e v si dice prodotto vettoriale il vettore u w soddisfacente alle seguenti condizioni: - é perpendicolare al piano individuato da u e v, - ha norma data da u v sen û v, - la terna (u, v, u v) é di verso positivo. Utilizzando le nozioni di prodotto vettoriale e prodotto scalare si puó dare un altra espressione dell equazione vettoriale di un piano passante per i punti p 1, p 2, p 3. Si ha [(p 2 p 1 ) (p 3 p 1 )] (p p 1 ) = 0 Spazio vettoriale numerico Dato uno spazio euclideo Σ, in cui sia fissato un sistema di coordinate cartesiane, se facciamo corrispondere a ogni punto p di Σ la terna delle sue coordinate otteniamo una corrispondenza fra Σ e R 3. Diremo che R 3 viene geometricamente rappresentato con l insieme dei punti di Σ e trasferiremo in R 3 il linguaggio di Σ e, quindi, parleremo di sfera, parallelepipedo, distanza in R 3. Poiché in Σ cé anche una struttura vettoriale é possibile trasferire anche a R 3 questa struttura. Gli elementi di R 3 saranno chiamati punti se si fa riferimento alla strttura geometrica, vettori se si fa riferimento alla struttura vettoriale. R 3 é uno spazio vettoriale, detto spazio vettoriale numerico a 3 dimensioni, rispetto alle seguenti operazioni: - Somma di due elementi x = (x, y, z) e x = (x, y, z ) di R 3 é l elemento x + x = (x + x, y + y, z + z ). - Prodotto di un elemento x = (x, y, z) per uno scalare λ é l elemento λ x = ( λ x, λ y, λ z). - Norma di un elemento x = (x, y, z) é il numero x = x 2 + y 2 + z 2. - Prodotto scalare di due elementi x = (x, y, z) e x = (x, y, z ) di R 3 é il numero reale x x = xx + yy + zz. - Una base di R 3 é costituita dai vettori e 1 = (1, 0, 0), e 2 = (0, 1, 0), e 3 = (0, 0, 1). Piú in generale, se n é un numero naturale, l insieme R n = {(x 1, x 2,..., x n ) : x i R, i = 1,...n} é uno spazio vettoriale, detto spazio vettoriale numerico a n dimensioni, con le seguenti operazioni: 7

- Somma di due elementi x = (x 1,..., x n ) e y = (y 1,..., y n ) di R n é l elemento x + y = (x 1 + y 1,..., x n + y n ). - Prodotto di un elemento x = (x 1,..., x n ) per uno scalare λ é l elemento λ x = ( λ x 1,..., λ x n ). Ricordiamo che: - Norma di un elemento x = (x 1,..., x n ) é il numero x = x 2 1 +... + x2 n. - Prodotto scalare di due elementi x e y di R n é il numero reale x y = x 1 y 1 +... + x n y n. - Una base di R n é costituita dai vettori e 1 = (1, 0,..., 0), e 2 = (0, 1, 0,.., 0),..., e n = (0, 0,.., 0, 1). - Se v R n é un vettore e x o R n é un punto, la retta per x o di direzione v é l insieme cosí definito {x R n : x = x o + t v, t R}. - La sfera aperta (rispettivamente chiusa) di centro x o R n e raggio r > 0 é l insieme {x R n : x x o < r} (rispettivamente {x R n : x x o r}). - Il parallelepipedo aperto (rispettivamente chiuso) di centro x R n e semidimensioni d 1,..., d n é l insieme {y R n : y i x i < d i i = 1,..., n} (rispettivamente {y R n : y i x i d i i = 1,..., n}). 8